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Motivations from Equivariant Topology

Introduction

In this chapter we describe context from equivariant topology and the theory of
stable model categories that motivates our further study of multicategorically
enriched categories, enriched diagrams, enriched Mackey functors, and change
of enrichment.

Convention 1.0.1. Assume throughout this chapter that G is a finite group.
See Remarks 1.1.1 and 1.2.8 for further comments on this convention. �

Connection with Main Content

The purpose of this chapter is to indicate the role that categorical diagrams –
particularly Mackey functors – play in equivariant homotopy theory. None of
the mathematics in this present work depends on the content of this chapter,
but the attendant applications are a key motivation.

For example, the Burnside 2-category GE (Definition 1.3.5) is enriched in
the multicategory of permutative categories, PermCatsu (Section 2.4). We give
a treatment of

• categories enriched in closed multicategories, in Chapter 7,
• change of enrichment, in Chapter 8,
• the closed multicategory structure of PermCatsu in Chapter 9, and
• self-enrichment for closed multicategories in Chapter 10.

In the Guillou–May Theorem 1.3.9, the domain of spectral Mackey functors,
(GEK)op, is given by a change of enrichment (−)K and requires a distinc-
tion between enriched diagrams, with domain GEK, and enriched Mackey
functors, with domain (GEK)op. We describe the relevant subtleties further in
Remarks 1.3.7 and 11.5.5.
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2 Motivations from Equivariant Topology

Similarly, but in a more abstract context, the spectral presheaves in the
Schwede–Shipley Characterization Theorem 1.4.3 have domain E(P)op. The
input E(P) is the spectral endomorphism category of a set of compact gen-
erators P for a simplicial, cofibrantly generated, proper, and stable model
category M.

We give a general treatment of enriched diagrams and enriched Mackey
functors, including interactions with change of enrichment, in Chapter 11. We
develop techniques and applications for the corresponding homotopy theory in
Chapters 12 and 13.

Chapter Summary

A substantive treatment of equivariant homotopy theory is well beyond our cur-
rent scope. At the end of this introduction we give a list of key references. The
remaining content in this chapter is restricted to those definitions and results
that provide motivating context for our work in what follows.

Section 1.1 concerns equivariant spaces.

• The orbit category of G is denoted OG; see Definition 1.1.3.
• Elmendorf’s Theorem 1.1.9 shows that the homotopy theory of G-spaces is

equivalent to that of topological presheaves on OG.

Section 1.2 concerns Abelian Mackey functors.

• The Burnside ring of G is denoted GA. Its elements are isomorphism
classes of finite G-sets with disjoint union and Cartesian product; see
Definition 1.2.5.
• The Burnside category of G is denoted GB. Its morphisms are isomor-

phism classes of spans between finite G-sets. Disjoint union provides an
enrichment over Abelian groups; see Definition 1.2.5.
• Abelian Mackey functors are enriched presheaves on the Burnside category;

see Definition 1.2.9.

Sections 1.3 and 1.4 concern spectral Mackey functors.

• The Burnside 2-category of G is denoted GE . Its 1- and 2-cells are cate-
gories of spans between finite G-sets. Disjoint union, together with a choice
of pullbacks and whiskering by a strict unit, provides an enrichment over
permutative categories; see Definition 1.3.5.
• Spectral Mackey functors are enriched presheaves on a spectral enrichment

of the Burnside 2-category; see Definition 1.3.8.
• The Guillou–May Theorem 1.3.9 shows that the homotopy theory of

G-spectra is equivalent to that of spectral Mackey functors.
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Motivations from Equivariant Topology 3

• The Schwede–Shipley Characterization Theorem 1.4.3 shows that the
homotopy theory of a simplicial, cofibrantly generated, proper, and sta-
ble model category is equivalent to that of spectral presheaves on an
endomorphism category of generating objects.

References

Main references for equivariant homotopy theory include, at least, the fol-
lowing. We include further specialized references at relevant points in the
discussion.

• The text by tom Dieck [tD79] lays the foundations for equivariant homo-
topy theory of spaces, including equivariant (co)homology theories known
as Bredon cohomology.
• The monograph [LMS86], by Lewis, May, and Steinberger, gives the

foundational treatment of equivariant stable homotopy theory, particularly
equivariant spectra.
• The CBMS Alaska conference proceedings [May96] refines and signifi-

cantly extends the preceding theory, including more development of the
closed monoidal structure for equivariant spectra.
• The recent textbook account by Hill, Hopkins, and Ravenel [HHR21]

provides a more modern perspective, with thorough treatment of norm
operations and the slice filtration that are essential in their solution of the
Kervaire invariant problem [HHR16].

1.1 Equivariant Spaces and Presheaves
on the Orbit Category

Recall Convention 1.0.1 that G is assumed to be a finite group.

Remark 1.1.1. Many, but not all, of the following concepts extend to more
general cases of interest, such as G being a compact Lie group or a general top-
ological group. The most important exception is our definition of the Burnside
category in Definitions 1.2.5 and 1.3.5, which depends on finiteness of G. See
Remark 1.2.8 for further comments and references regarding that point. �

Definition 1.1.2. Suppose C and M are categories, with C small. A diagram of
shape C, or C-diagram in M is a functor

C M.
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4 Motivations from Equivariant Topology

A presheaf on C or C-presheaf in M is a diagram of shape Cop in M, where Cop

is the opposite category of C. That is, a presheaf on C is a functor

Cop M.

The phrase “in M” is often omitted when M is clear from context. Morphisms
between diagrams and presheaves are natural transformations, and so

Cat(C, M) and Cat(Cop, M)

are the respective categories of diagrams and presheaves on C. If M is a sym-
metric monoidal closed category (Definition A.1.19) or, more generally, a
closed multicategory (Definition 9.1.1), then there are corresponding enriched
variants described in Definition 11.1.1. �

Definition 1.1.3. The orbit category of a group G, denoted OG, consists of the
following. Its objects are the G-orbits G/H , where H is a subgroup of G, and
its morphisms are the G-equivariant morphisms. �

Remark 1.1.4. Note that each G-equivariant map

f : G/H G/K in OG

determines and is determined by an element g∈G, where f (eH)= gK, such
that g−1Hg⊂K. Thus, the morphisms in OG are given by subconjugacy
relations. �

Definition 1.1.5 (G-Spaces). A G-space is a topological space on which G acts
continuously. Morphisms of G-spaces are continuous functions that commute
with the G-action. The category of G-spaces and their morphisms is denoted
TopG. �

Definition 1.1.6 (Fixed Points). For each G-space X , and for each subgroup H
in G, the H-fixed point space, denoted X H , consists of the subspace of points
on which H acts trivially. As a G-space, X H can be defined equivalently as the
space of G-equivariant morphisms

TopG(G/H , X ),

where G/H has the discrete topology. The assignment

G/H X H

determines a presheaf of spaces on the orbit category OG,

8X :Oop
G TopG, (1.1.7)

called the fixed point functor. �
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Motivations from Equivariant Topology 5

Discussion of equivariant homotopy and (co)homology is beyond our cur-
rent scope, but the following gives an indication of the role that the orbit
category plays in equivariant topology.

Explanation 1.1.8. The coefficient systems for Bredon cohomology of G-
spaces are given by presheaves

A : Oop
G Ab,

where Ab is the category of Abelian groups and group homomorphisms. In
particular, for a G-space X , the composite with πn for n ≥ 2 yields a coefficient
system

Oop
G

8X Top
πn Ab. �

The following result due to Elmendorf [Elm83] gives a different indication
of the importance of presheaves on the orbit category.

Theorem 1.1.9 ([Elm83, GMR19]) The fixed point functor, 8, induces a
Quillen equivalence

8 : TopG 'Q
(TopG-Cat)(Oop

G , Top)

between the category of G-equivariant topological spaces and the category of
topological presheaves on OG.

As we outline in the following section, presheaves on the Burnside
(2-)category, which are known as Mackey functors, fill an analogous role in
the generalization to stable equivariant homotopy.

1.2 The Burnside Category and Abelian G-Mackey Functors

The Burnside category (Definition 1.2.5) extends the orbit category of G using
spans of finite G-sets. The key motivation for this expansion of OG is to
account for the restriction, induction, and transfer morphisms on finite G-sets.
Further explanation and examples of this perspective can be found in [Web00]
and [HHR21, Sections 8.1 and 8.2].

Definition 1.2.1 (Finite G-Sets). Let NG denote the following skeleton of the
category of finite G-sets. The objects of NG are pairs (n,α), where n is a natural
number, n = {1, . . . , n}, and

α : G 6n

https://doi.org/10.1017/9781009519564.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009519564.002


6 Motivations from Equivariant Topology

is a group homomorphism. We regard X = (n,α) as a G-set with the action

g · i = α(g)(i)

for g ∈ G and i ∈ n. The morphisms f : (n,α) (p,β) in NG are
G-equivariant morphisms. That is, f is a map of sets n p such that

β(g)(f (i)) = f
(
α(g)(i)

)
for g ∈ G and i ∈ n.

We call n the cardinality of X = (n,α) and write |X | = n. Additionally, we
define the following.

(1) The disjoint union of finite G-sets,
∐

, defines a permutative structure with
unit given by the empty G-set. We write (0, !) for the empty finite set and
the unique action homomorphism G 60.

(2) The Cartesian product, together with the lexicographic ordering

n× p ∼= np via (i, j) p(i− 1)+ j, (1.2.2)

defines a second permutative structure on NG. Its unit is the terminal G-set
(1, !), consisting of the terminal set and the unique action homomorphism
G 61. �

Definition 1.2.3 (Bicategory of Spans). Suppose C is a small category with
pullbacks, equipped with a choice of pullbacks for each pair of morphisms
having a common codomain. The bicategory of spans in C is denoted Span(C)
and consists of the following.

0-Cells: The 0-cells are objects X ∈ C.
1-Cells: The 1-cells with domain X and codomain Y are triples (A, f , g) that

are spans

X
f

A
g

Y in C. (1.2.4)

Since the object A is determined by the two morphisms, a span is sometimes
denoted by its pair of morphisms, (f , g).

2-Cells: The 2-cells (A, f , g) (A′, f ′, g′) are morphisms w : A A′ in C
that make the following diagram commute in C.

X

A

A′
Y

f

f ′

g

g′

w

Identities: The identity 1-cell on a 0-cell X is the triple 1X = (X , 1X , 1X )
given by the identity morphisms in C. The identity 2-cell on a 1-cell (A, f , g)
is the identity morphism 1A in C.
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Motivations from Equivariant Topology 7

Composition: For objects X , Y , and Z in C, the composition functor

Span(C)(Y , Z)× Span(C)(X , Y ) Span(C)(X , Z)

sends a composable pair to the span given by their chosen pullback, as shown
below.

X Y Z

A B

A×Y B

f g h k

Having a chosen pullback for each pair of morphisms with a common codo-
main makes the composition of 1-cells well defined. Universality of pullbacks
makes it associative and unital up to isomorphisms that satisfy the axioms of
bicategorical composition. See [JY21, Example 2.1.22] for further details of
this construction. �

Now we use Definitions 1.2.1 and 1.2.3 to define the Burnside category and
its specialization, the Burnside ring. In Definition 1.3.5 we generalize further
to a Burnside 2-category.

Definition 1.2.5 (Burnside Category and Burnside Ring). The Burnside cat-
egory of a finite group G, denoted GB, is an Ab-enriched category defined as
follows. The objects of GB are the finite G-sets X ∈ NG. The Abelian group
GB(X , Y ) for X , Y ∈ NG is the Grothendieck group of isomorphism classes of
spans

X A Y in NG.

Thus, GB is the category obtained from Span(NG) by taking isomorphism
classes of 1-cells and then group-completing each set of morphisms with
respect to the Abelian monoid structure given by disjoint union.

The Burnside ring of G, denoted GA, is obtained by taking isomorphism
classes of objects in GB. Equivalently, the additive group of elements is
given by the Grothendieck group of isomorphism classes of finite G-sets, with
addition given by disjoint union. Its multiplication is induced by Cartesian
product. �

Lemma 1.2.6 (Self-Duality of GB) There is an isomorphism of Ab-enriched
categories

GB
∼= GBop (1.2.7)
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8 Motivations from Equivariant Topology

that is the identity on objects and is induced on hom Abelian groups by the
isomorphism

Span(NG)(X , Y )
∼= Span(NG)(Y , X )

that sends a span (f , g) to its reverse, (g, f ).

Proof. Functoriality of the indicated isomorphism follows from universality of
the pullbacks defining composition.

We warn the reader that the 2-categorical analog of the self-duality (1.2.7)
does not hold for the Burnside 2-category GE in Definition 1.3.5 below. Send-
ing (f , g) to its reverse (g, f ) does not define a 2-functor in that context; see
Remark 1.3.7.

Remark 1.2.8 (Self-Duality and Stable Orbit Spectra). Self-duality of the
Burnside category GB (1.2.7) is nearly transparent in its simplicity, but it is an
algebraic artifact of a much deeper topological phenomenon. Each orbit G/H
has an equivariant suspension spectrum, 6∞G/H+, and there is an equiva-
lent definition of GB with morphisms given by stable equivariant morphisms
6∞G/H+ 6∞G/K+; see [May96, Section XIX.3]. The stable orbit spec-
tra 6∞G/H+ satisfy an equivariant self-duality ([May96, Section XVI.7] or
[HHR21, Section 8.0C]) that implies that of Lemma 1.2.6.

The definition of the Burnside category in terms of stable orbit spectra is
the more general one, with origins in work of tom Dieck [tD79]; see [May96,
Section XVII.2]. The proofs that this definition can be given equivalently by
spans of finite G-sets, as in Definition 1.2.5, depend on the assumption that G
is finite. In more general cases, the definition of the Burnside category in terms
of stable orbit spectra is necessary. �

Definition 1.2.9. An Abelian G-Mackey functor is an Ab-enriched presheaf

GBop Ab.

Because GB is isomorphic to GBop (Lemma 1.2.6), an Abelian G-Mackey
functor is equivalently defined as a functor GB Ab. �

Remark 1.2.10. Each Abelian G-Mackey functor M has an associated
Eilenberg–Mac Lane G-spectrum, HM . See [May96, Section V.4] or [HHR21,
Theorem 8.8.4] for constructions via Elmendorf’s Theorem 1.1.9. Such
Mackey functors M , and their associated G-spectra HM , are the coefficient
systems for Bredon cohomology of G-spectra. �

Explanation 1.2.11. An Abelian G-Mackey functor M can be defined equiv-
alently as a pair of functors

M∗ : NG Ab and M∗ : N op
G Ab
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Motivations from Equivariant Topology 9

that agree on objects and are subject to the following two axioms, where

MX = M∗X = M∗X

denotes the common value on objects.

(1) For each pair of objects X and Y in NG, applying M∗ to the structure
morphisms of the coproduct

X X
∐

Y Y

induces a universal morphism with domain MX ⊕ MY that is an isomor-
phism

MX ⊕MY
∼= M(X

∐
Y ).

(2) For each pullback diagram in NG,

Z

X

Y

W
p

q
g

f

the following equality of composite morphisms holds in Ab:

(M∗f )(M∗g) = (M∗p)(M∗q).

See [Web00, Section 2] and [HHR21, Definition 8.2.3] for further discussion
of this perspective, explanation of the equivalence with Definition 1.2.5, and
several compelling examples. �

1.3 Equivariant Spectra and Presheaves
on the Burnside 2-Category

For the category C = NG, there is a choice of pullbacks that makes Span(NG)
nearly a 2-category. Following Guillou–May [GM22, Remark 1.8 and Defini-
tion 6.2], the following will be used in the definition of the Burnside 2-category
(Definition 1.3.5). A more general approach to such strictifications can be
found in [Gui10].

Explanation 1.3.1 (Choices of Pullbacks in NG). Recall the lexicographic
ordering of products from (1.2.2). We use this to determine choices of pull-
backs in NG, as follows. Suppose given the following composable pair of spans
in NG,
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10 Motivations from Equivariant Topology

X Y Z,

A Bf g h k

where

X = (nX ,αX ), A = (nA,αA), Y = (nY ,αY ),

B = (nB,αB), and Z = (nZ ,αZ).

Let
A×Y B = {(a, b) ∈ nA × nB | g(a) = h(b)}

denote the pullback of G-sets, with its ordering induced by the lexicographic
ordering on nA × nB. This determines a unique order-preserving isomorphism
of finite G-sets

(p, ρ)
∼= A×Y B (1.3.2)

with (p, ρ) ∈ NG.
We write A ◦ B = (p, ρ) to denote this choice of pullback in NG and let πA

and πB denote the following composites, where the unlabeled isomorphism is
that of (1.3.2).

X Y Z

A B

A×Y B

A ◦ B

f g h k

πA πB∼=

(1.3.3)

We note three consequences of these choices via lexicographic ordering.

(1) These choices for pullbacks make composition in Span(NG) strictly asso-
ciative.

(2) The morphism πA is always order-preserving.
(3) The morphism πB is generally not order-preserving.

For each Y = (nY ,αY ) in NG, let 1Y denote the unit 1-cell for Y in
Span(NG):

1Y =

(
Y

1Y Y
1Y Y

)
.

In (1.3.3), if the span (h, k) is the unit 1Y , then B = Y and we have

A ◦ B = A, πA = 1A, and πB = g.

Thus, 1Y is a strict right unit.
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Now suppose, instead, that the span (f , g) in (1.3.3) is the unit 1Y . Then
A = Y , but πB = g if and only if h is an order-preserving G-map. In general,
πB is an isomorphism of finite G-sets determined by the reordering of nB that
is induced by the fibers of h. �

To construct a 2-category from Span(NG), the identity 1-cells 1X are
augmented by new strict identities via the following construction.

Definition 1.3.4 (Whiskering a Category). Given a small category D with a
distinguished object 1 ∈ D. Define the whiskering at 1, denoted D†, as a
category whose objects consist of those of D, together with a new object I and
an isomorphism

I
ζ1
∼=

1.

The morphisms in D† are generated by those of D and composition with ζ1 and
its inverse. Thus, D† is the pushout in Cat of the two inclusions

D {1} {ζ±1
1 },

where {1} denotes the discrete category on 1 and the right-hand side denotes
the category generated by the isomorphism ζ1 and its inverse. A further elab-
oration of the whiskering construction is given in [GM22, Definition 6.1]. �

Definition 1.3.5 (The Burnside 2-Category). The Burnside 2-category of a
finite group G is a PermCatsu-enriched category (Explanation 7.3.2) denoted
GE and defined as follows. Its objects are the finite G-sets X = (n,α) of NG

(Definition 1.2.1). For each pair of objects

X = (n,α) and Y = (p,β) in NG,

the category of 1- and 2-cells is given by

GE(X , Y ) =

{
Span(NG)(X , Y ) if X 6= Y or |X | ≤ 1,

Span(NG)(X , X )† if X = Y and |X | ≥ 2
(1.3.6)

where Span(NG) is the bicategory of spans (Definition 1.2.3) with the lexico-
graphic choice of pullbacks from Explanation 1.3.1 and Span(NG)(X , X )† is
the whiskering of the category Span(NG)(X , X ) as in Definition 1.3.4 at the
unit 1-cell 1X .

The horizontal composition of Span(NG) extends uniquely to GE such that
the 1-cells I1X ∈ Span(NG)(X , X )† are strictly unital. The permutative struc-
ture of each Span(NG)(X , Y ) given by disjoint union (Definition 1.2.1 (1)) also
extends uniquely such that (0, !) remains its unit and for Y 6= (0, !) we have

I1X

∐
Y = X

∐
Y and Y

∐
I1X = Y

∐
X .
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12 Motivations from Equivariant Topology

For further explanation of this structure, see [GM22, Definition 6.2], where our
GE is denoted GE ′. �

Remark 1.3.7 (Non-Self-Duality of GE). Recall that the Burnside 1-category,
GB in Definition 1.2.5 is self-dual (Lemma 1.2.6). However, the assignment
that sends a span (f , g) as in (1.2.4) to its reverse (g, f ) does not define a 2-
functor

GE GEop

because it does not preserve composition strictly. It is natural to consider the
generalization from 2-functors to pseudofunctors, but the latter structure does
not provide a PermCatsu-enriched functor in the sense of Explanation 7.3.12.
This subtlety has further implications to be noted in Remark 11.5.5. �

The following is a special case of more general enriched Mackey functors
introduced in Definition 11.1.1.

Definition 1.3.8. Suppose given a (possibly nonsymmetric) K-theory multi-
functor

K : PermCatsu Sp

from permutative categories to spectra, and let (−)K denote the corresponding
change of enrichment (Definition 8.1.1). The category of spectral G-Mackey
functors for K is the enriched presheaf category

Sp -Cat
(
(GEK)op, Sp

)
,

consisting of Sp-enriched functors and transformations, as in (11.1.3). �

Note that if K is a multifunctor in the symmetric sense – for example, if K is
the Elmendorf–Mandell K-theory, KEM, in (3.5.8) – then (GEK)op and (GEop)K

are equal as Sp-categories by Proposition 8.2.1. In such a case, the category
of spectral G-Mackey functors is equal to Sp -Cat

(
(GEop)K , Sp

)
. However, if

K is not symmetric, then there is no such identification. See, for example,
Theorem 11.5.1 and Remark 11.5.5 for particular uses of these details.

For further development of both theory and applications of spectral Mackey
functors in equivariant algebraic K-theory, the reader is referred to [BO15,
Bar17, MM19, BGS20, MM22, GM22, GMMO∞]. The key result for our
purposes is the following from Guillou and May [GM22], which is a stable
analog of Elmendorf’s Theorem 1.1.9. Here, K denotes the nonsymmetric K-
theory multifunctor in [GM22, GMMO∞].

Theorem 1.3.9 ([GM22, Theorem 0.1]) There is a zigzag of Quillen equiva-
lences

G-Sp 'Q Sp -Cat
(
(GEK)op, Sp

)
where G-Sp is the category of G-spectra.
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Thus, the Guillou–May theorem shows that the homotopy theory of G-
spectra is equivalent to that of spectral G-Mackey functors for K.

1.4 Stable Model Categories as Spectral Presheaf Categories

Definition 1.4.1. Suppose given a model category M. We recall the follow-
ing terms briefly and refer the reader to [Hov99, Hir03] for more detailed
descriptions.

(1) We say M is simplicial if it is enriched, tensored, and cotensored over sim-
plicial sets, such that the following pullback powering condition holds. For
each cofibration i : A B and fibration p : X Y in M, the universal
morphism induced by M(i, X ) and M(B, p),

M(B, X ) M(A, X )×M(A,Y ) M(B, Y ),

is a Kan fibration that is acyclic whenever either i or p is acyclic.
(2) We say M is cofibrantly generated if it is equipped with two sets of

morphisms, I and J , such that the following three statements hold.
• Both I and J permit the small object argument.
• A morphism of M is a fibration if and only if it has the right lifting

property with respect to every element of J .
• A morphism of M is an acyclic fibration if and only if it has the right

lifting property with respect to every element of I.
(3) We say that M is proper if the following two conditions hold.
• Every pushout of a weak equivalence along a cofibration is a weak

equivalence.
• Every pullback of a weak equivalence along a fibration is a weak

equivalence.
(4) We say that M is stable if the suspension and loop functors on its homotopy

category are inverse equivalences. �

For the remainder of this section we suppose that M is a simplicial,
cofibrantly generated, proper, and stable model category. The category of sym-
metric spectra over M [SS03, Definition 3.6.1] is denoted SpM. The following,
from [SS03, Definition 3.7.5], describes an Sp-enriched category generalizing
the endomorphism spectrum associated to an object of M.

Definition 1.4.2. Suppose P is a set of cofibrant objects in M. The spectral
endomorphism category E(P) is the full Sp-subcategory of SpM with objects
given by the fibrant replacements, relative to the level model structure on SpM,
of the symmetric suspension spectra of the objects in P. �
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14 Motivations from Equivariant Topology

The following result of Schwede and Shipley gives a characterization of
M via Sp-enriched presheaves. In this result, Sp -Cat

(
E(P)op, Sp

)
denotes the

E(P)-presheaf category of Sp as in (11.1.3).

Theorem 1.4.3 ([SS03, Theorem 3.3.3]) Suppose P is a set of compact gener-
ators of a simplicial, cofibrantly generated, proper, and stable model category
M. Then there is a chain of simplicial Quillen equivalences

M 'Q Sp -Cat
(
E(P)op, Sp

)
.

The work of Schwede and Shipley goes on to give a number of applications
in (derived) Morita theory and equivariant stable homotopy. In each case, their
work characterizes the relevant stable model category as a category of spectral
presheaves, also called enriched Mackey functors (see Definition 11.1.1).
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