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THE KLOOSTERMAN SUM REVISITED 
BY 

KENNETH S. WILLIAMS 

1. Introduction. Let/? be an odd prime, n an integer not divisible byp and a a 
positive integer. For any integer h with (h,p*)=l,his defined as any solution of the 
congruence hh=l (mod/?*). The Kloosterman sum AvJji) (see for example [4]) is 
defined by 
(1.1) A0*(n) = r exp(27rm(/i+Â)/jp

a), 
h mod pa 

where the dash (') indicates that the letter of summation runs only through a 
reduced residue system with respect to the modulus. When a = l the value of 
Ap(X(ri) is unknown in general but Weil [3] has shown that \Av(ri)\<2p1/2. When 
a > 2 Salie [2] has shown that Apa(n) can be evaluated explicitly. Salie proved 

THEOREM. Let p be an odd prime, n an integer not divisible by p and a an integer 
>2 . Then ( 

ilp*1 cos(47rn/j?a), ifoL is even, 
AP*(ri) = \2(n\ p)p"/2 cos(477w/Jp

a), ifcn is odd and p = 1 (mod 4), 

\—2(n | p)pa/2 sin(477?i/pa), z/a is odd and p = 3 (mod 4). 
The symbol (n | p) denotes the Legendre symbol. 

Salié's proof of his theorem is based upon induction. In a recent paper [5] the 
author has given a modification of this proof which gives a very short direct 
evaluation of A^ri). Another direct proof has been given by Whiteman [4]. 

Although the value of Av(ri) is unknown in general the following transformation 
formula for AJri), namely, 

Ap(n)= 2 ( r 2 - 4 | p)exp(277mr/p) 
r m o d p 

is well-known (see for example [3], [4]). It is easily proved by collecting together 
the terms in (1.1) for which h+h has the same value r. We have 

M")= I X ^p(27Tin(h+h)/p) 
r m o d p ftmodî) 

7H-^r(mod p) 

= 2 exp(27Tinr/p) 2 ' 1 
r m o d p jkmod p 

h-\-Â=r(mod p) 

= 2 exp(27rinr/p) 2 1 

rmodj) „ h mod p 
h-rh+1^0(mod p) 

= 2 exp(27rinr/p){l+(r2-4|p)} 
r mod p 

= 2 0 2 - 4 | p)exp(27nnr/p), 
r mod 35 
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as 

2 exp(27rinr/p) = 0 for n ^ 0 (mod p). 
r mod UP 

In this note we apply this technique to Ap*(n), where a > 2 , obtaining a simple 
proof of Salié's theorem. 

2. Three results. Clearly in applying the above technique to Apa(ri) we will need 
the number of incongruent solutions h modulo pa of h2—rh+1=0 (mod/?a). 
Denoting this number by N^r) it is easily shown that for a > 2 we have 

' l + ( r a - 4 | j > ) , ifr=É ± 2 ( m o d p ) , 

i / / 2 ( l + ( * | P » ( l + ( - l A if r s ± 2 (mod p), 

(2.1) iVpa(r)= { r=É ±2 (modp a ) , 

say r = ±2+pps, where p-fs and 1 < /? < a—1, 

, / a / 2 ] , if r s ±2 (modp a ) . 

Two well-known sums will also be needed. These are the Ramanujan sum (see 

for example [1]) 

(2.2) RAn)= 2 ' cxp(2mnhlpF) = [-1' £ " = \' 
7imod2)a I u> II a ^ Z, 

and the Gauss sum (see for example [4]) 

(2.3) GXn)= I' (h\p),xp(2,inhlp^ = [^p)i{l,~lf/ip112' £« | J' 
ftmodp" lU , II a > 2. 

In each case when a > 2 the result is easily proved by applying the bijection h-^h+p. 

3. Proof of theorem. For a > 2 we have 

AA") = 2 ' exp(2irin(h+h)lp«) = £ exp(27rmr/pa) £ ' 1, 
7imodî)a r m o d î ) a 7i mod pa 

h+h=r(mod pa) 

that is 

(3.1) AAn)= 2 exp(27rmr/pa)iV2)a(r). 
r m o d p a 

By (2.1) the terms in (3.1) with r=£±2 (mod/?) contribute 

(3.2) 2 i = 2 exp(277mr/pa){l+(r2-4|p)}. 
r m o d 2>a 

Setting r=.s + /f/?a~1 in (3.2) we obtain 

(3.3) S x = 2 _, exp(2mHs/ / ){ l+(s 2 -4 |p)} 2 exp(27rînf/p) = 0. 
s m o d / < mod p 

s#±2(modî>) 

By (2.1) the terms in (3.1) with r = ± 2 (modpa) contribute 

(3.4) S2 = pra/21(exp(47rfn/pa)+exp(-47rm/pa)). 
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Noting that Npa(r)=Nva(—r) the terms in (3.1) with r=±2(modp) and r^k 
±2(mod/?a) contribute 

S 3 = 2 {exp(27rmr/jp
a)+exp(-27rfnr/jp

a)}AT3,a(r) 
r mod 2>a 

r=2(mod:p) 
r#2(mod2>a) 

= "I 2 ' {exp(2mn(2+/S)/p«) 

/* even 

+exp(-27nn(2+/s)//)}/ / 2{l+(s | p)} 

= 5 //2{exp(47nn//)(lV-/<n)+GP«-,<n)) 
0=1 

0even 

+exp(-477/M//7a)(V-^(-n) + Gp«-K-n))}, 
giving 

(0, if a even, 

p(a-1)/2{exp(47rm/pa)(-1 +(n | p)^*'*?1*) 

+exp(-477fn/p a)(- l+(~n | p)i (p-1)2 /V / 2)}, if a odd, 

since by (2.2) and (2.3) each Ramanujan and Gauss sum vanishes except when a is 

odd and /?=<x—1. The theorem now follows from (3.3), (3.4) and (3.5) as 
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