THE KLOOSTERMAN SUM REVISITED

BY

KENNETH S. WILLIAMS

1. Introduction. Let p be an odd prime, n an integer not divisible by p and α a positive integer. For any integer h with $\left(h, p^{\alpha}\right)=1, \bar{h}$ is defined as any solution of the congruence $h \bar{h} \equiv 1\left(\bmod p^{\alpha}\right)$. The Kloosterman sum $A_{p \alpha}(n)$ (see for example [4]) is defined by

$$
\begin{equation*}
A_{p^{\alpha}}(n)=\sum_{h \bmod p^{\alpha}}^{\prime} \exp \left(2 \pi \operatorname{in}(h+\bar{h}) / p^{\alpha}\right), \tag{1.1}
\end{equation*}
$$

where the dash (') indicates that the letter of summation runs only through a reduced residue system with respect to the modulus. When $\alpha=1$ the value of $A_{p^{\alpha}}(n)$ is unknown in general but Weil [3] has shown that $\left|A_{p}(n)\right|<2 p^{1 / 2}$. When $\alpha \geq 2$ Salié [2] has shown that $A_{p^{\alpha}}(n)$ can be evaluated explicitly. Salié proved

Theorem. Let p be an odd prime, n an integer not divisible by p and α an integer ≥ 2. Then

$$
A_{p^{\alpha}}(n)= \begin{cases}2 p^{\alpha / 2} \cos \left(4 \pi n / p^{\alpha}\right), & \text { if } \alpha \text { is even, } \\ 2(n \mid p) p^{\alpha / 2} \cos \left(4 \pi n / p^{\alpha}\right), & \text { if } \alpha \text { is odd and } p \equiv 1(\bmod 4), \\ -2(n \mid p) p^{\alpha / 2} \sin \left(4 \pi n / p^{\alpha}\right), & \text { if } \alpha \text { is odd and } p \equiv 3(\bmod 4)\end{cases}
$$

The symbol ($n \mid p$) denotes the Legendre symbol.
Saliés proof of his theorem is based upon induction. In a recent paper [5] the author has given a modification of this proof which gives a very short direct evaluation of $A_{p^{\alpha}}(n)$. Another direct proof has been given by Whiteman [4].

Although the value of $A_{p}(n)$ is unknown in general the following transformation formula for $A_{p}(n)$, namely,

$$
A_{p}(n)=\sum_{r \bmod p}\left(r^{2}-4 \mid p\right) \exp (2 \pi i n r / p)
$$

is well-known (see for example [3], [4]). It is easily proved by collecting together the terms in (1.1) for which $h+\bar{h}$ has the same value r. We have

$$
\begin{aligned}
A_{p}(n) & =\sum_{r \bmod p} \sum_{\substack{h \bmod p \\
h+h=r(\bmod p)}}^{\prime} \exp (2 \pi \operatorname{in}(h+\bar{h}) / p) \\
& =\sum_{r \bmod p} \exp (2 \pi \operatorname{inr} r / p) \sum_{\substack{h \bmod p \\
h+h=r(\bmod p)}}^{\prime} 1 \\
& =\sum_{r \bmod p} \exp (2 \pi \operatorname{inr} / p) \sum_{\substack{h \bmod p \\
h^{2}-r h+\operatorname{mo0}(\bmod p)}} 1 \\
& =\sum_{r \bmod p} \exp (2 \pi \operatorname{inr} / p)\left\{1+\left(r^{2}-4 \mid p\right)\right\} \\
& =\sum_{r \bmod p}\left(r^{2}-4 \mid p\right) \exp (2 \pi \operatorname{inr} / p),
\end{aligned}
$$

Received by the editors July 26, 1971.
as

$$
\sum_{r \bmod p} \exp (2 \pi i n r / p)=0 \quad \text { for } \quad n \not \equiv 0(\bmod p)
$$

In this note we apply this technique to $A_{p^{\alpha}}(n)$, where $\alpha \geq 2$, obtaining a simple proof of Salie's theorem.
2. Three results. Clearly in applying the above technique to $A_{p^{\alpha}}(n)$ we will need the number of incongruent solutions h modulo p^{α} of $h^{2}-r h+1 \equiv 0\left(\bmod p^{\alpha}\right)$. Denoting this number by $N_{p^{\alpha}}(r)$ it is easily shown that for $\alpha \geq 2$ we have

$$
N_{p^{2}}(r)=\left\{\begin{array}{l}
1+\left(r^{2}-4 \mid p\right), \quad \text { if } r \not \equiv \pm 2(\bmod p), \tag{2.1}\\
\frac{1}{2} p^{\beta / 2}(1+(s \mid p))\left(1+(-1)^{\beta}\right), \quad \text { if } r \equiv \pm 2(\bmod p), \\
\quad r \neq \pm 2\left(\bmod p^{\alpha}\right), \\
\text { say } r \equiv \pm 2+p^{\beta} s, \quad \text { where } p \nmid s \quad \text { and } 1 \leq \beta \leq \alpha-1, \\
p^{[\alpha / 2]}, \quad \text { if } r \equiv \pm 2\left(\bmod p^{\alpha}\right) .
\end{array}\right.
$$

Two well-known sums will also be needed. These are the Ramanujan sum (see for example [1])

$$
R_{p^{\alpha}}(n)=\sum_{n \bmod p^{\alpha}}^{\prime} \exp \left(2 \pi i n h / p^{\alpha}\right)=\left\{\begin{align*}
-1, & \text { if } \alpha=1 \tag{2.2}\\
0, & \text { if } \alpha \geq 2
\end{align*}\right.
$$

and the Gauss sum (see for example [4])

$$
G_{p^{\alpha}}(n)=\sum_{h \bmod p^{\alpha}}^{\prime}(h \mid p) \exp \left(2 \pi i n h / p^{\alpha}\right)= \begin{cases}(n \mid p) i^{(p-1)^{2} / 4} p^{1 / 2}, & \text { if } \alpha \geq 1 \tag{2.3}\\ 0, & \text { if } \alpha \geq 2\end{cases}
$$

In each case when $\alpha \geq 2$ the result is easily proved by applying the bijection $h \rightarrow h+p$.
3. Proof of theorem. For $\alpha \geq 2$ we have

$$
A_{p^{\alpha}}(n)=\sum_{h \bmod p^{\alpha}}^{\prime} \exp \left(2 \pi i n(h+\bar{h}) / p^{\alpha}\right)=\sum_{r \bmod p^{\alpha}} \exp \left(2 \pi i n r / p^{\alpha}\right) \sum_{\substack{h \bmod p^{\alpha} \\ h+h=r\left(\bmod p^{\alpha}\right)}}^{\prime} 1,
$$

that is

$$
\begin{equation*}
A_{p^{\alpha}}(n)=\sum_{r \bmod p^{\alpha}} \exp \left(2 \pi i n r / p^{\alpha}\right) N_{p^{\alpha}}(r) . \tag{3.1}
\end{equation*}
$$

By (2.1) the terms in (3.1) with $r \not \equiv \pm 2(\bmod p)$ contribute

$$
\begin{equation*}
\Sigma_{1}=\sum_{r \bmod p^{\alpha}} \exp \left(2 \pi i n r / p^{\alpha}\right)\left\{1+\left(r^{2}-4 \mid p\right)\right\} \tag{3.2}
\end{equation*}
$$

Setting $r=s+t p^{\alpha-1}$ in (3.2) we obtain

$$
\begin{equation*}
\Sigma_{1}=\sum_{\substack{s \bmod p^{\alpha-1} \\ s \neq \pm 2(\bmod p)}} \exp \left(2 \pi i n s / p^{\alpha}\right)\left\{1+\left(s^{2}-4 \mid p\right)\right\} \sum_{t \bmod p} \exp (2 \pi i n t / p)=0 \tag{3.3}
\end{equation*}
$$

By (2.1) the terms in (3.1) with $r \equiv \pm 2\left(\bmod p^{\alpha}\right)$ contribute

$$
\begin{equation*}
\Sigma_{2}=p^{[\alpha / 2]}\left(\exp \left(4 \pi i n / p^{\alpha}\right)+\exp \left(-4 \pi i n / p^{\alpha}\right)\right) \tag{3.4}
\end{equation*}
$$

Noting that $N_{p^{\alpha}}(r)=N_{p^{\alpha}}(-r)$ the terms in (3.1) with $r \equiv \pm 2(\bmod p)$ and $r \not \equiv$ $\pm 2\left(\bmod p^{\alpha}\right)$ contribute

$$
\begin{aligned}
\Sigma_{3}= & \sum_{\substack{r \bmod p^{\alpha} \\
r=2(\bmod p) \\
r \neq\left(\bmod p^{\alpha}\right)}}\left\{\exp \left(2 \pi \operatorname{inr} / p^{\alpha}\right)+\exp \left(-2 \pi i n r / p^{\alpha}\right)\right\} N_{p^{\alpha}}(r) \\
= & \sum_{\substack{\beta=1 \\
\beta=1}}^{\alpha-1} \sum_{\substack{\bmod \\
\operatorname{even}}}^{\prime}\left\{\exp \left(2 \pi \operatorname{in}\left(2+p^{\beta} s\right) / p^{\alpha}\right)\right. \\
& \left.\quad \exp \left(-2 \pi \operatorname{in}\left(2+p^{\beta} s\right) / p^{\alpha}\right)\right\} p^{\beta / 2}\{1+(s \mid p)\} \\
= & \sum_{\substack{\beta=1 \\
\beta=1}}^{\alpha-1} p^{\beta / 2}\left\{\exp \left(4 \pi \operatorname{in} / p^{\alpha}\right)\left(R_{p^{\alpha}}-\beta(n)+G_{p^{\alpha}}-\beta(n)\right)\right. \\
& \left.\quad+\exp \left(-4 \pi \operatorname{in} / p^{\alpha}\right)\left(R_{p^{\alpha-\beta}}(-n)+G_{p^{\alpha-\beta}}(-n)\right)\right\},
\end{aligned}
$$

giving
(3.5) $\quad \Sigma_{3}=\left\{\begin{array}{l}0, \quad \text { if } \alpha \text { even, } \\ p^{(\alpha-1) / 2}\left\{\exp \left(4 \pi \operatorname{in} / p^{\alpha}\right)\left(-1+(n \mid p) i^{(p-1)^{2} / 4} p^{1 / 2}\right)\right. \\ \left.\quad+\exp \left(-4 \pi i n / p^{\alpha}\right)\left(-1+(-n \mid p) i^{(p-1)^{2} / 4} p^{1 / 2}\right)\right\}, \quad \text { if } \alpha \text { odd, },\end{array}\right.$ since by (2.2) and (2.3) each Ramanujan and Gauss sum vanishes except when α is odd and $\beta=\alpha-1$. The theorem now follows from (3.3), (3.4) and (3.5) as

$$
A_{p^{\alpha}}(n)=\Sigma_{1}+\Sigma_{2}+\Sigma_{3} .
$$

References

1. G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, Oxford Univ. Press, London, (1962), p. 237.
2. H. Salié, Uber die Kloostermanschen Summen $S(u, v ; q)$, Math. Z. 34 (1931), 91-109.
3. A. Weil, On some exponential sums, Proc. Nat. Acad. Sci. U.S.A. 34 (1948), 204-207.
4. A. L. Whiteman, A note on Kloosterman sums, Bull. Amer. Math. Soc., 51 (1945), 373-377.
5. K. S. Williams, Note on the Kloosterman sum, Proc. Amer. Math. Soc. 30 (1971), 61-62.

Carleton University, Ottawa, Canada

