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We derive a mathematical model of an electromagnetic (EM) field generated by
tsunamigenic seabed deformation over an ocean of constant depth. We solve the
governing Maxwell equations for the EM field, coupled with a potential flow model of
Cauchy–Poisson type for the transient fluid motion forced by seabed deformation. Our new
model advances previous studies, where simplified formulae without direct forcing were
assumed for the wave field. Using complex integration and large-time asymptotics, we
obtain a novel analytical solution for the magnetic field propagating at large distance from
the seabed deformation in two dimensions. We show that this magnetic field is made of two
terms, one proportional to an Airy function, and thus propagating similarly to the surface
gravity wave, and one proportional to a Scorer function, which exhibits a phase lag with
respect to the surface gravity wave. Such a phase lag explains the time difference between
the arrival of the EM field and the surface gravity wave generated by seabed deformation,
which were observed in recent measurements and numerical results. Finally, we discuss
the opportunity to detect EM fields as precursors of surface gravity waves in tsunami
early warning systems. We introduce a novel non-dimensional parameter to identify the
propagation regime of the magnetic field, i.e. self-induction versus diffusion-dominated.
We show that tsunami early warning via EM field is possible for diffusion-dominated
regimes when the water depth is less than 2 km. Our findings provide a rigorous analytical
explanation of existing observations and numerical results.
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1. Introduction

Early detection and warning of tsunamis is a subject of considerable interest, due to
their potentially catastrophic effects. Earthquake-generated tsunamis are associated with
anomalies in the Earth’s magnetic field that can be detected by seafloor geomagnetic
observatories even at large distances from the epicentre. This intriguing phenomenon is
due to the dynamo effect, whereby a small electromagnetic (EM) field is generated as
conductive seawater is set to flow through the Earth’s main magnetic field. The tsunami
EM field, typically of the order of 1–10 nT, can therefore be detected as a perturbation of
the Earth’s field.

This paper presents an analytical model to investigate the dynamics of surface gravity
waves and EM field generated by a displacement of the seabed in an otherwise quiescent
ocean. Recent measurements captured EM fields associated with tsunamis generated by
underwater earthquakes (Toh et al. 2011; Lin, Toh & Minami 2021). The measurements
revealed that the tsunami has a noticeable phase lag with respect to the associated EM field.
Hence the EM signal can be used to detect an incoming tsunami prior to its arrival. Our
analytical solution provides novel physical insight into such a remarkable phenomenon.
Using combined Fourier–Laplace transforms and integration in the complex plane, we
derive novel asymptotic expressions for the EM signal, elucidating its rate of decay and
relationship with the surface gravity wave. This work is significant as it can support the
development of tsunami early warning systems (TEWS) based on EM field detection.

Toh et al. (2011) were among the first to report the detection of EM signals at a
seafloor geomagnetic observatory, during the 2006 and 2007 Kuril earthquakes. Their
measurements show that the first peak of the vertical EM field component preceded
the arrival of the tsunami. A geophysical experiment in French Polynesia recorded the
magnetic field of the 2009 Samoa and 2010 Chile tsunamis (Lin et al. 2021). Again, the
vertical component of the magnetic field was detected earlier than the sea level change.
In 2011, a clear and long-lasting EM signal was recorded at several observatories in the
Pacific Ocean during the devastating Tohoku tsunami (Zhang et al. 2014a). Numerical
simulations reveal that at a typical depth of 1.5 km, the peak of the vertical EM signal
precedes that of the tsunami by ∼0.2T , where T is the period of the tsunami (Minami, Toh
& Tyler 2015). Therefore, EM field detection can be exploited to develop novel TEWS.

The magnetic field associated with tsunamis has been investigated mainly on the basis
of field observations (Toh et al. 2011; Zhang et al. 2014b; Schnepf et al. 2016; Lin et al.
2021) and numerical models (Minami & Toh 2013; Zhang et al. 2014b; Minami et al. 2015;
Kawashima & Toh 2016). As useful as these methods are, they cannot explain the reason
for the phase lag between the tsunami and the EM field, as well as the spatial and temporal
scales of attenuation of the propagating EM signal.

Analytical models are better suited to tackle those open questions, because they can
provide detailed physical insight via explicit formulae, but they are scarce. Simplified
mathematical solutions were obtained by Wang & Liu (2013) and Minami, Schnepf &
Toh (2021), assuming a periodic incident wave of constant frequency and solving the
related boundary-value problem in the frequency domain. However, such a mathematical
representation cannot be used to model tsunamis, which are inherently transient
phenomena. Indeed, modelling earthquake tsunamis requires a time-domain approach
where the dynamics of energy transfer from the moving seabed to the generated waves
are properly accounted for (see e.g. Mei, Stiassnie & Yue 2005).

Several authors have tried to obtain a more realistic representation of the tsunami wave
field by assuming a priori some typical wave profiles, such as N-waves and solitary waves,
and then by convoluting those profiles with the time-harmonic EM field solution in a
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Fourier integral, to obtain the transient EM signal (see e.g. Wang & Liu 2013). However,
such methods are somewhat arbitrary, as they combine nonlinear, weakly dispersive
expressions for the free surface with a linear time-harmonic and dispersive solution for
the magnetic field. Furthermore, by assuming special forms for the free-surface forcing of
the EM field a priori, these solutions do not depend on the forcing at the seabed. Therefore,
they cannot elucidate the link between the seafloor deformation and the generated gravity
waves and EM field.

Here, we propose a rigorous mathematical approach based on solving the governing
Cauchy–Poisson boundary-value problem of surface gravity waves and EM field generated
by a seabed perturbation. Using asymptotic analysis, we show that the EM signal at large
distance from the epicentre is made of two terms: one proportional to the Airy function,
propagating simultaneously with the surface gravity wave, and one proportional to the
Scorer function, which exhibits a phase lag with respect to the surface gravity wave. Such
a phase lag explains the time difference between the arrival of the EM signal and the
surface gravity wave generated by seabed deformation, which was observed in recent field
measurements (Toh et al. 2011; Lin et al. 2021) and numerical results (Minami & Toh
2013; Wang & Liu 2013; Minami et al. 2015).

This paper is organised as follows. The mathematical model and its solution are detailed
in § 2. In § 3, novel analytical formulae are derived for the magnetic field using integration
in the complex plane (see also Appendix B). Large-time asymptotics are employed in
§ 4 to derive novel expressions for the leading EM signal. Section 5 discusses the phase
difference between different EM components and introduces a parametric analysis of the
system depending on the water depth. Conclusions and ideas for further work are finally
presented in § 6.

2. Mathematical model

2.1. Governing equations
Referring to figure 1, consider an unbounded ocean on a constant seabed. Set a Cartesian
reference system with the x-axis along the horizontal direction and the z-axis pointing
upwards from the undisturbed free surface. The y-axis is orthogonal to the (x, z) plane,
i, j,k are the three unit vectors along the x, y, z directions, respectively, and t denotes time.
Consider an EM field and gravity waves generated by a seabed deformation H(x, y, t). We
start with Maxwell’s equations,

∇ × E = −∂B
∂t
, (2.1a)

∇ × B = μJ + 1
c2
∂E
∂t
, (2.1b)

∇ · B = 0, (2.1c)

∇ · E = ρc

ε
, (2.1d)

where E is the electric field intensity (Vm−1), B is the magnetic flux density (T), J is
the current density (Am−2), μ is the magnetic permeability (N A−2), ε is the dielectric
constant (Fm−1), and ρc is the charge density (Cm−3). We assume thatμ and ε are constant
and equal to their free-space values (Gilbert 2003). The speed of light is c = (εμ)−1.

The typical speed of a tsunami generated by an underwater earthquake at depth h is
ct ∼ √

gh, where g is gravity (Mei et al. 2005). Hence for typical depth h = 4000 m,
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H(x, y, t)

x

y
z ζ(x, y, t)

h

Figure 1. Geometry of the system.

ct � 200 m s−1, which is much lower than the speed of light. Therefore, the tsunami
evolves much more slowly with respect to the time it takes the EM signal to travel across
an ocean. As a consequence, the second term on the right-hand side of (2.1b) can be
neglected (Gilbert 2003; Tyler 2005).

Maxwell’s equations are completed by Ohm’s law in a medium moving with velocity u:

J = σ(E + u × B), (2.2)

where σ is the electrical conductivity (S m−1). We consider the liquid to be inviscid
and incompressible, and the flow irrotational. Therefore, there exists a velocity potential
Φ(x, z, t) such that the velocity is u = ∇Φ. Within the framework of a linearised theory,
the potential satisfies the Laplace equation in the liquid domain

∇2Φ = 0, (x, y) ∈ R
2, z ∈ (−h, 0), (2.3)

the kinematic boundary condition on the free surface

∂Φ

∂z
= ∂ζ

∂t
, z = 0, (2.4)

the dynamic boundary condition on the free surface

∂Φ

∂t
+ gζ = 0, z = 0, (2.5)

and the dynamic condition on the seabed

∂Φ

∂z
= W(x, y, t), z = −h, (2.6)

where ζ(x, y, t) is the free-surface elevation, and W(x, y, t) = ∂H/∂t is the vertical speed
of motion of the seabed displacement modelling the earthquake. We request that Φ and
∇Φ decay as (x, y) → ±∞ due to the transient nature of the problem (Mei et al. 2005).
The seabed motion starts at t = 0+, hence we also request that the system be at rest for
t � 0 (Michele et al. 2022).

2.2. Analytical solution
The two systems (2.1a)–(2.1d) and (2.3)–(2.6), respectively, are coupled via (2.2), which
depends on the liquid’s velocity u. To obtain an analytical solution, let us take the curl of
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(2.1b) and (2.2):

∇ ×
(

J
σ

)
= −∂B

∂t
+ ∇ × (u × B) , (2.7)

∇ × J = 1
μ

∇ × (∇ × B) , (2.8)

respectively. Equations (2.7)–(2.8) can be simplified using the differential relations

∇ × (u × B) = B · ∇u − u · ∇B, (2.9a)

∇ × (∇ × B) = −∇2B, (2.9b)

where (2.1c) and the continuity equation ∇ · u = 0 have also been employed.
Substituting (2.9) into (2.7)–(2.8) and combining the two yields a partial differential

equation for the magnetic field B forced by the liquid’s velocity u:

∂B
∂t

= ∇ × (u × B)+ η∇2B ⇒ ∂B
∂t

= B · ∇u − u · ∇B + η∇2B, (2.10)

where η = (μσ)−1 is the constant magnetic diffusivity (m2 s−1).
The total magnetic field

B = b + F (2.11)

is the sum of the perturbation b = bxi + byj + bzk induced by the seabed displacement,
and the steady Earth’s field

F = Fxi + Fyj + Fzk = F (cos I cosΘ i − cos I sinΘ j + sin I k) , (2.12)

where I is the dip angle at which the magnetic field lines intersect the Earth’s surface,
whereasΘ is the angle between the wave propagation direction and the magnetic meridian
(Wang & Liu 2013).

Typically, F ∼ 104 nT, whereas b ∼ 1–10 nT; for example, see Minami & Toh (2013)
and Wang & Liu (2013). Therefore, b 
 F and the governing equation (2.10) simplifies
into the dynamo equation (Gilbert 2003)

∂b
∂t

− η∇2b = F · ∇u. (2.13)

We now turn to the boundary conditions on the magnetic field b. Outside the ocean
layer, it can be assumed that the air above the ocean and the soil below the seafloor are
insulating media; see Wang & Liu (2013). Hence it follows that

∇2b = 0, z ∈ (−∞,−h) ∪ (0,∞). (2.14)

Finally, we request that b be bounded as z → ±∞. We are now ready to solve the
coupled systems (2.3)–(2.6) and (2.13)–(2.14). Here, we consider a slender fault, whose
typical width along the y-axis is much greater than the length along the horizontal x-axis.
Hence at first order, the motion is two-dimensional on the (x, z) plane.
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2.2.1. Gravity wave field
Solution of (2.3)–(2.6) is straightforward, because the wave potential is independent on
the magnetic field (Tyler 2005; Wang & Liu 2013; Minami et al. 2021). Introduce the
combined Laplace–Fourier transform pairs

f̄ (x, z; s) =
∫ ∞

0
e−st f (x, z, t) dt, f (x, z, t) = 1

2πi

∫
Γ

est f̄ (x, z; s) ds, (2.15a,b)

and

˜̄f (z; k, s) =
∫ +∞

−∞
f̄ (x, z; s) e−ikx dx, f̄ (x, z; s)

1
2π

∫ +∞

−∞
˜̄f (z; k, s) eikx dk, (2.16a,b)

respectively, where i is the imaginary unit, Γ is a curve on the right of all singularities
in the complex s-plane, and f (x, z, t) is a regular function decaying as (|x|, t) → +∞.
Upon transformation of (2.3)–(2.6) with (2.15a,b)–(2.16a,b), the velocity potential and
associated free-surface elevation correspond to those of transient gravity waves generated
by seabed displacement, already solved by Mei et al. (2005). In the original variables,

Φ(x, z, t) = 1
2πi

∫
Γ

est 1
2π

∫ +∞

−∞
eikx

˜̄W(k, s)
k cosh(kh)

s2 sinh(kz)− gk cosh(kz)
s2 + ω2 dk ds (2.17)

and

ζ(x, t) = 1
2πi

∫
Γ

est 1
2π

∫ +∞

−∞
eikx

cosh(kh)
s ˜̄W(k, s)
s2 + ω2 dk ds, (2.18)

where

ω2 = gk tanh(kh) (2.19)

is the dispersion relationship. Note that both (2.17) and (2.18) depend on ˜̄W(k, s).
Therefore, we need to prescribe the vertical speed of seabed motion W(x, t). Consider a
sudden displacement at time t = 0+, W(x, t) = H0(x) δ(t − 0+), where H0(x) is a regular

function that decays as |x| → +∞. Hence the Laplace–Fourier transform is ˜̄W(s, k) =
H̃0(k). As a consequence, integration of (2.18) in the complex plane yields

ζ(x, t) = 1
4π

∫ +∞

−∞
H̃0(k)

cosh(kh)

[
exp(i(kx − ωt))+ exp(i(kx + ωt))

]
dk (2.20)

for the free-surface elevation; see Mei et al. (2005).

2.2.2. Magnetic field
The solution for the magnetic field generated directly by the moving seabed has not been
derived before. Inside the ocean, application of the combined Laplace–Fourier transform
(2.15a,b)–(2.16a,b) to (2.13) yields a system of ordinary differential equations for the scalar
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components of the magnetic field:[
d2

dz2 − α2
]( ˜̄bx

˜̄bz

)
=
( ˜̄Fx

˜̄Fz

)
, z ∈ (−h, 0), (2.21)

where
α2 = k2 + s

η
, k ∈ R, s ∈ C, (2.22)

is a complex coefficient, and

˜̄Fx(z) = 1
η

(
− d

dz
(Fz ˜̄ux − Fx ˜̄uz)

)
, (2.23)

˜̄Fz(z) = −ik
η
(Fx ˜̄uz − Fz ˜̄ux) (2.24)

are cross-coupling terms depending on the Earth’s potential and liquid velocity. Recalling
that u = ∇Φ and using the integral transforms (2.15a,b)–(2.16a,b) yields

˜̄ux = ik ˜̄Φ, ˜̄uz = d ˜̄Φ
dz
. (2.25a,b)

Outside the ocean, (2.14) yields[
d2

dz2 − k2
]( ˜̄bx

˜̄bz

)
= 0, z ∈ (−∞,−h) ∪ (0,+∞), k ∈ R. (2.26)

Finally, we request that ˜̄bx and ˜̄bz be finite as |z| → +∞.
The equations in (2.21) and (2.26) are solved separately in their own domains and then

matched at the common boundaries. The boundary conditions follow from continuity of
the magnetic field across the air–ocean and ocean–seabed interfaces. Now, (2.26) yields

d ˜̄bx

dz
= −|k| ˜̄bx, z → 0,

d ˜̄bx

dz
= |k| ˜̄bx, z → −h, (2.27a,b)

and
d ˜̄bz

dz
= −|k| ˜̄bz, z → 0,

d ˜̄bz

dz
= |k| ˜̄bz, z → −h. (2.28a,b)

Hence continuity of ( ˜̄bx,
˜̄bz) at z = −h and z = 0 requires that the fluxes (d ˜̄bx/dz, d ˜̄bz/dz)

are also continuous at the two interfaces (Tyler 2005; Wang & Liu 2013).
Let us find the horizontal component ˜̄bx first. Application of the method of variation of

parameters (Mei 1997) to (2.21) gives

˜̄bx = C e−αz + D eαz + 1
α

∫ z

−h

˜̄Fx(η) sinh [α(z − η)] dη, z ∈ (−h, 0), (2.29)

where C and D are unknown integration constants. Equation (2.26) yields the bounded
solution

˜̄bx =
{

A e|k|z, z ∈ (−∞,−h),
B e−|k|z, z ∈ (0,∞),

(2.30)

where A and B are also unknown. Application of the matching conditions (continuity of
magnetic field and flux) at the interfaces z = −h and z = 0 yields a 4 × 4 linear system,
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which can be solved for the integration constants. Using the same procedure for the vertical
component ˜̄bz finally yields the sought magnetic field components:( ˜̄bx

˜̄bz

)
=
( ˜̄b(h)x + ˜̄b( p)

x

˜̄b(h)z + ˜̄b( p)
z

)
. (2.31)

Here,

˜̄b(h)x = |k| ˜̄W(s, k)
η

f (h)x (z; s, k)
(k2 − α2)(s2 + ω2)

(
2α |k| cosh(αh)+ (k2 + α2) sinh(αh)

) (2.32)

is the homogeneous component of the horizontal magnetic field, where

f (h)x (z; s, k) =
[

cosh [α(z + h)] + |k|
α

sinh [α(z + h)]
]

×
{
α |k|

(
Fx − iFz

k
|k|
) (

g |k| − s2) [sech(kh)+ cosh(αh) (−1 + tanh(|k| h))]

+ sinh(αh)
[

Fx |k| (|k| s2 − gα2)+ iFz
k
|k|
(
g|k|3 − s2α2)

+
[

i |k| Fz
(|k| s2 − gα2)+ Fx

k
|k|
(
g |k|3 − s2α2)] tanh(kh)

]}
, (2.33)

and

˜̄b( p)
x = k ˜̄W(s, k)

η

f ( p)
x (z; s, k)

α(k2 − α2)(s2 + ω2)
(2.34)

is the particular integral, where

f ( p)
x (z; s, k) = −(gkFx + is2Fz)α cosh(kz) sech(kh)

− i(gkFz − is2Fx) [−α sech(kh) sinh(kz)+ k sinh [α(z + h)]]

− k(gkFx + is2Fz) sinh [α(z + h)] tanh(kh)+ α cosh [α(z + h)]

× [gkFx + is2Fz + (igkFz + s2Fx) tanh(kh)]. (2.35)

Still in (2.31),

˜̄b(h)z = −|k| ˜̄W(s, k)
η

f (h)z (z; s, k)
(k2 − α2)(s2 + ω2)

(
2α |k| cosh(αh)+ (k2 + α2) sinh(αh)

) (2.36)

is the homogeneous component of the vertical magnetic field, where

f (h)z (z; s, k) =
[

cosh [α(z + h)] + |k|
α

sinh [α(z + h)]
]

×
{
α |k|

(
iFx

k
|k| + Fz

)
(g |k| − s2) [sech(kh)+ cosh(αh) (−1 + tanh(|k| h))]

+ sinh(αh)
[

Fz |k|(|k| s2 − gα2)− iFx
k
|k| (g |k|3 − s2α2)

+
[

iFx |k|(gα2 − |k| s2)+ Fz
k
|k| (g |k|3 − s2α2)

]
tanh(kh)

]}
, (2.37)
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and

˜̄b( p)
z = k ˜̄W(s, k)

η

f ( p)
z (z; s, k)

α(k2 − α2)(s2 + ω2)
(2.38)

is the particular integral, where

f ( p)
z (z; s, k) = (Fzgk − iFxs2)α cosh(kz) sech(kh)

+ (−iFxgk + Fzs2) [−α sech(kh) sinh(kz)+ k sinh [α(z + h)]]

+ k(Fzgk − iFxs2) sinh [α(z + h)] tanh(kh)− α cosh [α(z + h)]

× [Fzgk − iFxs2 + (−igkFx + Fzs2) tanh(kh)]. (2.39)

The perturbation of the magnetic field b = bxi + bzk can then be found by
inverse-transforming (2.31) via (2.15a,b)–(2.16a,b).

3. Magnetic field at the seabed

The magnetic field at the seabed is of particular interest for potential applications to
tsunami early detection by seafloor geomagnetic observatories (Wang & Liu 2013). Field
data show that the signal of the vertical magnetic field component bz arrives earlier than
the sea level change, with a leading phase between 0◦ and 90◦, depending on ocean
depth (Minami et al. 2015; Lin et al. 2021). The horizontal magnetic field component bx
peaks later than the vertical component bz (Minami & Toh 2013). Therefore, the vertical
component bz is the prime candidate for potential applications to early warning systems.
Hereafter we will consider bz only; similar calculations can be performed on bx as well.

Inverse-transforming (2.31) for ˜̄bz(z = −h; s, k) yields

bz(x,−h, t) = 1
2π

∫ +∞

−∞
eikx 1

2πi

∫
Γ

est ˜̄b(h)z (−h; s, k) ds dk, (3.1)

because ˜̄b( p)
z (−h; s, k) = 0 from (2.38)–(2.39).

We are now ready to calculate the inner Laplace integral in (3.1). Note that the numerator
of ˜̄b(h)z is a regular function of s (see (2.36)–(2.37)), provided that a branch cut is introduced
to make α in (2.22) single-valued; see figure 8 in Appendix B. Here, we introduce a branch
cut along the negative real axis in the complex s-plane. In a neighbourhood of the branch
point α = 0, we have

s = −k2η + r eiθ , r � 0, (3.2)

so that α changes sign every time θ is increased by 2π. To circumvent multivaluedness,
we choose the principal Riemann branch defined by −π < θ � π. Hence

α(s, k) =
√

k2 + s/η, (3.3)

and on the upper edge of the cut θ = π, we have α = i |α|.
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The integrand in (3.1) has poles at the zeros of the denominator of ˜̄b(h)z in (2.36) – that
is, when s = ±iω and also when s satisfies the transcendental equation

tanh(αh) = − 2 |k| h(αh)
(kh)2 + (αh)2

, k ∈ R. (3.4)

Expression (3.4) is a magnetohydrodynamic dispersion relationship. For α ∈ R, the only
solution of (3.4) is α = 0. Now recall that the numerator of ˜̄b(h)z in (3.4) is f (h)z (−h, s, k);
see (2.36). Inspection of (2.37) reveals that f (h)z /α = O(1) as α → 0. Hence α = 0 is a
removable singularity for ˜̄b(h)z , and correspondingly s = −k2η is not a pole. The dispersion
relationship (3.4) also admits an infinite number of discrete imaginary roots when

α = αn = iβn, tan(βnh) = − 2 |k| h(βnh)
(kh)2 − (βnh)2

, n = 1, 2, . . . , (3.5)

which yields the poles
sn = −η(k2 + β2

n ), (3.6)

so that it is necessary to consider only the positive βn. Finally, another pole for the
integrand of (3.1) appears at k2 = α2, i.e. s = 0. However, inspection of (2.36)–(2.37)
reveals that ˜̄bz = O(1) as s → 0, so s = 0 is a removable singularity. Summarising, the
poles for the integrand in (3.1) are at s = ±iω and s = sn, n = 1, 2, . . . .

Once the poles are known, integration in the complex plane can be performed using
Jordan’s lemma and the residue theorem (Mei 1997), as shown in Appendix B. This yields
the following expression for the vertical component of the magnetic field at the seabed:

bz(x,−h, t) = bo
z (x, t)+ be

z(x, t). (3.7)

Here,

bo
z (x, t) = − 1

4π

∫ +∞

−∞

|k| H̃0 f (h)z,− exp(i(kx − ωt))

ω2
{
2 |k|α− cosh (α−h)+ (

k2 + α2−
)

sinh (α−h)
} dk

− 1
4π

∫ +∞

−∞

|k| H̃0 f (h)z,+ exp(i(kx + ωt))

ω2
{
2 |k|α+ cosh (α+h)+ (

k2 + α2+
)

sinh (α+h)
} dk, (3.8)

where f (h)z,±(k) = f (h)z (−h;±iω, k), α±(k) = α(±iω, k), ω(k) = √
gk tanh(kh), and H̃0(k)

is the Fourier transform of the spatial component of the seabed displacement. The
component bo

z from (3.8) is a transient oscillatory term, given by the contribution of the
two poles at s = ±iω. It describes left- and right-going transient EM signals. For the sake
of brevity, in the following we will refer to bo

z as ‘oscillatory’. Still in (3.7),

be
z(x, t) = 1

2π

+∞∑
n=1

∫ +∞

−∞
|k| H̃0 f (h)z,n exp(ikx)

dn(k)
exp(−η(k2 + β2

n )t)dk, (3.9)

where the denominator is

dn(k) = i[3(k2η + β2
nη)

2 + ω2][2 |k|βn cos(βnh)+ (k2 − β2
n ) sin(βnh)]

+ i
k2 + β2

n

2βn
[η2(k2 + β2

n )
2 + ω2]{−2βn(|k| h + 1) sin(βnh)

+ [2 |k| + h(k2 − β2
n )] cos(βnh)}, (3.10)
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Electromagnetic field generated by tsunamigenic deformation

and f (h)z,n (k) = f (h)z (−h;−η(k2 + β2
n ), k). The term be

z from (3.9) is an evanescent magnetic
component fast decaying with time. We point out that the evanescent EM signal was not
predicted by previous analytical work.

4. Large-time asymptotic analysis

We are interested in the gravity wave and EM fields as they propagate away from the
source, for potential applications to tsunami early warning. First, we revisit a known
asymptotic solution for the surface gravity wave. Then we derive novel asymptotic
formulae for the EM field.

4.1. Leading gravity wave
A leading-wave approximation of the free-surface elevation ζ(x, t) can be obtained using
the method of stationary phase for large-time t (Mei et al. 2005; Sammarco & Renzi 2008;
Renzi & Sammarco 2012, 2016). Here, we consider an observer at x > 0; a similar analysis
can be repeated for x < 0. At a point along the positive x-axis, far away from the seabed
deformation, only the right-going waves survive, hence (2.20) becomes

ζ(x, t) = 1
4π

∫ +∞

0

H̃0(k)
cosh(kh)

exp(i(kx − ωt)) dk +
∫ 0

−∞
H̃0(k)

cosh(kh)
exp(i(kx + ωt)) dk.

(4.1)

At large t, the integrands in (2.20) oscillate very fast with respect to k. Therefore, the main
contribution to the integrals comes from the points where the phase

γ∓(k) = k
x
t

∓ ω(k) (4.2)

is stationary: dγ∓/dk = 0. This yields, respectively,

x
t

= Cg(k) = ±1
2
ω

k

(
1 + 2kh

sinh(2kh)

)
, k ∈ R, (4.3)

where Cg is the group speed. Hence the main contribution comes from the waves travelling
at the group speed (Mei et al. 2005).

Now, the leading wave ahead of the group is that for which the speed Cg is maximum.
That occurs when k → 0+ for γ− (first integral in (4.1)) and when k → 0− for γ+ (second
integral in (4.1)). Taylor-expanding the phase function (4.2) for small k, we obtain

γ∓ = k
x
t

∓
√

gh
(

|k| − h2

6
|k| k2

)
+ O(k5). (4.4)

For the sake of example, consider a symmetric seabed deformation, for which H0(x) and
H̃0(k) are real and even. A similar analysis can be done for non-symmetric deformations.
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Substituting (4.4) in (4.1) and using H̃0(k) = H̃0(−k) yields

ζ(x, t) = Re
{

1
2π

H̃0(0)
∫ +∞

0
(1 + O(k)) exp

{
i
[

k(x −
√

gh t)+
√

gh
6

h2tk3
]}}

dk.

(4.5)

Finally, integrating (4.5) gives the well-known asymptotic formula

ζ(x, t) = 1
2

H̃0(0)
(

2√
gh h2t

)1/3

Ai

[(
2√

gh h2t

)1/3

(x −
√

gh t)

]
+ O(t−1), (4.6)

where

Ai(Z) = 1
π

∫ +∞

0
cos

(
t3

3
+ Zt

)
dt (4.7)

is the Airy function. Expression (4.6) shows that the free-surface elevation decays as
O(t−1/3); see Mei et al. (2005).

4.2. Electromagnetic field
In this section, we derive novel asymptotic formulae for the EM field.

4.2.1. Evanescent component
Let us start from the evanescent component of the magnetic field, be

z (3.9). We have

∣∣be
z
∣∣ � 1

2π

+∞∑
n=1

∫ +∞

−∞

∣∣∣∣∣k H̃0 f (h)z,n

dn(k)

∣∣∣∣∣ e−k2ηt dk. (4.8)

For large t, the negative exponential is dominant, and contribution to the integral comes
only from a neighbourhood of k ∼ 0 (Sammarco & Renzi 2008). Then Taylor-expanding
the integrand in (4.8) as k → 0, neglecting terms O(k3) and integrating, we obtain

∣∣be
z
∣∣ � 1

2
√

π
h H̃0(0) (ηt)−3/2

+∞∑
n=1

∣∣i (1 + (−1)n)Fx + (
1 + (−1)n+1)Fz

∣∣
n2π2 . (4.9)

This result reveals that, to the crudest approximation, the evanescent component of the
magnetic field generated by the seabed disturbance decays at least as O(t−3/2), i.e. much
faster than the gravity wave.

4.2.2. Oscillatory component
Now consider the oscillatory component of the magnetic field, bo

z in (3.8). Again, at a
point along the positive x-axis, far away from the seabed deformation, only the right-going
waves survive. Hence (3.8) simplifies to

b0
z = − 1

4π

∫ +∞

0

|k| H̃0 f (h)z,− exp(i(kx − ωt))

ω2
{
2 |k|α− cosh

[
α−h

]+ (
k2 + α2−

)
sinh

[
α−h

]} dk

− 1
4π

∫ 0

−∞

|k| H̃0 f (h)z,+ exp(i(kx + ωt))

ω2
{
2 |k|α+ cosh

[
α+h

]+ (
k2 + α2+

)
sinh

[
α+h

]} dk. (4.10)

As above, the leading wave is that for which k → 0+ in the first integral and k → 0− in
the second integral. Define the two integrands in (4.10) as I∓, respectively. Using (2.37)
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Electromagnetic field generated by tsunamigenic deformation

and expanding in series of k as |k| → 0, we obtain

I∓(k) = −Fz
√

gh H̃0(0)
h

√
gh ± 2iη

exp
{

it
[

k
x
t

∓
√

gh
(

|k| − h2

6
|k| k2

)]
+ O(k5)

}
+ O(k).

(4.11)

Note that in the exponential we need to retain terms up to O(k3) because near the leading
wave x/t ∼ √

gh, i.e. the phase is nearly stationary (see (4.4)). Substituting (4.11) into
(4.10) and simplifying the integrals yields

b0
z (x, t) = Re

{
Fz

2π

H̃0(0)
√

gh
h

√
gh + 2iη

∫ +∞

0
(1 + O(k)) exp

{
i
[

k(x −
√

gh t)+
√

gh
6

h2tk3
]}

dk

}
.

(4.12)

This expression can be finally integrated. After some lengthy algebra, detailed in
Appendix A, one obtains the sought asymptotic expansion for the oscillatory component
of the magnetic field:

bo
z (x, t) = mo

z (x, t)+ go
z (x, t)+ O(t−1), (4.13)

where

mo
z (x, t) = Fz

2
H̃0(0)/h

gh + (2η/h)2

(
2g
ht

)1/3
{

2η
h

Gi

[(
2√

gh h2t

)1/3

(x −
√

gh t)

]}
(4.14)

and

go
z (x, t) = Fz

2
H̃0(0)/h

gh + (2η/h)2

(
2g
ht

)1/3
{√

gh Ai

[(
2√

gh h2t

)1/3

(x −
√

gh t)

]}
. (4.15)

In (4.14), Gi is the Scorer function

Gi(Z) = 1
π

∫ +∞

0
sin
(

t3

3
+ Zt

)
dt. (4.16)

Expressions (4.13)–(4.15) reveal that the oscillatory component of the magnetic field
decays as O(t−1/3). Its rate of decay is therefore slower than that of the evanescent
component (4.9) and the same as that of the leading gravity wave (4.6). Equations
(4.13)–(4.15) also reveal that the magnitude of the asymptotic magnetic field is directly
proportional to the seabed deformation area H̃0(0), and hence to the vertical displacement.
Note that bo

z is made of two different terms. The first term mo
z (see (4.14)) is proportional

to the lateral magnetic diffusion speed cd = 2η/h (Tyler 2005; Wang & Liu 2013), and
therefore represents the contribution due to magnetic diffusion. The second term go

z (see
(4.15)) is proportional to the speed of propagation ct = √

gh of the leading tsunami wave.
The associated inflow of water through a control surface S induces a new magnetic field
according to (2.10). Hence go

z represents the magnetic component due to self-induction by
direct forcing of the gravity wave.
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4.3. Relationship between an EM field and gravity waves
The asymptotic expressions derived in the previous subsection allow us to obtain an
analytical formula for the relationship between an EM field and gravity waves. Neglecting
higher-order terms, rewrite (4.5) as

ζ(x, t) = Re {aχ(x, t)} , (4.17)

where

χ(x, t) =
∫ +∞

0
exp

[
it
[

kx
t

−
√

gh
(

k − h2

6
k3
)]]

dk. (4.18)

Similarly, rewrite (4.12) as
bo

z (x, t) = Re {bχ(x, t)} . (4.19)

Hence it follows that
b
Fz

= a
h

ct

ct + icd
, (4.20)

where again ct = √
gh is the gravity wave (tsunami) phase speed, and cd = 2η/h is the

lateral magnetic diffusion speed.
Expressions (4.17)–(4.20) are an extension to the case of transient forcing of the

well-known Tyler formula for periodic waves (Tyler 2005). Note that for a monochromatic
incident wave, χ = exp[i(kx − ωt)] and the original Tyler formula is recovered.

5. Discussion

5.1. Analysis of the transient nature of the magnetic field
The novel formulae (3.7)–(3.9) allow direct time-domain investigation of the generation
mechanism of the transient magnetic field bz. For the sake of example, consider an ocean
of depth h = 2000 m and a Gaussian-shaped seabed displacement

H0(x) = A exp(−(x/Δ)2), (5.1)

where A = 3 m is the maximum vertical displacement of the seabed, and Δ = 5000 m
is the horizontal length scale. The remaining parameters are Fx = 40 000 nT, Fz =
−20 000 nT, corresponding to the South Pacific Ocean, and η = 198 944 m2 s−1 (Wang &
Liu 2013).

Figure 2 shows space–time surface plots of the oscillatory component of the magnetic
field bo

z (3.8), the evanescent component be
z (3.9), the total vertical magnetic field bz =

bo
z + be

z , and the free-surface elevation ζ (2.20), during the generation phase starting
at t = 0+. Therefore, the full integral formulae and not the asymptotic ones are used
to produce figure 2. The integrals are evaluated numerically using a Gauss–Legendre
quadrature scheme. The component bo

z (figure 2a) is negative during the initial generation
phase and then propagates away from the source in an oscillatory fashion. The component
be

z (figure 2b) is generated directly by the vertical motion of water pushed upwards by the
seabed displacement, and hence is positive near the origin. Though be

z is of the same order
of magnitude as bo

z , it decays very quickly with time, becoming negligible just after 10 s.
Therefore, be

z is a source-specific disturbance related directly to the seabed motion.
As time progresses, the transient oscillatory field bo

z is the only one that survives
(figure 2c), propagating away from the source together with the tsunami (figure 2d). The
asymptotic behaviour of the magnetic field at large distance from the seabed disturbance
is investigated in the next subsection.
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Figure 2. Space–time surface plots of the vertical magnetic field and free-surface elevation during the
generation phase: (a) oscillatory component bo

z (3.8); (b) evanescent component be
z (3.9); (c) total vertical

field bz = bo
z + be

z ; (d) free-surface elevation (2.18). Parameters are h = 2000 m, A = 3 m, Δ = 5000 m,
Fz = −20 000 nT.

5.2. Analysis of the phase difference between gravity wave and magnetic field
Field measurements and numerical simulations have shown consistently that tsunami-
generated EM signals, propagating over large distances across the ocean, exhibit a phase
difference with respect to the associated tsunami (Toh et al. 2011; Minami & Toh 2013;
Wang & Liu 2013; Minami et al. 2015). Our novel asymptotic solution provides further
physical insight into this remarkable far-field property.

Figure 3 shows the time series of the free-surface elevation ζ (4.6) together with the
oscillatory component of the magnetic field bo

z (4.13), at large distance x = 3500 km
from the epicentre. Note the presence of a clear time lag between the EM signal and the
tsunami. The first trough of the EM signal arrives at the observation point at t � 417 min,
whereas the tsunami crest arrives at t � 419 min, i.e. after 2 min. The tsunami period is
approximately T � 9 min, therefore the time lag between the first EM signal trough and the
first tsunami crest is ∼0.2 T. We remark that the leading variation of the vertical magnetic
field is negative. This agrees with previous studies (Minami et al. 2015) and is because the
asymptotic magnetic field bz ∼ b(o)z (4.13) depends directly on the vertical geomagnetic
component Fz, which is negative in the example shown here.

Figure 3 shows that a clear EM signal is already present at time t = 400 min, where bo
z is

about 15 % of its value at the first trough. This signal anticipates the arrival of the tsunami
crest at the same observation point by ∼19 min. Therefore, detecting the early arrival of
tsunami-generated EM signals at geomagnetic observatories has the potential to provide
an advance warning of the order of tens of minutes. This represents a notable improvement
on traditional tsunameter networks based on bottom pressure sensors, which are capable
of only real-time detection (Levin & Nosov 2016).
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Figure 3. Time series of the free-surface elevation ζ (4.6) and magnetic field bo
z (4.13) at large distance

x = 3500 km from the epicentre. Parameters are h = 2000 m, A = 3 m, Δ = 5000 m, Fz = −20 000 nT.

The novel formulae of § 4 explain the reason for the time lag between the EM signal
and the tsunami. At large distance from the epicentre, the vertical component of the
magnetic field on the seabed is bz(x,−h, t) ∼ bo

z (x, t) and decays as O(t−1/3). The
tsunami also decays as O(t−1/3). Hence both the tsunami and the associated EM field
exhibit the same time decay. Now note that the self-induction component go

z (4.15) of
the magnetic field depends on the Airy function, whose integrand is proportional to a
cosine, and thus propagates similarly to the tsunami (4.6). On the other hand, the magnetic
diffusion component mo

z (4.14) depends on the Scorer function (4.16), whose integrand is
proportional to a sine. Therefore, the resulting phase lag between the Airy function in ζ
and the Scorer function in mo

z is responsible for the time lag between the tsunami and the
EM signal, with the latter leading the former.

A deeper physical understanding is achieved by analysing the single components of the
vertical magnetic field bo

z = mo
z + go

z . Figure 4 shows the time series of the magnetic field
bo

z and its components mo
z (diffusion) and go

z (self-induction) for the same parameters as in
figure 3, with h = 2000 m. Note that the diffusive component mo

z arrives earlier than the
self-induction component go

z and is dominant.
At a fundamental level, because Maxwell’s equations are coupled to the liquid’s velocity

through Ohm’s law (2.2), the lines of force of the magnetic field can move (Stern 1966).
As described by the dynamo equation (2.13), the time evolution of the magnetic field is
governed by a mixture of convection by the liquid’s velocity and diffusion. Now, the liquid
moves at a speed close to the leading wave speed ct = √

gh ∼ 140 m s−1. On the other
hand, the lateral magnetic diffusion speed is cd = 2η/h ∼ 200 m s−1 (Tyler 2005; Wang
& Liu 2013). Hence, the diffusive component of the vertical magnetic field travels ahead
of the self-induction component and the tsunami. Physically, this explains the very early
arrival of mo

z as the EM field and tsunami propagate over large distances.
We now investigate the physical picture as the water depth increases. Figure 5 shows

the time series of the free-surface elevation ζ (4.6) and the oscillatory component of the
EM signal bo

z (4.13), for the same parameters as in figure 3, but with h = 4000 m. Here,
the first EM signal trough arrives at t ∼ 296 min, whereas the first tsunami crest arrives at
t ∼ 297 min. The period is T ∼ 10 min, therefore the time lag between the first EM signal
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Figure 4. Time series of the magnetic field bo
z (4.13) and its self-induction go

z (4.15) and diffusion mo
z (4.14)

components at large distance x = 3500 km from the epicentre. Parameters are h = 2000 m, A = 3 m, Δ =
5000 m, Fz = −20 000 nT.
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Figure 5. Time series of the free-surface elevation ζ (4.6) and magnetic field bo
z (4.13) at large distance

x = 3500 km from the epicentre. Parameters are h = 4000 m, A = 3 m, Δ = 5000 m, Fz = −20 000 nT.

trough and the first tsunami crest is ∼0.1 T. Hence increasing the water depth has the
undesired effect of decreasing the time lag between the EM and the tsunami waves. This
confirms previous in situ measurements and numerical modelling results (Minami et al.
2015).

Figure 6 shows the time series of the EM components for h = 4000 m. The flow speed is
ct ∼ 200 m s−1, whereas the diffusion speed is cd ∼ 100 m s−1. There is no early arrival of
the diffusive component, and the time lag between the EM signal and the tsunami is much
reduced (see figure 5, as compared to figure 3). It is therefore clear that the ocean depth
plays a major role on the EM field. In the next subsection, we investigate quantitatively the
behaviour of the system with respect to the depth using our novel analytical results.
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Figure 6. Time series of the magnetic field bo
z (4.13) and its self-induction go

z (4.15) and diffusion mo
z (4.14)

components at large distance x = 3500 km from the epicentre. Parameters are h = 4000 m, A = 3 m, Δ =
5000 m, Fz = −20 000 nT.

5.3. Role of ocean depth
Minami et al. (2015) investigated numerically the dependence of the EM field on the
ocean depth. They found that in shallow water, the process is diffusion-dominated, leading
to appreciable phase lag between the EM signal and the tsunami. As the water depth
increases, the phenomenon becomes self-induction-dominated, and the phase lag becomes
less noticeable.

We now explain this phenomenon using our analytical solution. A qualitative
understanding can be attained readily using the dynamo equation (2.13). Introduce the
non-dimensional variables

u′ = u/
√

gh, b′ = b/F, F ′ = F/F, t′ = t
√

g/h, (x′, y′) = (x, y)/h. (5.2a–e)

Then (2.13) becomes
∂b′

∂t′
− 1

Rm
∇′2b′ = F ′ · ∇′u′, (5.3)

where Rm = h
√

gh/η is the magnetic Reynolds number. This provides an estimate of the
relative importance of self-induction over diffusion. Note that Rm = O(h3/2). Therefore,
increasing the water depth makes the diffusive term proportional to ∇′2b′ in (5.3),
much smaller than the self-induction term ∂b′/∂t′: the EM dynamics is dominated by
self-induction (component go

z in (4.13)), and the time lag between gravity and EM signal
decreases. On the contrary, as h decreases, the magnetic Reynolds number also decreases:
the dynamics is dominated by magnetic diffusion (component mo

z in (4.13)), and the time
lag between gravity and EM signal increases.

This phenomenon can be further investigated quantitatively by looking at the analytical
formulae (4.14)–(4.15). Since Ai(Z) = O(Gi(Z)), we have

ξ = max
{|mo

z |
}

max
{|go

z |
} ∼ 2η

h
√

gh
= 2

Rm
. (5.4)
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Expression (5.4) reveals that the ratio between the maximum diffusive component and the
maximum self-induction component of the magnetic field is inversely proportional to the
magnetic Reynolds number by a factor 2. For the parameters of figure 4 (h = 2000 m),
we have ξ = 1.54 and 2/Rm = 1.42. On the other hand, for the parameters of figure 5
(h = 4000 m), we have ξ = 0.54 and 2/Rm = 0.52. Both cases agree well with the
approximation ξ ∼ 2/Rm in (5.4). It is worth noting that a similar parameter was used
by Tyler (2005) and Minami et al. (2015), albeit in the frequency domain. Our analysis
extends the application of this parameter to transient motions in the time domain.

Figure 7 shows the way this property of the magnetic field reflects on the time lag �t
between the first EM signal trough and the first tsunami crest at a geomagnetic observation
point. In figure 7, the non-dimensional time lag �t/τ is plotted versus the magnetic
Reynolds number Rm, where τ = √

h/g is the time scale of the system. Figure 7 also
shows the non-dimensional ratio ξ (5.4), again plotted versus Rm. Note that both �t/τ
and ξ do not depend on the seabed deformation parameters, but depend only on water
depth and position of the observation point. Both non-dimensional parameters decrease
monotonically as Rm increases, i.e. increasing the water depth. The non-dimensional time
lag �t/τ almost halves by doubling the magnetic Reynolds number. Values of Rm smaller
than 1.3 correspond to a diffusion-dominated case, where ξ > 1.5, i.e. the diffusive
component mo

z is >50 % larger than the self-induction component go
z . In this regime,

the Scorer term in (4.13) is more important than the Airy term, and the phase difference
between the EM signal and the tsunami (which instead is proportional to Airy) results in a
substantial time lag (�t/τ > 8). On the other hand, Rm values greater than 4 correspond
to an induction-dominated case, where ξ < 0.5, i.e. the self-induction component go

z
is >50 % larger than the diffusive component mo

z . In this regime, the phase difference
between the EM signal and the tsunami decreases significantly, leading to a reduced time
lag (�t/τ < 3).

In practice, the diffusion domain Rm < 1.3 corresponds approximately to h < 2000 m.
In this scenario, EM signals are precursors of the gravity wave and can provide an advance
warning of the order of minutes to tens of minutes. On the other hand, the self-induction
domain Rm > 4 corresponds approximately to h > 4000 m. In this case, the diffusive
component is less important, and EM signals lose their potential for employment in
early warning systems. We remark that our results are consistent with those obtained
numerically by previous authors (e.g. see Minami et al. 2015) and indeed offer an
analytical foundation to their models.

Our results were obtained assuming that the EM properties of the soil are insulating,
following Tyler (2005) and Wang & Liu (2013). Other studies considered a seafloor with
finite electrical conductivity (Minami et al. 2015) or a multi-layered structure (Zhang et al.
2014b), in which case a numerical solution is necessary. Zhang et al. (2014b) showed
that the horizontal component of the magnetic field bx is sensitive to the sediment layer
conductivity, due to the conductive current established across the seafloor. However, the
vertical component of the magnetic field bz, of interest for practical applications to tsunami
early warning, is less dependent on the conductivity of the seafloor. Furthermore, the
conductivity of the seafloor at several observation sites in the Pacific Ocean is less than
0.1 S m−1 and therefore can be approximated to zero (Tatehata, Ichihara & Hamano 2015).

In this study, we have considered a symmetric seabed deformation, for the sake
of example. For a generic deformation, the forcing function W can be decomposed
into symmetric and antisymmetric terms, i.e. W(x, t) = S(x, t)+ A(x, t), where S(x, t) =
(W(x, t)+ W(−x, t))/2 and A(x, t) = (W(x, t)− W(−x, t))/2. Then the EM and wave
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Figure 7. Behaviour of the non-dimensional time lag �t/τ (dots) and the parameter ξ (solid line) versus the
magnetic Reynolds number Rm. The curve y = 2/Rm is plotted for reference (dashed line). The observation
point is at x = 3500 km.

fields can be solved separately for each component, following the same steps as above,
and finally summed to give the full solution.

We remark that the seabed deformation W(x, t) investigated in this paper is
instantaneous. Our theory can be extended to a generic time-varying seabed deformation,
say D(x, t), by convolution of the instantaneous solution bz in the time domain. Hence the
solution for the magnetic field, say b̂z, generated by D(x, t), will read

b̂z(x, z, t) =
∫ t

0
bz(x, z, t − τ)D(x, τ ) dτ. (5.5)

Physically, the latter represents the superposition of elementary impulse sources whose
intensity at t = τ is D(x, τ ) (Mei et al. 2005).

The present study is limited to a two-dimensional configuration, where the disturbance
on the seabed is independent of the transverse horizontal coordinate y. Physically, this
assumption captures well the leading-order behaviour of tsunamis generated by slender
fault, whose length L along y is much greater than the width w along x, i.e. ε = w/L 
 1.
The investigation of higher-order effects O(ε), due to the slender fault finiteness, requires
a multiple scale perturbative approach (Mei & Kadri 2018). If the fault is not slender,
then the EM and wave fields propagate in all horizontal directions. Hence the motion is
three-dimensional and a full three-dimensional theory is required. This implies solving
the governing equations in polar coordinates, which is out of the scope of this paper and
is envisaged for future work.

6. Conclusions

We derived a mathematical model of electromagnetic (EM) waves generated by
tsunamigenic seabed deformation over an ocean of constant depth. We solved the
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governing dynamo equation for the EM signal, coupled with a potential flow model
of Cauchy–Poisson type for the transient fluid flow forced by seabed deformation. This
advances previous models where simplified formulae without direct forcing were assumed
for the wave field (Wang & Liu 2013; Minami et al. 2015, 2021).

Using large-time asymptotics, we derived novel expressions for the magnetic field
generated by an instantaneous seabed deformation. We showed that the vertical magnetic
field on the seabed is made by an evanescent component be

z , decaying at least as O(t−3/2),
and an oscillatory component bo

z , decaying as O(t−1/3), i.e. with the same rate of decay as
the surface gravity wave (tsunami). The oscillatory component bo

z is in turn made of two
terms: go

z dominated by self-induction, and mo
z dominated by magnetic diffusion. Similarly

to the surface gravity wave ζ , the magnetic self-induction term go
z is proportional to the

Airy function, whereas the diffusive term mo
z is proportional to the Scorer function. The

phase difference between the Airy and Scorer functions explains the time lag between the
surface gravity wave and the EM signal observed in recent field measurements (Toh et al.
2011; Lin et al. 2021) and numerical models (Minami et al. 2015).

Our novel analytical solution for the magnetic field provides physical insight into the
effect of water depth on the EM signal propagating away from the seabed deformation.
We showed that the relative importance of the diffusive term mo

z over the self-induction
term go

z is measured by the parameter ξ ∼ 2/Rm, inversely proportional to the magnetic
Reynolds number Rm = h

√
gh/η. For Rm < 1.3 (corresponding to h < 2000 m), the

diffusive component mo
z is dominant: the EM field is a precursor of the gravity wave

and can provide an advance warning of the order of minutes to tens of minutes. This is
because the lateral magnetic diffusion speed is larger than the liquid’s speed, hence the
component of the vertical magnetic field travels ahead of the self-induction component
and the tsunami.

For a typical application to tsunami early warning, the initial EM signal is O(0.1) nT;
see again § 5. This signal is superimposed on the geomagnetic background noise, which is
a random signal of similar magnitude (Yao et al. 2018). Existing seafloor EM stations
are able to record scalar and vector magnetic fields with resolutions of O(0.1) nT
and O(0.01) nT, respectively (Kawashima & Toh 2016). Coherent fluctuations of the
geomagnetic signal can be separated from the homogeneous background noise by means
of wavelet-based filtering (Kovacs, Carbone & Vorosc 2001). Therefore, using EM fields
to trigger TEWS is feasible with existing technology. For Rm > 4 (corresponding to
h > 4000 m), the self-induction component is dominant: the time lag between the EM
signal and the gravity wave decreases significantly, and the EM field loses its potential for
employment in early warning systems.

Our analysis considered an idealised two-dimensional geometry with an ocean of
constant depth. Future developments include the extension to three-dimensional geometry
and varying depth. We also assumed that the air above the ocean and the soil below
the seafloor are insulating media. A further extension of this model could consider the
influence of magnetic diffusion outside the ocean.
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Appendix A. Integration of (4.12)

To integrate (4.12), first expand the complex exponential inside the integrand using the
Euler formula

exp {iψ} = cosψ + i sinψ, (A1)

where

ψ = ψ(x, k, t) = k(x −
√

gh t)+
√

gh
6

h2tk3. (A2)

Then consider the component with cosψ and change variable

k =
(√

gh
2

h2t
)−1/3

α, (A3)

so that
∫ ∞

0
cosψ(x, k, t) dk =

(√
gh
2

h2t
)−1/3 ∫ ∞

0
cos

[
α

(√
gh
2

h2t
)−1/3

(x −
√

gh t)+ α3

3

]
dα

=
(

2√
gh h2t

)1/3

π Ai

[(
2√

gh h2t

)1/3

(x −
√

gh t)

]
. (A4)

Similarly, the component with sinψ becomes

∫ ∞

0
sinψ(x, k, t) dk =

(√
gh
2

h2t
)−1/3 ∫ ∞

0
sin

[
α

(√
gh
2

h2t
)−1/3

(x −
√

gh t)+ α3

3

]
dα

=
(

2√
gh h2t

)1/3

π Gi

[(
2√

gh h2t

)1/3

(x −
√

gh t)

]
. (A5)

Then substituting (A4)–(A5) back in (4.12) and neglecting terms O(k) and higher, which
do not give a dominant contribution to the integral, yields (4.13).

Appendix B. Integration in the complex plane

Consider the inner integral in (3.1), i.e.

I(k) = 1
2πi

∫
Γ

˜̄b(h)z (−h; s, k) est ds, k ∈ R, t > 0+, (B1)

where the function ˜̄b(h)z is given by (2.36). As described in § 3, the integrand has two
purely imaginary poles at s = ±iω, and infinitely many real negative poles at s = sn, n =
1, 2, . . . , given by (3.6). Let the curve Γ in (B1) be the vertical line at s = c, where c is a
real positive number.

Figure 8 shows the complex s-plane with the poles, the integration path Γ and the branch
cut introduced in § 3 to circumvent multivaluedness of α(s, k) (2.22). To calculate I(k),
we close the integration path with two quarter-circles of large radius R, C+

R in Im{s} > 0
and C−

R in Im{s} < 0, together with straight lines just above and below the branch cut,
plus small semicircles Cε+n and Cε−n of infinitesimal radius ε surrounding each pole on
the negative real axis, and finally a small circle Cε of radius ε around the branch point at
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Figure 8. Complex s-plane with poles and branch cut.

s = −k2η (see again figure 8). The union of these contours is a closed circuit which will
be denoted as Λ. It follows

1
2πi

∫
Λ

˜̄b(h)z (−h; s, k) est ds

= 1
2πi

(∫
Γ

+
∫

C+
R

+ PV
∫ −k2η

−R
+

N∑
n=1

∫
Cε+n

+
∫

Cε

+ PV
∫ −R

−k2η
+

N∑
n=1

∫
Cε−n

+
∫

C−
R

)
˜̄b(h)z (−h; s, k) est ds, R → +∞, ε → 0, (B2)

where N is the total number of negative real poles sn, so that N → +∞ as R → +∞, and
PV is the Cauchy principal value (Mei 1997).

Note that the only two poles inside Λ are at s = ±iω. Hence application of the residue
theorem yields

1
2πi

∫
Λ

˜̄b(h)z (−h; s, k) est ds = Res(−iω)+ Res(iω), (B3)

where

Res(±iω)

= |k| H̃0(k) f (h)z (−h;±iω, k) e±iωt

∓2ω2
{
2 |k|α(±iω, k) cosh [α(±iω, k)h] + (

k2 + α2(±iω, k)
)

sinh [α(±iω, k)h]}
(B4)

are the residues calculated at each pole, respectively. Let us now consider the right-hand
side of (B2). Inspection of (2.36) and (2.37) reveals that | ˜̄b(h)z (−h; s, k)| = O(s−1) → 0 as
s → ∞ in the left half-plane. Hence by Jordan’s lemma,∫

C+
R ∪C−

R

˜̄b(h)z (−h; s, k) est ds → 0, R → +∞. (B5)
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Furthermore, it can be shown easily that the two principal-valued integrals on the opposite
sides of the branch cut cancel each other out, i.e.(

PV
∫ −k2η

−R
+PV

∫ −R

−k2η

)
˜̄b(h)z (−h; s, k) est = 0. (B6)

Let us now consider the integral around the small circle Cε , where s = −k2η + εθ ,
θ ∈ (−π,π). As ε → 0, we have

1
2πi

∫ π

−π

˜̄b(h)z (−h;−k2η + ε eiθ ) εi eiθ dθ = O(ε) → 0. (B7)

Hence the only non-zero values on the right-hand side of (B2) are the integrals around
the poles sn. Note that ˜̄b(h)z does not change sign on the opposite pairs of semicircles Cε±n .
Hence application of the residue theorem yields

N∑
n=1

∫
Cε+n ∪Cε−n

˜̄b(h)z (−h; s, k) est ds = −
N∑

n=1

Res(sn), (B8)

where the negative sign takes into account the direction of integration, and

Res(sn) = |k| H̃0(k) f (h)z (−h;−η(k2 + β2
n ), k)

dn(k)
e−η(k2+β2

n )t (B9)

are the residues at the negative real poles. In (B9), dn(k) is still given by (3.10), and the βn
are the solutions of the magnetohydrodynamic dispersion relation (3.4).

Hence by substituting (B5)–(B9) into (B2), the integral in the complex plane (B1)
simplifies to

I(k) = Res(−iω)+ Res(iω)+
∞∑

n=1

Res(sn). (B10)

The latter is then substituted into (3.1) to yield (3.7).
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