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The Spectrum of an Infinite Graph
Hajime Urakawa

Abstract. In this paper, we consider the (essential) spectrum of the discrete Laplacian of an infinite graph. We
introduce a new quantity for an infinite graph, in terms of which we give new lower bound estimates of the
(essential) spectrum and give also upper bound estimates when the infinite graph is bipartite. We give sharp
estimates of the (essential) spectrum for several examples of infinite graphs.

1 Introduction

An infinite graph G = (V, E) is a collection of a set V of infinite number of vertices and a set
E of edges connecting two vertices. We always assume in this paper that G is connected and
locally finite, that is, for each vertex x, the degree m(x) = #{y ∈ V ; y ∼ x} is finite. Here
y ∼ x means two vertices x and y are connected by an edge. One of important problems
in infinite graph theory is to estimate or determine the spectrum σ(G) of the Laplacian
∆ = I − P for a given infinite graph (cf. [7]). Here∆ f (x) = f (x) − 1

m(x)

∑
y∼x f (y), for

x ∈ V and a function f on V with finite support. In this paper, we give lower and upper
estimates of the spectrum of the discrete Laplacian of an infinite graph.

The celebrated Cheeger type inequality says that the spectrum σ(G) of the Laplacian ∆
of an infinite graph is estimated as follows (cf. [1], [2], [4], [6], [7], [8]):

σ(G) ⊂
[
1−

√
1− h(G)2, 1 +

√
1− h(G)2

]
⊂ [0, 2].

Here h(G) is the Cheeger constant of an infinite graph G, that is,

h(G) = inf

{
#(∂A)

mV (A)
; A ⊂ V, #A <∞

}
,

where ∂A = {e = (x, y) ∈ E; x ∈ A and y /∈ A} and mV (A) =
∑

x∈A m(x). Even though
the above estimate is general and sharp, it is not so efficient. Because it is almost impossible
in general, to know the Cheeger constant explicitly for a given infinite graph. It should
be noticed that another sharp estimation of the spectrum in terms of the upper bound of
degrees for an infinite tree has been obtained (cf. [10]).

The aim of this paper is to give new general and sharp estimations of the spectra and
essential ones for an arbitrarily given infinite graph. It should be noticed that these esti-
mates are computable for many infinite regular graphs (cf. Section 7). Our approach is
quite different from the above Cheeger type estimations.
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To explain our results, we fix any vertex x0 ∈ V , and consider r(x), x ∈ V , the distance
of x from x0, that is, the length of the shortest path from x0 to x. We define m+(x), m−(x)
and m0(x) for x �= x0 ∈ V by

m+(x) = #{z ∈ V ; z ∼ x, and r(z) = r(x) + 1},

m−(x) = #{z ∈ V ; z ∼ x, and r(z) = r(x)− 1},

m0(x) = #{z ∈ V ; z ∼ x, and r(z) = r(x)},

respectively (cf. [9]). The main ingredient of our approach is to observe the following two
subsets in the real line R:

M±(G) =

{
m±(x)

m(x)
; x ∈ V − {x0}

}
,

respectively. We put

m±(G) = inf M±(G), M±(G) = sup M±(G),

respectively. Then we obtain the following theorem.

Theorem A Let G = (V, E) be an infinite graph. Assume that two closed intervals [m−(G),
M−(G)] and [m+(G),M+(G)] have no intersection. Then we have

infσ(G) ≥ m+(G) + M−(G)− 2
√

m+(G)M−(G).

Thus, we have infσ(G) > 0.

Corollary B Let G = (V, E) be an infinite bipartite graph. Assume that two closed inter-
vals [m−(G),M−(G)] and [m+(G),M+(G)] have no intersection. Then the supremum of
spectrum is estimated as follows:

σ(G) ⊂
[(√

m+(G)−
√

M−(G)
)2
,
(√

m+(G) +
√

M−(G)
)2]
.

Remark Y. Higuchi pointed out (cf. Proposition 4.1) that for any infinite graph G = (V, E),
M+(G) ≥ m−(G).

The main ingredients to obtain our main results are Theorem 3.8 and Corollary 3.13.
The similar estimations to the essential spectrum σess (G) of an infinite graph can be also
done in Section 5 (cf. Theorem 5.3 and Corollary 5.4). We give also a discrete analogue of
the estimation of the essential spectrum to Riemannian manifolds (cf. [3], [5]) in Section 6.
We give many examples in Section 7 which show how our estimations are effective.
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suggestions and criticisms.
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2 Preliminaries

In this section, we give the notation that will be needed later.

Let G = (V, E) be a locally finite, infinite graph. Let C(V ) be the space of all real valued
functions on V , and Cc(V ) the space of f in C(V ) with finite support. We consider the
inner product on Cc(V ) defined by

( f1, f2) =
∑
x∈V

m(x) f1(x) f2(x),(2.1)

and the norm ‖ f ‖ =
√

( f , f ), for f ∈ Cc(V ), where m(x), x ∈ V , is the degree of x which
is by definition m(x) = #{z ∈ V ; z ∼ x}. Hereafter we denote by z ∼ x, that two vertices z
and x are connected by an edge. The transition operator P acting Cc(V ) is defined by

(P f )(x) =
1

m(x)

∑
z∼x

f (z), x ∈ V, f ∈ Cc(V ),

and the Laplacian∆ acting on Cc(V ) is defined by

(∆ f )(x) = f (x)− P f (x) =
1

m(x)

∑
z∼x

(
f (x)− f (z)

)
,(2.2)

for all x ∈ V and f ∈ Cc(V ). The closure of the Laplacian to the L2-space L2(V ) =
{ f ∈ C(V ); ‖ f ‖ <∞} is also denoted by the same symbol∆.

We fix an orientation on G = (V, E), once and for all, and let E be the set of all oriented
edges. For e = [x, y] ∈ E, x = o(e) and y = t(e), the origin and terminal vertices of e,
respectively, and e = [y, x] ∈ E, the reverse oriented edge of e.

Let C(E) be the space of all real valued function ϕ on E satisfying

ϕ(e) = −ϕ(e),

for all e ∈ E. Let Cc(E) be the space of ϕ ∈ C(E) with finite support.
For f ∈ C(V ), let d f ∈ C(E) be the co-boundary operator which is defined by

d f (e) = d f ([x, y]) = f (y)− f (x),(2.3)

for all e = [x, y] ∈ E. The inner product on Cc(E) is defined by

(ϕ1, ϕ2) =
∑
e∈E

ϕ1(e)ϕ2(e) =
1

2

∑
e∈E

ϕ1(e)ϕ2(e),(2.4)

and the norm is given by ‖ϕ‖ =
√

(ϕ,ϕ).
The co-differential operator δ : Cc(E)→ Cc(V ) is defined by

(δϕ)(x) = −
1

m(x)

∑
e∈E,o(e)=x

ϕ(e),(2.5)

for all x ∈ V and ϕ ∈ Cc(E). Then it is known (see for instance [11]) that
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Proposition 2.6

(a) For f ∈ Cc(V ) and ϕ ∈ Cc(E), we have

(d f , ϕ) = ( f , δϕ).

(b) For f ∈ Cc(V ), we have

∆ f = δd f .

The following proposition is also useful.

Proposition 2.7

(a) For f , g ∈ Cc(V ), it holds that

∆( f g)(x) = (∆ f )(x)g(x) − 2〈d f , dg〉(x) + f (x)(∆g)(x), x ∈ V,(2.8)

where 〈d f , dg〉(x) is the pointwise norm which is defined by

〈d f , dg〉(x) =
1

2m(x)

∑
z∼x

(
f (z)− f (x)

)(
g(z)− g(x)

)
, x ∈ V,(2.9)

and satisfies

(d f , dg) =
∑
x∈V

m(x)〈d f , dg〉(x).(2.10)

(b) For f ∈ C(V ), define a function, f̃ , on E by

f̃ (e) =
1

2

(
f
(
o(e)

)
+ f

(
t(e)

))
, e ∈ E.(2.11)

Then, for all g ∈ C(V ), f̃ dg ∈ C(E), and we have

δ( f̃ dg)(x) = −〈d f , dg〉(x) + f (x)∆g(x), x ∈ V.

Proof The proof is a straightforward computation, so we omit the proof of (a). For (b),
we show the following two equations:

−2〈d f , dg〉(x) + f (x)(∆g)(x) = −
1

m(x)

∑
e∈E,o(e)=x

f
(
t(e)

)
dg(e),

f (x)(∆g)(x) = −
1

m(x)

∑
e∈E,o(e)=x

f
(
o(e)

)
dg(e),
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which yield (b). The left hand side of the first equation above equals

−
1

m(x)

∑
z∼x

(
f (z)− f (x)

)(
g(z)− g(x)

)
+ f (x)

(
g(x)−

1

m(x)

∑
z∼x

g(z)

)

= −
1

m(x)

∑
z∼x

f (z)
(

g(z)− g(x)
)

= −
1

m(x)

∑
e∈E,o(e)=x

f
(
t(e)

)
dg(e),

which shows the first equation. For the second one, it suffices only to recall

(∆g)(x) = −
1

m(x)

∑
e∈E,o(e)=x

dg(e).

3 Fundamental Formulas

In this section, we preserve the situation in Section 2. For every function γ ∈ C(V ), we
define a new operator L and a new inner product ( , )γ on Cc(V ) as follows:

Definition 3.1 For f ∈ Cc(V ), define L f ∈ Cc(V ) by

L f = ∆ f − eγ〈d(e−γ), d f 〉,

that is,
L f (x) = (∆ f )(x)− eγ(x)〈d(e−γ), d f 〉(x), x ∈ V.

Definition 3.2 For f1, f2 ∈ Cc(V ), we define the inner product ( f1, f2)γ by

( f1, f2)γ =
∑
x∈V

m(x)e−γ(x) f1(x) f2(x).

Theorem 3.3 The operator L is symmetric with respect to the inner product ( , )γ , that is, it
holds that for f1, f2 ∈ Cc(V ),

(L f1, f2)γ = ( f1,L f2)γ = (ẽ−γd f1, d f2).(3.4)

Moreover, the operator L is positive, that is, for all f ∈ Cc(V ),

(L f , f )γ =
∑
e∈E

ẽ−γ(e)d f (e)2 ≥ 0.

Proof By Proposition 2.6, we obtain that, for f1, f2 ∈ Cc(V ),(
δ(ẽ−γd f1), f2

)
= (ẽ−γd f1, d f2).
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By Proposition 2.7 (b),

(
δ(ẽ−γd f1), f2

)
= (e−γ∆ f1 − 〈d(e−γ, d f1〉, f2)

= (L f1, f2)γ.

Since

(ẽ−γd f1, d f2) = (ẽ−γd f2, d f1),

we obtain Theorem 3.3.

Now we take as γ ∈ C(V ), γ(x) = cr(x), x ∈ V , for every real number c ∈ R, where r(x),
x ∈ V , is the graph distance between x and a fixed vertex p, i.e., the length of a shortest path
from p to x. From now on, we denote by ( , )c , the above inner product ( , )γ for γ = cr
with c ∈ R. We define the transformation T defined by

(T f )(x) = e
c
2 r(x) f (x), x ∈ V,

for f ∈ C(V ). Then we have

(T f1,T f2)c = ( f1, f2), f1, f2 ∈ Cc(V ).

Moreover, we introduce the following operators.

Definition 3.5

(a) The operator∆0 and∆1 are defined by

∆0 f (x) = −
1

m(x)

∑
y∼x,

r(y)=r(x)

(
f (y)− f (x)

)
,

∆1 f (x) = −
1

m(x)

∑
y∼x,

r(y)�=r(x)

(
f (y)− f (x)

)
,

for x ∈ V with x �= x0, and∆0 f (x0) = 0 and∆1 f (x0) = ∆ f (x0), respectively.
(b) And define also d0 f and d1 f in C(E) by

d0 f (e) = d0 f ([x, y]) =

{
f (y)− f (x), if r(y) = r(x)

0, otherwise,

and

d1 f (e) = d1 f ([x, y]) =

{
f (y)− f (x), if r(y) �= r(x)

0, otherwise.

https://doi.org/10.4153/CJM-2000-044-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2000-044-2


The Spectrum of an Infinite Graph 1063

(c) For ϕ ∈ Cc(E), define δ0ϕ and δ1ϕ in Cc(V ) by

δ0ϕ(x) = −
1

m(x)

∑
e∈E,o(e)=x,
r(t(e))=r(x)

ϕ(e),

δ1ϕ(x) = −
1

m(x)

∑
e∈E,o(e)=x,
r(t(e))�=r(x)

ϕ(e),

respectively.

Then, we have immediately

Proposition 3.6 For f ∈ Cc(V ) and ϕ ∈ Cc(E), we have the following.

(1) ∆0 f (x) = δ0d0 f (x),∆1 f (x) = δ1d1 f (x), x ∈ V .
(2) (δ0ϕ, f ) = (ϕ, d0 f ), (δ1ϕ, f ) = (ϕ, d1 f ).
(3) (∆0 f , f ) ≥ 0, (∆1 f , f ) ≥ 0.
(4) d f = d0 f + d1 f , δϕ = δ0ϕ + δ1ϕ.
(5) δ1d0 f = 0, δ0d1 f = 0.
(6) ∆ f = ∆0 f +∆1 f .

Moreover, we have

Proposition 3.7 For a finite or infinite graph G, the following conditions are equivalent.

(1) G is bipartite,
(2) m0(x) = 0 for each x ∈ V with x �= x0,
(3) r(y) �= r(x) for each x, y ∈ V with y ∼ x,
(4) ∆0 = 0.

Proof Recall that G is bipartite if and only if G contains no odd cycle. Assume that m0(x) >
0 for some x ∈ V . Then there exists y ∈ V with y ∼ x such that y(y) = r(x). Let z ∈ V be
the last branch point in two shortest paths from x0 to x and y. Then we have an odd cycle
in G. Conversely, if we have an odd cycle, m0(x) > 0 for some x ∈ V , clearly. The other
equivalence are also clear.

We obtain

Theorem 3.8 For all f ∈ Cc(V ), we have

T−1
(
L(T f )

)
(x)

= cosh
c

2

{
∆1 f (x) +

(
m+(x)

m(x)
(e−

c
2 − 1) +

m−(x)

m(x)
(e

c
2 − 1)

)
f (x)

}
+∆0 f (x).
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Proof By definition and (2.8),

T−1
(
L(T f )

)
(x) = e−

c
2 r(x)∆(e

c
2 r f )(x)− e

c
2 r(x)〈de−cr, d(e

c
2 r f )〉(x)

= e−
c
2 r(x){(∆e

c
2 r)(x) f (x)− 2〈de

c
2 r, d f 〉(x) + e

c
2 r(x)∆ f (x)}

− e
c
2 r(x)〈de−cr, d(e

c
2 r f )〉(x)

= ∆ f (x) + e
c
2 r(x)∆e

c
2 r(x) f (x)− 2e−

c
2 r(x)〈de

c
2 r, d f 〉(x)

− e
c
2 r(x)〈de−cr, d(e

c
2 r f )〉(x)

= ∆ f (x) + e
c
2 r(x)∆e

c
2 r(x) f (x)

− 2e
c
2 r(x)〈(e−

c
2 r)∼de−

c
2 r, de

c
2 r〉(x) f (x)

− e−
c
2 r(x)〈de

c
2 r, d f 〉(x)− e

c
2 r(x)〈de−

c
2 , d f 〉(x)

= H f (x)− D f (x),

(3.9)

where we used the equation below, for de−cγ = d(e−
c
2 γe−

c
2 γ),

d( f g)(e) = f̃ (e)dg(e) + g̃(e)d f (e),(3.10)

for f , g ∈ C(V ) and e ∈ E, and we put
D f (x) = e−

c
2 r(x)〈de

c
2 r, d f 〉(x) + e

c
2 r(x)〈de−

c
2 r, d f 〉(x),

H f (x) = ∆ f (x) + e−
c
2 r(x)∆e

c
2 r(x) f (x)

−2e
c
2 r(x)〈(e−

c
2 r)∼de−

c
2 r, de−

c
2 r〉(x) f (x).

(3.11)

Theorem 3.8 can be obtained immediately by the following lemma.

Lemma 3.12 The operators D and H are calculated as follows:

D f (x) =
(

1− cosh
c

2

)
∆1 f (x),

H f (x) = ∆ f (x) + cosh
c

2

(
m+(x)

m(x)
(e−

c
2 − 1) +

m−(x)

m(x)
(e

c
2 − 1)

)
f (x),

for f ∈ Cc(V ) and x ∈ V .

Proof For D f , we have

D f (x) = e−
c
2 r(x)〈de

c
2 r, d f 〉(x) + e

c
2 r(x)〈de−

c
2 r, d f 〉(x)

= e−
c
2 r(x) 1

2m(x)

∑
y∼x

(e
c
2 r(y) − e

c
2 r(x))

(
f (y)− f (x)

)
+ e

c
2 r(x) 1

2m(x)

∑
y∼x

(e−
c
2 r(y) − e−

c
2 r(x))

(
f (y)− f (x)

)
,
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where

r(y) =


r(x)− 1,

r(x), or

r(x) + 1

if y ∼ x. Therefore, we obtain

D f (x) = e−
c
2 r(x) 1

2m(x)

∑
y∼x,

r(y)=y(x)+1

(e
c
2 (r(x)+1) − e−

c
2 r(x))

(
f (y)− f (x)

)

+ e−
c
2 r(x) 1

2m(x)

∑
y∼x,

r(y)=r(x)−1

(e
c
2 (r(x)−1) − e

c
2 r(x))

(
f (y)− f (x)

)

+ e
c
2 r(x) 1

2m(x)

∑
y∼x, r(y)=r(x)+1

(e−
c
2 (r(x)+1) − e−

c
2 r(x))

(
f (y)− f (x)

)
+ e

c
2 r(x) 1

2m(x)

∑
y∼x,

r(y)=r(x)−1

(e−
c
2 (r(x)−1) − e−

c
2 r(x))

(
f (y)− f (x)

)

=
1

2m(x)
(e

c
2 − 1)

∑
y∼x,

r(y)=r(x)+1

(
f (y)− f (x)

)

+
1

2m(x)
(e−

c
2 − 1)

∑
y∼x,

r(y)=r(x)−1

(
f (y)− f (x)

)

+
1

2m(x)
(e−

c
2 − 1)

∑
y∼x,

r(y)=r(x)+1

(
f (y)− f (x)

)

+
1

2m(x)
(e

c
2 − 1)

∑
y∼x,

r(y)=r(x)−1

(
f (y)− f (x)

)

= (e
c
2 − 1)

1

2m(x)

∑
y∼x,

r(y)�=r(x)

(
f (y)− f (x)

)

+ (e−
c
2 − 1)

1

2m(x)

∑
y∼x,

r(y)�=r(x)

(
f (y)− f (x)

)

= −
e

c
2 − 1

2
∆1 f (x)−

e−
c
2 − 1

2
∆1 f (x)

=
(

1− cosh
c

2

)
∆1 f (x),

by definition of∆1. Thus, we have the equation for D f in Lemma 3.12.
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For H f , we calculate

e−
c
2 r(x)∆e

c
2 r(x)

= e−
c
2 r(x) 1

m(x)

∑
y∼x

(e
c
2 r(x) − e

c
2 r(y))

= e−
c
2 r(x) 1

m(x)

{ ∑
y∼x,

r(y)=r(x)+1

(e
c
2 r(x) − e

c
2 (r(x)+1)) +

∑
y∼x,

r(y)=r(x)−1

(e
c
2 r(x) − e

c
2 (r(x)−1))

}

=
1

m(x)

∑
y∼x,

r(y)=r(x)+1

(1− e
c
2 ) +

1

m(x)

∑
y∼x,

r(y)=r(x)−1

(1− e−
c
2 )

= (1− e
c
2 )

m+(x)

m(x)
+ (1− e−

c
2 )

m−(x)

m(x)
,

and we have

2e
c
2 r(x)〈(e−

c
2 r)∼de−

c
2 r, de

c
2 r〉(x)

= 2e
c
2 r(x) 1

2m(x)

∑
y∼x

e−
c
2 r(x) + e−

c
2 r(y)

2
(e−

c
2 r(y) − e−

c
2 r(x))(e

c
2 r(y) − e

c
2 r(x))

= 2e
c
2 r(x) 1

2m(x)

∑
y∼x,

r(y)=r(x)+1

e−
c
2 r(x) + e−

c
2 (r(x)+1)

2

× (e−
c
2 (r(x)+1) − e−

c
2 r(x))(e

c
2 (r(x)+1) − e

c
2 r(x))

+ 2e
c
2 r(x) 1

2m(x)

∑
y∼x,

r(y)=r(x)−1

e−
c
2 r(x) + e−

c
2 (r(x)−1)

2

× (e−
c
2 (r(x)−1) − e−

c
2 r(x))(e

c
2 (r(x)−1) − e

c
2 r(x))

=
1

m(x)

∑
y∼x,

r(y)=r(x)+1

e−
c
2 r(x) + e−

c
2 (r(x)−1)

2
(e−

c
2 − 1)(e

c
2 − 1)

+
1

m(x)

∑
y∼x,

r(y)=r(x)−1

e−
c
2 r(x) + e−

c
2 (r(x)−1)

2
(e

c
2 − 1)(e−

c
2 − 1)

=
m+(x)

m(x)

1 + e−
c
2

2
(e−

c
2 − 1)(e

c
2 − 1) +

m−(x)

m(x)

1 + e
c
2

2
(e

c
2 − 1)(e−

c
2 − 1)

=
m+(x)

m(x)

1− e−c

2
(1− e

c
2 ) +

m−(x)

m(x)

1− ec

2
(1− e−

c
2 ).
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Therefore, we have

H f (x) = ∆ f (x) +
m+(x)

m(x)

{
1− e

c
2 −

1− e−c

2
(1− e

c
2 )

}
f (x)

+
m−(x)

m(x)

{
1− e−

c
2 −

1− ec

2
(1− e−

c
2 )

}
f (x)

= ∆ f (x) +
m+(x)

m(x)
(1− e

c
2 )

(
1−

1− e−c

2

)
f (x)

+
m−(x)

m(x)
(1− e−

c
2 )

(
1−

1− ec

2

)
f (x)

= ∆ f (x) +
m+(x)

m(x)
(1− e

c
2 )

(
1 +

1− e−c

2

)
f (x)

+
m−(x)

m(x)
(1− e−

c
2 )

(
1 +

1− ec

2

)
f (x)

= ∆ f (x) + cosh
c

2

(
m+(x)

m(x)
(e−

c
2 − 1) +

m−(x)

m(x)
(e

c
2 − 1)

)
f (x).

We have Lemma 3.12.

Thus, we obtain Theorem 3.8.

We obtain immediately

Corollary 3.13 For gi = T fi , (i = 1, 2), we have∑
e∈E

(e−cr)∼(e)dg1(e)dg2(e)

=
∑
x∈V

m(x)T−1
(
L(T f1)

)
(x) f2(x)

= cosh
c

2

∑
x∈V

m(x)

{
∆1 f1(x) +

(
m+(x)

m(x)
(e−

c
2 − 1) +

m−(x)

m(x)
(e

c
2 − 1)

)
f1(x)

}
f2(x)

+
∑
x∈V

m(x)∆0 f1(x) f2(x).

4 Lower Estimate of the Spectrum

4.1

In this subsection, we show

Proposition 4.1 (Y. Higuchi) For an infinite graph G = (V, E) let m±(G) and M±(G) be
the positive numbers as in the introduction. Then M+(G) ≥ m−(G).
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Proof Assume that M+(G) < m−(G). Putting α = M+(G) and β = m−(G), we have

m−(x) ≥ βm(x), and m+(x) ≤ αm(x), (∀x �= x0).

By the assumption, we have

m+(x)−m−(x) ≤ (α− β)m(x) < 0 (∀x �= x0).

For any n = 1, 2, . . . , let

Bn(x0) = {x ∈ V ; d(x, x0) < n},

and
∂Bn(x0) = {e ∈ E; e = (x, y), x ∈ Bn(x0), y /∈ Bn(x0)}.

Since for r = 0, 1, . . . , ∑
r(x)=r

m+(x) =
∑

r(x)=r+1

m−(x),

and m−(x0) = 0, we have

#∂Bn(x0) =
∑

r(x)=n−1

m+(x)

=

n−1∑
r=0

∑
r(x)=r

(
m+(x)−m−(x)

)

=
n−1∑
r=1

∑
r(x)=r

(
m+(x)−m−(x)

)
+ m(x0)

≤ (α− β)
n−1∑
r=1

∑
r(x)=r

m(x) + m(x0)

= (α− β)mV

(
Bn(x0)

)
+ (1 + β − α)m(x0).

Since G is of infinite, we may let n tend to infinity, and we have

#∂Bn(x0)

mV

(
Bn(x0)

) ≤ (α− β) +
(1 + β − α)m(x0)

mV

(
Bn(x0)

) → α− β < 0, as n→∞,

which is a contradiction.

4.2

We prove Theorem A in this subsection.
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Let D ⊂ V be a finite subset, and consider the Dirichlet eigenvalue problem for D:{
∆ϕ = λϕ, on D,

ϕ = 0, on ∂D,

where ∂D = {y ∈ V ; y /∈ D and y ∼ x for some x ∈ D}, the boundary of D. Let λD be the
first eigenvalue of this problem andϕD be the corresponding eigenfunction with ‖ϕD‖ = 1.
Applying Corollary 3.13 and taking fi = ϕD (i = 1, 2), we have

0 ≤
∑
e∈E

(e−cr)∼(e)d(TϕD)(e)2 +
(

cosh
c

2
− 1

)
(∆0ϕD, ϕD)

= cosh
c

2

(
∆ϕD +

(
m+(·)

m(·)
(e−

c
2 − 1) +

m−(·)

m(·)
(e

c
2 − 1)

)
ϕD, ϕD

)
.

Therefore, we have

0 ≤ (∆ϕD, ϕD) +

((
m+(·)

m(·)
(e−

c
2 − 1) +

m−(·)

m(·)
(e

c
2 − 1)

)
ϕD, ϕD

)
,

which implies

λD = (∆ϕD, ϕD)

≥
∑
x∈V

m(x)

{
m+(x)

m(x)
(1− e−

c
2 ) +

m−(x)

m(x)
(1− e

c
2 )

}
ϕD(x)2(4.1)

for all c ∈ R.
Now assume that [m−(G),M−(G)] ∩ [m+(G),M+(G)] = ∅. By Proposition 4.1, we

have M−(G) < m+(G).
If c ≥ 0, then 1− e−

c
2 ≥ 0 and 1− e

c
2 ≤ 0, hence we have

m+(x)

m(x)
(1− e−

c
2 ) +

m−(x)

m(x)
(1− e

c
2 ) ≥ m+(G)(1− e−

c
2 ) + M−(G)(1− e

c
2 ),

for all x ∈ V . Thus, we have

sup

{
m+(x)

m(x)
(1− e−

c
2 ) +

m−(x)

m(x)
(1− e

c
2 ); c ≥ 0

}
≥ m+(G) + M−(G)− inf

{
m+(G)e

c
2 + M−(G)e−

c
2 ; c ≥ 0

}
= m+(G) + M−(G)− 2

√
m+(G)M+(G)

=
(√

m+(G)−
√

M−(G)
)2
,

where the infimum attains at c = log
(

m+(G)/M−(G)
)
> 0. Then we have

λD ≥
(√

m+(G)−
√

M−(G)
)2 ∑

x∈V

m(x)ϕD(x)2

=
(√

m+(G)−
√

M−(G)
)2
.
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Thus, we obtain
infσ(G) ≥

(√
m+(G)−

√
M−(G)

)2
.

We have Theorem A.

5 The Estimations of the Essential Spectrum (I)

In the sequel, let
Br = {x ∈ V ; r(x) < r},

and for 0 < s < t ,
Bs,t = Bt \ Bs = {x ∈ V ; s ≤ r(x) < t}.

Define

m∞± (G) = lim inf
s,t→∞

{
m±(x)

m(x)
; x ∈ Bs,t

}
,

M∞± (G) = lim sup
s,t→∞

{
m±(x)

m(x)
; x ∈ Bs,t

}
,

respectively. By the same way of Proposition 4.1, we have

m∞− (G) ≤ M∞+ (G).

Let 0 < s < t . Let λs,t be the first eigenvalue of the Dirichlet eigenvalue problem of ∆
for Bs,t and ϕs,t , the corresponding eigenfunction. Then, by making use of Corollary 3.13,
we obtain

λs,t = (∆ϕs,t , ϕs,t )

≥
∑
s∈Bs,t

m(x)

{
m+(x)

m(x)
(1− e−

c
2 ) +

m−(x)

m(x)
(1− e

c
2 )

}
ϕs,t (x)2.

(5.1)

Notice that for the essential spectrum σess (G),

infσess (G) = lim
s,t→∞

λs,t .(5.2)

Thus, by the same way as the proof of Theorem A, we obtain

Theorem 5.3 Let G = (V, E) be an infinite graph and assume that two closed intervals
[m∞− (G),M∞− (G)] and [m∞+ (G),M∞+ (G)] have no intersection. Then we obtain

infσess (G) ≥
(√

m∞+ (G)−
√

M∞− (G)
)2
.

(The proof is omitted.)
Therefore, we obtain

Corollary 5.4 Let G = (V, E) be an infinite bipartite graph and assume that two closed
intervals [m∞− (G),M∞− (G)] and [m∞+ (G),M∞+ (G)] have no intersection. Then we have

σess (G) ⊂
[(√

m∞+ (G)−
√

M∞− (G)
)2
,
(√

m∞+ (G) +
√

M∞− (G)
)2]
.
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6 The Estimations of the Essential Spectrum (II)

For c ∈ R, let

Uc(t) =
∑
x∈Bt

m(x)e−cr(x), (0 < t ≤ ∞)(6.1)

(possibly Uc(∞) =∞), where Bt = {x ∈ V ; r(x) < t}. Then we obtain

Theorem 6.2 Assume that there exist positive constants A and B and c ∈ R satisfying the
following two conditions:

lim
s→∞

lim sup
t→∞

1

Uc(t)−Uc(s)

∑
x∈Bt\Bs

m(x)

{(
m+(x)

m(x)
− B

)2

+

(
m−(x)

m(x)
− A

)2
}

e−cr(x) = 0,

(6.3)

where ec = B
A , and either in the case Uc(∞) =∞,

lim
t→∞

Uc(t)e−εt = 0, (for all ε > 0),(6.4)

or in the case Uc(∞) <∞,

lim
t→∞

1

Uc(∞)−Uc(t)
e−εt = 0, (for all ε > 0).(6.5)

Then we have
σess (G) ⊃

[(√
A−
√

B
)2
,
(√

A +
√

B
)2]
.

Remark 6.6 (a) This theorem can be regarded as a discrete version of Theorem 1.1 in [3].

(b) The first condition (6.3) in Theorem 6.2 is satisfied if m+(x)
m(x) → B and m−(x)

m(x) → A
uniformly as r(x) → ∞. The second conditions (6.4) and (6.5) are stronger than the
condition Uc(t) and 1

Uc(∞)−Uc(t) grow to∞ subexponentially, that is,

lim sup
t→∞

t−1 log Uc(t) = 0,

and

lim sup
t→∞

t−1 log

(
1

Uc(∞)−Uc(t)

)
= 0.

Example 6.7 Let Td (d ≥ 3) be the infinite homogeneous regular tree. For fixed x0, let
r(x) = d(x, x0), (x ∈ Td). Since m+(x) = d− 1 and m−(x) = 1 for any x �= x0, we have

m+(x)

m(x)
= B =

d− 1

d
,

m−(x)

m(x)
= A =

1

d
(∀x �= x0).
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For c ∈ R, we have

Uc(t) =
∑
x∈Bt

de−cr(x) = d
t−1∑
r=0

sre
−cr,

where sr = #Br = d(d− 1)r−1. Thus, we have for any c ∈ R,

Uc(t) =
d2

d− 1

et(log(d−1)−c) − 1

elog(d−1)−c − 1
,

and if we choose c in such a way that ec = B
A = d− 1,

Uc(t) =
d2

d− 1
t.

Therefore, we can apply for the regular homogeneous tree Td, Theorem 6.2 which implies
that

σess (Td) ⊃

(√1

d
−

√
d− 1

d

)2

,

(√
1

d
+

√
d− 1

d

)2


=

[
1−

2
√

d− 1

d
, 1 +

2
√

d − 1

d

]
.

Together with Theorems A and B, we have the following well-known fact (cf. [7])

σ(Td) = σess (Td) =

[
1−

2
√

d− 1

d
, 1 +

2
√

d− 1

d

]
.

To prove Theorem 6.2, we need some preparations:

Lemma 6.8 Let F(r), r = 0, 1, . . . and f (x) = F
(

r(x)
)
, x ∈ V , where r(x) is the distance

function from a fixed point p ∈ V . Then the Laplacian∆ f is given by

∆ f (x) =
m+(x)

m(x)

(
F(r)− F(r + 1)

)
+

m−(x)

m(x)

(
F(r)− F(r − 1)

)
.

Proof This follows from by definitions of f and∆.

We have immediately

Lemma 6.9 Assume that m+(x)
m(x) = B and m−(x)

m(x) = A for all x ∈ Bk, where Bk =

{x ∈ V ; r(x) < k}. The eigenvalue problem for Bk,

∆ f (x) = λ f (x), x ∈ Bk,

with the eigenvalue λ satisfying that (
√

A −
√

B)2 < λ < (
√

A +
√

B)2, has the following
radial solutions f (x), i.e., which is of the form f (x) = F

(
r(x)

)
, x ∈ V is given by

F(r) = C1 f1(r) + C2 f2(r),
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where C1 and C2 are two arbitrary constants, and fi(r), i = 1, 2 are given by

f1(r) = e−
c
2 r sin(λcr); f2(r) = e−

c
2 r cos(λcr).

Here e−
c
2 =

√
A
B and λc is given by

cosλc = −
λ− A− B

2
√

AB
.

Proof of Theorem 6.2 Now let us begin the proof of Theorem 6.2. For positive integers
0 < s < t , let h(r) be a function in r = 0, 1, . . . satisfying that

0 ≤ h(r) ≤ 1, r = 0, 1, 2, . . .

h(r) = 1, s ≤ r ≤ t − 1,

h(r) = 0, 0 ≤ r ≤ s− 1 or t ≤ r <∞.

For two positive integers 0 < s < t , let gs,t be a function on V defined by

gs,t (x) =


h
(
r(x)

)
f1

(
r(x)

)
, if

∑
s≤r(x)<t−1 m(x) sin2(λcr(x)

)
e−cr(x)

≥ 1
2{Uc(t − 1)−Uc(s)},

h
(
r(x)

)
f2

(
r(x)

)
, otherwise.

Then we have

Lemma 6.10 The function gs,t satisfies

‖gs,t‖
2 =

∑
x∈V

m(x)gs,t (x)2 ≥
1

2
{Uc(t − 1)−Uc(t)}.

Proof In the case∑
s≤r(x)<t−1

m(x) sin2
(
λcr(x)

)
e−cr(x) ≥

1

2
{Uc(t − 1)−Uc(s)},

we have

‖gs,t‖
2 =

∑
x∈V

m(x)h
(

r(x)
)2

f1

(
r(x)

)2

=
∑

s≤r(x)<t−1

m(x) sin2
(
λcr(x)

)
e−cr(x)

≥
1

2
{Uc(t − 1)−Uc(t)}.

In the remained case, that is,∑
s≤r(x)<t−1

m(x) sin2
(
λcr(x)

)
e−cr(x) <

1

2
{Uc(t − 1)−Uc(s)},
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we have

‖gs,t‖
2 =

∑
x∈V

m(x)h
(

r(x)
)2

f2

(
r(x)

)2

=
∑
x∈V

m(x)h
(

r(x)
)2

e−cr(x) cos2
(
λcr(x)

)
=

∑
s≤r(x)<t−1

m(x)h
(

r(x)
)2
−

∑
s≤r(x)<t−1

m(x)h
(

r(x)
)2

e−cr(x) sin2
(
λcr(x)

)
≥ Uc(t − 1)−Uc(s)−

1

2
{Uc(t − 1)−Uc(s)}

=
1

2
{Uc(t − 1)−Uc(s)},

we have Lemma 6.10.

Let λ ∈ R satisfy (√
A−
√

B
)2
< λ <

(√
A +
√

B
)2
.

To show Theorem 6.2, it suffices to prove

inf
2<s+1<t

‖(∆− λ)gs,t‖2

‖gs,t‖2
= 0.

Note that

(∆− λ)gs,t = ∆(h ◦ r)( fi ◦ r)− 2〈d(h ◦ r), d( fi ◦ r)〉 + (h ◦ r)∆( fi ◦ r)

− λ(h ◦ r)( fi ◦ r).
(6.11)

We have

Lemma 6.12 We have

‖∆(h ◦ r) fi ◦ r‖2 ≤ Uc(s)−Uc(s− 1) + Uc(t)−Uc(t − 1),(6.13)

‖〈d(h ◦ r), d( fi ◦ r)〉‖2 ≤ (e|c| + 1){Uc(s)−Uc(s− 1) + Uc(t)−Uc(t − 1)},(6.14)

and

‖(h ◦ r)∆( fi ◦ r)− λ(h ◦ r)( fi ◦ r)‖

≤ 4(e|c| + 1)
∑

x∈Bt−Bs

m(x)

{(
m+(x)

m(x)
− B

)2

+

(
m−(x)

m(x)
− A

)2
}

e−cr(x).
(6.15)

Continued Proof of Theorem 6.2 By Lemma 6.12, we obtain

‖(∆− λ)gs,t‖2

‖gs,t‖2
≤ 2(e|c| + 2)

Uc(s)−Uc(s− 1) + Uc(t)−Uc(t − 1)

Uc(t − 1)−Uc(s)
.
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By virture of the condition of (6.4) or (6.5), there exist sequences {sm}∞m=1 and {tn}∞n=1

which are divergent to infinity as m→∞ or n→∞, satisfying that

(1) lim
m→∞

Uc(sm)−Uc(sm − 1)

Uc(∞)−Uc(sm)
= 0, and (2) lim

n→∞

Uc(tn)−Uc(tn − 1)

Uc(tn − 1)
= 0.

Because, if Uc(∞) = ∞, (1) is trivial. We assume that (2) does not hold for any sequence
{tn} divergent to infinity. Then there exists a positive number δ > 0 such that

Uc(n)−Uc(n− 1)

Uc(n− 1)
≥ δ (∀n = N,N + 1, . . . ).

Then we have
Uc(n) ≥ (1 + δ)Uc(n− 1), (∀n = N,N + 1, . . . ),

which implies that there exists a positive constant C1 > 0 such that

Uc(n) ≥ C1(1 + δ)n, (∀n = N,N + 1, . . . ).

But, if we choose 0 < ε < log(1 + δ),

Uc(n)e−εn ≥ C1en(log(1+δ)−ε) →∞ (n→∞),

which contradicts (6.4).
In the case Uc(∞) < ∞, (2) is trivial. In order to show (1), we take Vc(t) = Uc(∞) −

Uc(t), which satisfies that Vc(t) converges to 0 when t tends to infinity. The condition (6.5)
is equivalent to the one that

lim
t→∞

1

Vc(t)
e−εt = 0, (∀ε > 0).

The statement (1) is equivalent to that there exists a sequence {sm}∞i=1 satisfying that

(1 ′) lim
m→∞

Vc(sm − 1)−Vc(sm)

Vc(sm)
= 0,

which can be shown by a similar way as the first case. We omit its proof.
Hence we have

lim
m→∞

lim
n→∞

Uc(sm)−Uc(sm − 1) + Uc(tn)−Uc(tn − 1)

Uc(tn − 1)−Uc(sm)
= 0.

Therefore, we obtain the desired conclusion:

inf
2<s+1<t

‖(∆− λ)gs,t‖2

‖gs,t‖2
= 0.
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We give here the proof of Lemma 6.12.

Proof of (6.13) If either r(x) < s− 1, s < r(x) < t − 1 or t < r(x), we have

∆(h ◦ r)(x) = (h ◦ r)(x)−
∑
z∼x

(h ◦ r)(z) = 0.(6.16)

Because, if z ∼ x, it holds that
h
(
r(z)

)
= h

(
r(x)

)
= 0, if r(x) < s− 1,

h
(
r(z)

)
= h

(
r(x)

)
= 1, if s− 1 < r(x) < t ,

h
(
r(z)

)
= h

(
r(x)

)
= 0, if t < r(x).

Therefore, the left hand side of (6.13) coincides with∑
r(x)=s−1

m(x)
(
∆(h ◦ r)(x) fi ◦ r(x)

)2
+

∑
r(x)=t−1

m(x)
(
∆(h ◦ r)(x) fi ◦ r(x)

)2
.

Note that
fi

(
r(x)

)
= e−

c
2 r(x) sin2

(
λcr(x)

)
, or e−

c
2 r(x) cos2

(
λcr(x)

)
,

and if r(x) = s− 1 or r(x) = t − 1,

|∆(h ◦ r)(x)| ≤ 1,

by the same reason of (6.16). Therefore, the left hand side of (6.13) is smaller than or equal
to ∑

r(x)=s−1, or r(x)=t−1

m(x)e−cr(x) = Uc(s)−Uc(s− 1) + Uc(t)−Uc(t − 1).

We have (6.13).

Proof of (6.14) By definition of 〈 , 〉, we have

‖〈d(h ◦ r), d( fi ◦ r)〉‖2

=
∑
x∈V

1

m(x)

{∑
z∼x

(
h
(
r(z)

)
− h

(
r(x)

))(
fi

(
r(z)

)
− fi

(
r(x)

))}2

≤
∑

r(x)=s−1 or
r(x)=t−1

1

m(x)

{∑
z∼x

| fi

(
r(z)

)
− fi

(
r(x)

)
|2
}

≤
∑

r(x)=s−1 or
r(x)=t−1

{∑
z∼x

| fi

(
r(z)

)
− fi

(
r(x)

)
|2
}

=
∑

r(x)=s−1 or
r(x)=t−1

{∑
z∼x

∣∣∣e− c
2 r(z)

{sinλcr(z)
cosλcr(z)

}
− e−

c
2 r(x)

{sinλcr(x)
cosλcr(x)

}∣∣∣2}

https://doi.org/10.4153/CJM-2000-044-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2000-044-2


The Spectrum of an Infinite Graph 1077

≤
∑

r(x)=s−1 or
r(x)=t−1

m(x)(e|c| + 1)e−cr(x)

≤ (e|c| + 1){Uc(s)−Uc(s− 1) + Uc(t)−Uc(t − 1)}.

We have (6.14).

Proof of (6.15) To show (6.15), we put

∆0( f ◦ r) = B
(

f (r)− f (r + 1)
)

+ A
(

f (r)− f (r − 1)
)

for a function f on V . Then we have

‖(h ◦ r)∆( fi ◦ r)− λ(h ◦ r)( fi ◦ r)‖2 ≤ 2‖(h ◦ r)∆( fi ◦ r)− (h ◦ r)∆0( fi ◦ r)‖2

+ 2‖(h ◦ r)∆0( fi ◦ r)− λ(h ◦ r)( fi ◦ r)‖2.

The first term of the right hand side can be estimated as follows:

‖(h ◦ r)∆( fi ◦ r)− (h ◦ r)∆0( fi ◦ r)‖2

=
∑

x∈Bt−Bs

m(x)
(
∆( fi ◦ r)(x)−∆0( fi ◦ r)(x)

)2

=
∑

x∈Bt−Bs

m(x)

{(
m+(x)

m(x)
− B

)(
fi

(
r(x)

)
− fi

(
r(x) + 1

))

+

(
m−(x)

m(x)
− A

)(
fi

(
r(x)

)
− fi

(
r(x)− 1

))}2

≤
∑

x∈Bt−Bs

m(x)

{(
m+(x)

m(x)
− B

)2

+

(
m−(x)

m(x)
− A

)2
}

×
{(

fi

(
r(x)

)
− fi

(
r(x) + 1

))2
+
(

fi

(
r(x)

)
− fi

(
r(x)− 1

))2}
≤ 2(e|c| + 1)

∑
x∈Bt−Bs

m(x)

{(
m+(x)

m(x)
− B

)2

+

(
m−(x)

m(x)
− A

)2
}

e−cr(x)

(6.17)

since, by definition of fi , we have(
fi

(
r(x)

)
− fi

(
r(x) + 1

))2
+
(

fi

(
r(x)

)
− fi

(
r(x)− 1

))2
≤ 2(e|c| + 1)e−cr(x).

On the other hand, the second term vanishes because of Lemmas 6.8 and 6.9, and definition
of fi . Thus, we have (6.15).

Thus, we obtain Theorem 6.2.
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7 Examples

Example 1 Let G = (V, E) be an infinite tree satisfying

3 ≤ k ≤ m(x) ≤ �, ∀x ∈ V.

Since m0(x) = 0, m−(x) = 1 and m+(x) = m(x)− 1 (x �= x0),

M−(G) =

{
m−(x)

m(x)
; x ∈ V − {x0}

}
⊂

[
1

�
,

1

k

]
⊂

[
0,

1

3

]
,

and

M+(G) =

{
m+(x)

m(x)
; x ∈ V − {x0}

}
⊂

[
1−

1

k
, 1−

1

�

]
⊂

[
2

3
, 1

]
,

whence we have

m−(G) ≥
1

�
,m+(G) ≥ 1−

1

k
,M−(G) ≤

1

k
,M+(G) ≤ 1−

1

�
.

Since G is bipartite, by virtue of Corollary B, we have

σ(G) ⊂

[
1−

2
√

k− 1

k
, 1 +

2
√

k− 1

k

]
,

which is known (see for example [7]).

Example 2 Let G = Zd be the integer lattice graph in Rd (d ≥ 1). In this case, it is known
that

σ(G) = σess (G) = [0, 2]

and every estimate should collapse. We have to see our estimate in Theorem A is compatible
in this case: For all x ∈ V − {x0}, m(x) = 2d, and m0(x) = 0,

m+(x) = 2d− 2, d, 2d− 1, d + 1,

m−(x) = 2, d, 1, d − 1,

respectively. Thus, we obtain

m−(G) =
1

2d
, M−(G) =

1

2
, m+(G) =

1

2
, and M+(G) =

2d− 1

2d
.

In this case, we have [m−(G),M−(G)] ∩ [m+(G),M+(G)] = {1/2} and

m+(G) + M−(G)− 2
√

m+(G)M−(G) = 0.

Example 3 Let G = (V, E) be the triangle lattice in R2. In this case, for all x ∈ V − {x0},
m0(x) = 0, and

m+(x) = 2, 3; m−(x) = 2, 1,
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respectively. Thus, we have

M−(G) =

{
m−(x)

m(x)
; x ∈ V − {x0}

}
=

{
2

6
,

1

6

}
,

M+(G) =

{
m+(x)

m(x)
; x ∈ V − {x0}

}
=

{
2

6
,

3

6

}
,

and

m−(G) =
1

6
, M−(G) =

2

6
, m+(G) =

2

6
, M+(G) =

3

6
.

Hence we have [m−(G),M−(G)] ∩ [m+(G),M+(G)] = {2/6} and

m+(G) + M−(G)− 2
√

m+(G)M−(G) = 0.

Indeed, it is known that

σ(G) =

[
0,

3

2

]
.

Example 4 Let G = (V, E) be the Sierpinski gasket (cf. [12]). In this case, m(x0) = 2 and
for all x ∈ V − {x0}, m(x) = 4 and

m0(x) = 1, 2; m+(x) = 2, 0; m−(x) = 1, 2,

respectively. Therefore, we have

M+(G) =

{
0,

2

4

}
, M−(G) =

{
1

4
,

2

4

}
,

hence we have

m−(G) =
1

4
, M−(G) =

2

4
, m+(G) = 0, M+(G) =

2

4
.

Thus, we have [m−(G),M−(G)] ∩ [m+(G),M+(G)] = [1/4, 2/4], and

m+(G) + M−(G)− 2
√

m+(G)M−(G) =
1

2
.

Indeed, it is known that
infσ(G) = 0.

Example 5 Let G be a regular infinite graph each vertex of which is the intersection of d
triangles (d ≥ 2). In this case,

m(x) = 2d, m−(x) = 1, m+(x) = 2d− 2, m0(x) = 1.
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Thus, we have

M+(G) =

{
m+(x)

m(x)
; x ∈ V − {x0}

}
=

{
2d− 2

2d

}
,

M−(G) =

{
m−(x)

m(x)
; x ∈ V − {x0}

}
=

{
1

2d

}
.

We have

m+(G) = M+(G) = 1−
1

d
, m−(G) = M−(G) =

1

2d
,

thus we have

m+(G) + M−(G)− 2
√

m+(G)M−(G) = 1−
1

2d
−

√
2(d − 1)

d
.

By Theorem A, we obtain

infσ(G) ≥ 1−
1

2d
−

√
2(d − 1)

d
.

We can apply Theorem 6.2, which implies that

σess (G) ⊃

(√ 1

2d
−

√
2d− 2

2d

)2

,

(√
1

2d
+

√
2d− 2

2d

)2
 .

Therefore, we obtain

infσ(G) = infσess (G) =

(√
1

2d
−

√
2d− 2

2d

)2

.

On the other hand, we do not know the upper estimate of supσ(G) since G is not bipartite.

Example 6 Let G = (V, E) be a regular infinite graph each of vertex which is the intersec-
tion of n 2m−gons (n ≥ 2, m ≥ 2). In this case, m(x) = 2n, and for all x ∈ V − {x0},
m0(x) = 0, and

m+(x) = 2n− 2, 2n− 1,

m−(x) = 2, 1,

respectively. Thus, we obtain

m−(G) =
1

2n
, M−(G) =

2

2n
, m+(G) =

2n− 2

2n
, M+(G) =

2n− 1

2n
.

Since G is bipartite, by Theorem A and Corollary B, we have

σ(G) ⊂

[
1−

2
√

n− 1

n
, 1 +

2
√

n− 1

n

]
.
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Example 7 Let G = (V, E) be a regular infinite graph each vertex of which is the intersec-
tion of n (2m + 1)−gons (n ≥ 2, m ≥ 1). In this case, m(x) = 2n, and for all x ∈ V −{x0},

m+(x) = 2n− 2, 2n− 1; m−(x) = 1, 1; m0(x) = 1, 0,

respectively. Then we have

M+(G) =

{
2n− 2

2n
,

2n− 1

2n

}
, M−(G) =

{
1

2n

}
.

Thus, we have

m+(G) =
2n− 2

2n
, M+(G) =

2n− 1

2n
, m−(G) = M−(G) =

1

2n
.

By Theorem A, we obtain

infσ(G) ≥
1

2n
+

2n− 2

2n
− 2

√
1

2n

2n− 2

2n
= 1−

1

2n
−

√
2n− 2

n
.

Since G is not bipartite, we do not know the estimate of supσ(G).

Example 8 Let G = (V, E) be the distance regular graph, Dm,s (m, s ≥ 2), i.e., each vertex
is the intersection of m copies of the complete graph Ks. In this case, for all x ∈ V − {x0},

m(x) = (s− 1)m, m+(x) = (s− 1)(m− 1), m−(x) = 1.

Then we have

M+(G) =

{
m− 1

m

}
, M−(G) =

{
1

(s− 1)m

}
.

I.e., we have m+(G) = M+(G) = m−1
m and m−(G) = M−(G) = 1

(s−1)m . By Theorem A,

infσ(G) ≥

(√
m− 1

m
−

√
1

(s− 1)m

)2

.

By Theorem 6.2,

σess (G) ⊃

(√m− 1

m
−

√
1

(s− 1)m

)2

,

(√
m− 1

m
+

√
1

(s− 1)m

)2
 .

Therefore, we obtain

infσ(G) = infσess (G) =

(√
m− 1

m
−

√
1

(s− 1)m

)2

.
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On the other hand, we do not know the upper estimate of supσ(G) since G is not bipartite.

Example 9 Let G = (V, E) be the free product of Kr ∗ Ks (r ≥ s ≥ 2) of two complete
graphs Kr and Ks. In this case, m(x) = r + s− 2, for all x ∈ V − {x0},

m+(x) = s− 1, r − 1; m−(x) = 1, 1; m0(x) = r − 1, s− 2,

respectively. Thus, we have

M+(G) =

{
s− 1

r + s− 2
,

r − 1

r + s− 2

}
, M−(G) =

{
1

r + s− 2

}
.

Then, we have

m+(G) =
r − 1

r + s− 2
, M+(G) =

s− 1

r + s− 2
, m−(G) = M−(G) =

1

r + s− 2
.

By Theorem A, we have

infσ(G) ≥

(√
r − 1

r + s− 2
−

√
1

r + s− 2

)2

.

In the case r = s, we can apply Theorem 6.2, and we have

σess (G) ⊃

(√1

2
−

√
1

2(r − 1)

)2

,

(√
1

2
+

√
1

2(r − 1)

)2
 ,

and then

infσ(G) = infσess (G) =

(√
1

2
−

√
1

2(r − 1)

)2

,

but we do not know the upper bound of σ(G) since G is not bipartite.

Example 10 Let G = (V, E) be the free product of Cr ∗Cs (r ≥ s ≥ 2) of circles Cr, Cs of
length r, s, respectively.

Case 1: r ≥ s ≥ 4 and r and s are even. In this case, m(x) = 4, and m+(x) = 2, 3 and
m−(x) = 1, 2, respectively, and m0(x) = 0 for all x ∈ V − {x0}. Then we have

M+(G) =

{
2

4
,

3

4

}
, M−(G) =

{
1

4
,

2

4

}
,

and

m+(G) =
2

4
, M+(G) =

3

4
, m−(G) =

1

4
, M−(G) =

2

4
.
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Thus, we have [m−(G),M−(G)] ∩ [m+(G),M+(G)] = {2/4}, and

m+(G) + M+(G)− 2
√

m+(G)M+(G) = 0.

Case 2: r ≥ s = 2 and r, even. In this case, m(x) = 3, m+(x) = 2, 1, m−(x) = 1, 2,
respectively, and m0(x) = 0 for all x ∈ V − {x0}. Then we have

M+(G) =

{
1

3
,

2

3

}
, M−(G) =

{
1

3
,

2

3

}
,

and

m+(G) =
1

3
, M+(G) =

2

3
, m−(G) =

1

3
, M−(G) =

2

3
.

In this case, [m−(G),M−(G)] ∩ [m+(G),M+(G)] = [1/3, 2/3].

Case 3: r ≥ s ≥ 2, and r and s are odd. In this case, m(x) = 4, m+(x) = 3, 2, m−(x) =
1, 1, and m0(x) = 0, 1, respectively, for all x ∈ V − {x0}. Thus, we have

M+(G) =

{
2

4
,

3

4

}
, M−(G) =

{
1

4

}
,

and

m+(G) =
2

4
, M+(G) =

3

4
, m−(G) = M−(G) =

1

4
.

Thus, we have

m+(G) + M+(G)− 2
√

m+(G)M+(G) = 1−
1 + 2

√
2

4
,

by Theorem A,

infσ(G) ≥ 1−
1 + 2

√
2

4
.

Since G is not bipartite, we do not know the estimation of supσ(G).
We notice here that Proposition 8.4 and its proof in [9] should read as follows: The

Green kernel of the free product Cr ∗Cs with r ≥ s ≥ 3 and r, s odd, is estimated by

GT4 (x̃, ỹ) ≤ G(x, y) ≤ GT3 (x̃ ′, ỹ ′),

for all vertices x, y of G, x̃, ỹ of T4 and x̃ ′, ỹ ′ of T3, with ρ(x, y) = ρ(x̃, ỹ) = ρ(x̃ ′, ỹ ′).

Case 4: r ≥ s ≥ 2, either r even, s odd, or s odd, s even. In this case, m(x) = 4, m+(x) =
3, 2, 2, m−(x) = 1, 2, 1 and m0(x) = 0, 0, 1, respectively.

M+(G) =

{
2

4
,

3

4

}
, M−(G) =

{
1

4
,

2

4

}
,

and

m+(G) =
2

4
, M+(G) =

3

4
, m−(G) =

1

4
, M−(G) =

2

4
.

Thus, we have [m−(G),M−(G)] ∩ [m+(G),M+(G)] = {2/4}, and

m+(G) + M+(G)− 2
√

m+(G)M+(G) = 0.
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