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A SIMPLE STOCHASTIC KINETIC
TRANSPORT MODEL
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DERONG KONG,∗ ∗∗∗ Delft University of Technology

Abstract

We introduce a discrete-time microscopic single-particle model for kinetic transport.
The kinetics are modeled by a two-state Markov chain, and the transport is modeled
by deterministic advection plus a random space step. The position of the particle after
n time steps is given by a random sum of space steps, where the size of the sum is
given by a Markov binomial distribution (MBD). We prove that by letting the length
of the time steps and the intensity of the switching between states tend to 0 linearly, we
obtain a random variable S(t), which is closely connected to a well-known (deterministic)
partial differential equation (PDE), reactive transport model from the civil engineering
literature. Our model explains (via bimodality of the MBD) the double peaking behavior
of the concentration of the free part of solutes in the PDE model. Moreover, we show
for instantaneous injection of the solute that the partial densities of the free and adsorbed
parts of the solute at time t do exist, and satisfy the PDEs.
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2010 Mathematics Subject Classification: Primary 60J20
Secondary 60J10

1. Introduction

We consider a mathematical model for the displacement of a solute through a medium which
apart from a constant flow (advection) and a dispersion (diffusion) interacts with the medium
by intermittent adsorption (the kinetics). Our goal is to connect a stochastic single-particle
model to the well-known deterministic model which describes this process by a pair of partial
differential equations (PDEs). In Section 2 we introduce the deterministic reactive transport
model (as in, e.g. [9]) characterized by a pair of PDEs. In Section 3 we give our simple discrete-
time microscopic single-particle stochastic reactive transport model. In Section 4 we calculate
the probability generating functions of the Markov binomial distribution which is described in
Section 3. These are helpful to consider the convergence of our simple discrete-time stochastic
model by letting the time step go to 0. This will be discussed in Section 5. In Section 6 we
show for instantaneous injection of the solute that the partial probability densities of the free
and adsorbed parts of the solute do satisfy the PDEs defined in Section 2. In Section 7 we
compute the means and variances of our stochastic reactive transport model. Actually, our
formula fills a gap in [9]: since the authors erroneously stated that the variances are linear in
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the initial distribution, they gave only the result for two initial distributions. In Section 8 we
study the probability density function of our stochastic reactive transport model. This gives us
a new and more precise point of view at the double peaking behavior in the concentration of
the free part of the solute discussed by Michalak and Kitanidis [9].

2. The PDE reactive transport model

We briefly describe the model used by Michalak and Kitanidis [9] (see [8] for a more extensive
treatment). Given is a solute that has an adsorbed part that does not move, and a free part that
moves in the x-direction by advection and dispersion. Let CF(t, x) and CA(t, x) respectively
denote the concentration functions of the free and the adsorbed parts of the solute at time t at
position x. By applying mass conservation and Fick’s law, we can establish the following pair
of differential equations:

∂CF(t, x)

∂t
+ ∂CA(t, x)

∂t
= D

∂2CF(t, x)

∂x2 − v
∂CF(t, x)

∂x
,

∂CA(t, x)

∂t
= −µCA(t, x)+ λCF(t, x).

(2.1)

Here D is called the dispersion coefficient and v the advection velocity. The parameters λ and
µ respectively denote the rates of changes from free to adsorbed and from adsorbed to free.
The initial and boundary conditions are given by

Cτ (0, x) = ντ δ(x), lim
x→∞Cτ (t, x) = lim

x→∞
∂Cτ (t, x)

∂x
= 0 for t ≥ 0, τ ∈ {F,A},

where (νF, νA) is a probability vector and δ the Dirac delta function.

3. A simple stochastic reactive transport model

We describe the behavior of a single particle in the solute. Time t is discretized by choosing
some n, and dividing [0, t] into n intervals of the same length: �t = t/n.We suppose in such
an interval of length �t that the particle can be in only one of two states, ‘free’ or ‘adsorbed’,
which we code by the letters F and A. The particle can move only when it is ‘free’, and in this
case its displacement has two components, dispersion and advection. Let Xk, k ≥ 1, be the
displacement of the particle due to the dispersion the kth time that it is ‘free’. We model the
Xk as independent, identically distributed random variables satisfying

Eν[Xk] = 0, Eν[X2
k ] = 2D�t, and Eν[X3

k ] = o(�t) as �t ↓ 0, (3.1)

where D > 0 and ν = (νF, νA) is the initial distribution describing the state of the particle
at time 0. When the particle is free during the interval [(k − 1)�t, k�t] for some k, the
displacement due to advection is given by v�t with v the (deterministic) advection velocity.

In order to model the kinetics, let {Yk, k ≥ 1} be a process taking values in {F,A} (we will
make a choice for {Yk} below), and let

Kn =
n∑
k=1

1{Yk=F}

be the occupation time of the process {Yk} in state F up to time n.
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Now let Sn(t) be the position of the particle at time t = n�t , where Sn(0) = 0. Then by
the above we can write Sn(t) as

Sn(t) =
Kn∑
k=1

(Xk + v�t).

Here we assume that Kn is independent of the dispersion Xk, k = 1, . . . , Kn.
We want to compare our stochastic model with the PDE model of Michalak and Kitanidis

from Section 2. Since these authors considered the solute with given states (‘free’or ‘adsorbed’)
at time t , we need to consider the conditional random variables SF

n (t) and SA
n (t), i.e. the position

of the particle at time t given that it is ‘free’ and ‘adsorbed’, respectively, at time t = n�t .
Let Kτ

n be the random variable Kn conditioned on Yn = τ with τ ∈ {F,A}, i.e. Kτ
n counts the

number of intervals [(k − 1)�t, k�t], 1 ≤ k ≤ n, where the particle is free, conditioned on
the particle being in state τ in [t −�t, t]. Then Sτn(t) can be written as

Sτn(t) =
Kτn∑
k=1

(Xk + v�t).

The distributions ofKn andKτ
n are determined by the process {Yk}. We take for {Yk, k ≥ 1}

a Markov chain on the two states {F,A} with initial distribution ν = (νF, νA) and transition
matrix

P =
[
P(F,F) P (F,A)
P (A,F) P (A,A)

]
=

[
1 − a a

b 1 − b

]
,

where we assume that 0 < a, b < 1. The distribution of Kn is then well known, and is called
a Markov binomial distribution (MBD) (see, e.g. [4] and [10]).

Clearly, the stationary distribution (πF, πA) of the Markov chain {Yk, k ≥ 1} is given by
πF = b/(a + b) and πA = a/(a + b). It is useful to consider the excentricities εF and εA of
an initial distribution ν given by

ετ := ετ (ν) = 1 − ντ

πτ
for τ ∈ {F,A}.

We can then write Pν(Yk = τ) = πτ (1 − ετ γ
k−1) for k ≥ 1, where γ = 1 − a − b is the

smallest eigenvalue of P (see also [4] for the computations).

4. Probability generating functions of Kn, KF
n , and KA

n

Given n ≥ 1, let fn be the probability mass function of Kn, i.e.

fn(j) = Pν(Kn = j).

In particular, fn(j) = 0 if j < 0 or j > n. Straightforward computations as in [4] or [12] yield

fn+2(j + 1) = (1 − b)fn+1(j + 1)+ (1 − a)fn+1(j)− (1 − a − b)fn(j)

with initial conditions

f1(0) = νA, f1(1) = νF,

f2(0) = νA(1 − b), f2(1) = νAb + νFa, f2(2) = νF(1 − a).
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Let Gn be the probability generating function of Kn, i.e.

Gn(s) = Eν[sKn ] =
n∑
j=0

fn(j)s
j .

It follows from the above recursion equation for fn that

Gn+2(s) = ((1 − a)s + (1 − b))Gn+1(s)− (1 − a − b)sGn(s)

with initial conditions

G1(s) = νA + νFs, G2(s) = νA(1 − b)+ (νAb + νFa)s + νF(1 − a)s2.

By solving the difference equation ofGn with these initial conditions we obtain the probability
generating function of Kn (see also [12]):

Gn(s) = gn(α1(s), α2(s))+ gn(α2(s), α1(s)). (4.1)

Here

gn(x, y) = νA(1 − y + b(s − 1))+ νFs(a − y + s(1 − a))

x − y
xn−1,

and
α1(s) = 1

2

(
(1 − a)s + (1 − b)+

√
((1 − a)s − (1 − b))2 + 4abs

)
,

α2(s) = 1
2

(
(1 − a)s + (1 − b)−

√
((1 − a)s − (1 − b))2 + 4abs

)
.

(4.2)

We now consider the probability generating function of Kτ
n for τ ∈ {F,A}. Given n ≥ 1,

let f τn be the probability mass function of Kτ
n , i.e.

f τn (j) = Pν(K
τ
n = j) = Pν(Kn = j | Yn = τ).

In order to deal with f τn , it is simpler to deal with the partial probability mass functions

f̂ τn (j) = Pν(Kn = j, Yn = τ) = f τn (j)Pν(Yn = τ),

since these satisfy the same recursion equation as fn. Therefore,Gτn, the probability generating
function ofKτ

n , can be obtained similarly toGn by using the appropriate initial conditions (see
also [12]). We find that

Gτn(s) =
n∑
j=1

f τn (j)s
j = gτn(α1(s), α2(s))+ gτn(α2(s), α1(s)) for τ ∈ {F,A}, (4.3)

where

gF
n(x, y) = νAb − νFy + νF(1 − a)s

(x − y)πF(1 − εFγ n−1)
sxn−1,

gA
n (x, y) = νA(1 − b)+ νFas − νAy

(x − y)πA(1 − εAγ n−1)
xn−1.
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5. Towards continuous time

To get closer to the PDE model in Section 2, we have to fix t = n�t > 0 and then let the
time step �t tend to 0, or, equivalently, let n → ∞. We consider the rates of changes λ and
µ from Section 2. Since the probability that a particle changes its state is proportional to the
length of the time step �t (if �t is small), we should put

a = λ�t = λt

n
, b = µ�t = µt

n
(5.1)

in the transition matrix P in Section 3. Consider the characteristic function of Sn(t),

ϕt,n(u) = Eν[eiuSn(t)] = Eν

[
exp

(
iu

Kn∑
k=1

(Xk + v�t)

)]
= Gn(Eν[eiu(X1+v�t)]),

whereGn is the generating function ofKn given in (4.1). Since t is always assumed to be fixed,
we obtain, by (3.1) (cf. [2]),

Eν[eiu(X1+v�t)] = 1 + iuEν[X1 + v�t] − u2

2
Eν[(X1 + v�t)2] + o

(
1

n

)

= 1 + tu(iv −Du)

n
+ o

(
1

n

)
. (5.2)

Substituting (5.1) and (5.2) into (4.2), and letting n go to ∞, we obtain

lim
n→∞α1(Eν[eiu(X1+v�t)])n = eθ1(u)t , lim

n→∞α2(Eν[eiu(X1+v�t)])n = eθ2(u)t ,

where

θ1(u) := 1
2

(−Du2 + ivu− λ− µ+
√
(Du2 − ivu+ λ− µ)2 + 4λµ

)
,

θ2(u) := 1
2

( −Du2 + ivu− λ− µ−
√
(Du2 − ivu+ λ− µ)2 + 4λµ

)
.

(5.3)

Here we chose the complex square root of (Du2 − ivu+λ−µ)2 + 4λµwith positive real part.
So, by substituting (5.1) and (5.2) into (4.1) we find that the limit of the characteristic functions
ϕt,n of Sn(t) is a function ϕt given by

ϕt (u) = ψt(θ1(u), θ2(u))+ ψt(θ2(u), θ1(u)), (5.4)

where

ψt(x, y) = νF(x + λ+ µ)− νAy

x − y
ext .

Since ϕt is continuous at u = 0, there exists a random variable, which we call S(t), such that,
as n → ∞,

Sn(t) → S(t) in distribution.

Similarly, for Sτn(t), τ ∈ {F,A}, we consider its characteristic function

ϕτt,n(u) = Eν[eiuSτn (t)] = Gτn(Eν[eiu(X1+v�t)]),
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where Gτn is the probability generating function of Kτ
n given in (4.3). Substituting (5.1) and

(5.2) into (4.3), and letting n go to ∞, we find that the limit of the characteristic functions ϕτt,n
of Sτn(t) is a function ϕτt given by

ϕτt (u) = ψτt (θ1(u), θ2(u))+ ψτt (θ2(u), θ1(u)) for τ ∈ {F,A}, (5.5)

where

ψF
t (x, y) = νFx + µ

(x − y)πF(1 − εFA(t))
ext , ψA

t (x, y) = νFλ− νA(y + µ)

(x − y)πA(1 − εAA(t))
ext ,

with A(t) = exp (−(λ+ µ)t). Here we point out that the stationary distribution (πF, πA) and
the excentricities εF and εA do not depend on the time step �t . Again, there exists a random
variable, which we call Sτ (t), such that, as n → ∞,

Sτn (t) → Sτ (t) in distribution.

6. Densities and PDEs

We will show in this section that, for instantaneous injection of the solute, i.e. with initial
distribution ν = (1, 0), the partial probability density functions f̂ F

S (t, x) and f̂ A
S (t, x) of SF(t)

and SA(t) do satisfy the PDEs in (2.1).
Let f τS (t, x) denote the probability density function of Sτ (t) for τ ∈ {F,A}. Note that the

probability of a particle being in state τ at time t is given by

lim
n→∞ Pν(Yn = τ) = lim

n→∞πτ (1 − ετ γ
n−1) = πτ (1 − ετA(t)).

We define the partial probability density functions of Sτ (t) by

f̂ τS (t, x) = πτ (1 − ετA(t))f
τ
S (t, x). (6.1)

Lemma 6.1. Let θ1(u) and θ2(u) be defined as in (5.3). Then

lim
u→∞ θ1(u)u

2 = λµ

D
, lim

u→∞
θ2(u)

u2 = −D.
Proof. It is straightforward to check these formulae.

Lemma 6.2. The probability density function f F
S (t, ·) of SF(t) can be written as

f F
S (t, x) = 1

2π

∫
e−iuxϕF

t (u) du,

where ϕF
t is the characteristic function of SF(t) given in (5.5).

Proof. We need to only show that ϕF
t is integrable. Obviously, ϕF

t is a continuous function.
So it suffices to show that

∫
|u|>M |ϕF

t (u)| du < ∞ for some M > 0. From Lemma 6.1 and
(5.5), it follows that, for all large |u|,

|ϕF
t (u)| ≤

∣∣∣∣ (νFθ1(u)+ µ)eθ1(u)t

(θ1(u)− θ2(u))πF(1 − εFA(t))

∣∣∣∣ +
∣∣∣∣ (νFθ2(u)+ µ)eθ2(u)t

(θ2(u)− θ1(u))πF(1 − εFA(t))

∣∣∣∣
≤ C1

u2 + C2e−Dtu2/2,

where C1 and C2 are constants independent of u. This completes the proof.
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Surprisingly, Lemma 6.2 does not hold for SA(t), but we still have the following result.

Lemma 6.3. The distribution µA of the random variable SA(t) can be written as

µA = κδ0 + (1 − κ)µ̃A,

where κ = νAe−µt/(πA(1 − εAA(t))) and µ̃A is the distribution of a continuous random
variable having probability density function

f A
S (t, x) = 1

2π(1 − κ)

∫
e−iux(ϕA

t (u)− κ) du,

with ϕA
t the characteristic function of SA(t) defined in (5.5).

Proof. It follows from Lemma 6.1 and (5.5) that, for all large |u|,

|ϕA
t (u)− κ| ≤ C1

1

u2 + C2e−Dtu2/2,

where C1 and C2 are constants. So the integrand in the lemma is integrable.
Without loss of generality, we may suppose that νA > 0, so κ > 0. Using the above

inequality, we obtain

lim
T→∞

∣∣∣∣ 1

2T

∫ T

−T
ϕA
t (u) du− κ

∣∣∣∣ = lim
T→∞

1

2T

∣∣∣∣
∫ T

−T
(ϕA
t (u)− κ) du

∣∣∣∣ = 0.

This implies that the point 0 is an atom ofµA, and that it is unique follows by using the uniform
boundedness of ϕA

t (u) (see [2, p. 306]).

It follows from Lemma 6.3 that SA(t) is a continuous random variable if and only if ν =
(1, 0), i.e. for instantaneous injection of the solute.

Theorem 6.1. The partial probability density functions f̂ τS of Sτ (t) for τ ∈ {F,A} satisfy the
PDEs in (2.1) for t > 0, i.e.

∂f̂ F
S (t, x)

∂t
+ ∂f̂ A

S (t, x)

∂t
= D

∂2f̂ F
S (t, x)

∂x2 − v
∂f̂ F

S (t, x)

∂x
,

∂f̂ A
S (t, x)

∂t
= −µf̂ A

S (t, x)+ λf̂ F
S (t, x),

with initial and boundary conditions

f̂ F
S (0, x) := δ(x), f̂ A

S (0, x) := 0,

lim
x→∞ f̂

τ
S (t, x) = lim

x→∞
∂f̂ τS (t, x)

∂x
= 0 for t ≥ 0, τ ∈ {F,A}.

Proof. The initial conditions imply that ν = (1, 0). It follows from Lemmas 6.2 and 6.3
and (6.1) that, for τ ∈ {F,A},

f̂ τS (t, x) = 1

2π

∫
e−iuxϕ̂τt (u) du,

where ϕ̂τt (u) = πτ (1 − ετA(t))ϕ
τ
t (u) with ϕτt the characteristic functions of Sτ (t) given in

(5.5). It is easy to see that f̂ F
S and f̂ A

S satisfy the initial and boundary conditions.
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Using Lemma 6.1, it is not hard to check that the partial derivatives of e−iuxϕ̂τt (u)with respect
to x and with respect to t are all bounded by a function of the form C1/u

2 + C2e−Dtu2/2 for
large |u|, where C1 and C2 are constants independent of u. Thus, we can exchange the integral
and differential operators in the PDEs (cf. [5, p. 417]). Hence, to complete the proof, we need
to only show that

∂ϕ̂F
t (u)

∂t
= −Du2ϕ̂F

t (u)+ ivuϕ̂F
t (u)− λϕ̂F

t (u)+ µϕ̂A
t (u),

∂ϕ̂A
t (u)

∂t
= −µϕ̂A

t (u)+ λϕ̂F
t (u).

These can be checked by using (5.5), νA = 0, and the easily verified equality (θ1(u)+µ)(θ2(u)+
µ) = −λµ.

We would like to point out that Lindstrom and Narasimhan [8] gave an analytical solution of
the PDEs with different initial and boundary conditions by using Laplace and inverse Laplace
transforms. Their method can also be used with our initial and boundary conditions to give the
same densities as we have obtained via our stochastic model as in Theorem 6.1.

7. Moments of S(t), SF(t), and SA(t)

The mean and variance of S(t) and Sτ (t), τ ∈ {F,A}, can be obtained by differentiating
their characteristic functions in (5.4) and (5.5), or, more leisurely, by taking the limits of
Eν[Sn(t)], varν(Sn(t)), Eν[Sτn(t)], and varν(Sτn(t)), respectively. These are allowed (see, e.g.
[2, Theorem 25.12]) by the easily proved uniform integrability of Sn(t), (Sn(t))2, Sτn (t), and
(Sτn(t))

2, which is implied by the uniform boundedness of (Sn(t))3 and (Sτn(t))
3.

Since Xk is independent of Kn, from (4) and Proposition 2.1 of [4] together with (3.1),
we can determine the first and second moments of Sn(t). The following proposition can be
obtained by substituting (5.1) into the moments of Sn(t) and letting n → ∞.

Proposition 7.1. The mean and variance of S(t) are given by

Eν[S(t)] = πFvt − εFπF

λ+ µ
v(1 − A(t))

and

varν(S(t)) = 2DπFt − 2DεFπF

λ+ µ
(1 − A(t))+ 2(πA + εF(πA − πF)A(t))

λ+ µ
πFv

2t

+ εF(πF − πA)− 2πA − εF(πA − νF)

(λ+ µ)2
πFv

2

+ A(t)

(
2
πA + εF(πA − νF)

(λ+ µ)2
− A(t)

πFε
2
F

(λ+ µ)2

)
πFv

2. (7.1)

If we start in the stationary distribution, i.e. ν = (πF, πA), then εF = εA = 0. Substituting
πF = µ/(λ+ µ), πA = λ/(λ+ µ), and A(t) = exp (−(λ+ µ)t) into (7.1), we obtain

varν(S(t)) = 2Dµ

λ+ µ
t + 2µλ

(λ+ µ)3
v2t − 2µλ

(λ+ µ)4
v2(1 − exp (−(λ+ µ)t)).

We then recover a (more general and more detailed) version of the main result of Gut and
Ahlberg [6, p. 251].
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In a similar way as for Proposition 7.1, the mean and variance of SF
n (t) can be obtained by

using (5) and Proposition 3.1 of [4] together with (3.1). Substituting (5.1) into the moments of
SF
n (t) and letting n → ∞, we obtain the following result.

Proposition 7.2. The mean and variance of SF(t) are given by

Eν[SF(t)] = πF − εFπAA(t)

1 − εFA(t)
vt + (πA − εFπF)(1 − A(t))

(λ+ µ)(1 − εFA(t))
v

and

varν(S
F(t)) = πF − εFπAA(t)

1 − εFA(t)
2Dt + πA − εFπF

(λ+ µ)(1 − εFA(t))
2D(1 − A(t))

+ π2
F − εFπ

2
AA(t)

1 − εFA(t)
v2t2 − 2

εFπ
2
F + π2

AA(t)− 2πAπF(1 + εFA(t))

(λ+ µ)(1 − εFA(t))
v2t

−
(
πF − εFπAA(t)

1 − εFA(t)
t + πA − εFπF

(λ+ µ)(1 − εFA(t))
(1 − A(t))

)2

v2

+ 2(1 − A(t))
εFπ

2
F + π2

A − 2πAπF(1 + εF)

(λ+ µ)2(1 − εFA(t))
v2. (7.2)

Now, we will use our model to illustrate a mistake made by Michalak and Kitanidis [9].
They did not directly use λ and µ, but rather considered a distribution coefficient Kd and a
mass transfer coefficient k, which are given by

λ = βk = ρKd

η
k, µ = k.

If we let the solute be ‘free’ at time 0, i.e. the initial distribution is ν = (1, 0), then

εF = − λ

µ
= −β, πF = µ

λ+ µ
= 1

β + 1
, πA = λ

λ+ µ
= β

β + 1
.

Substituting these parameters into (7.2) yields

varF(S
F(t)) = t2A(t)v2β(β − 1)2

(β + 1)2(1 + βA(t))2
+ t

(
2D

β + 1
+ 2v2β

k(β + 1)3

)
+ 4Dβ(1 − A(t))

k(1 + βA(t))(β + 1)2

+ tA(t)

(
4v2β(−β2A(t)− β2 − β + 1)

k(1 + βA(t))2(β + 1)3
+ 2D(β − 1)

(β + 1)(1 + βA(t))

)

+ 2v2β(1 − A(t))(3β2A(t)− 3 − β(A(t)⊕ 1))

k2(1 + βA(t))2(β + 1)4
,

where varF(S
F(t)) := var(1,0)(SF(t)) and A(t) = exp (−(λ+ µ)t) = exp (−(β + 1)kt).

Indeed, this gives the formula in [9, p. 2136] (the ‘⊕’ is ‘+’ in [9], but should be ‘−’).
Michalak and Kitanidis stated in their paper that varν(Sτ (t)) can be obtained by a linear

combination of varF(S
τ (t)) and varA(S

τ (t)) (i.e. varν(Sτ (t)) with initial distributions ν =
(1, 0) and ν = (0, 1)). This is not true, and we provide the correct formula for the free case in
Proposition 7.2. The formula for the adsorbed case can be obtained in a similar way.
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8. Double-peak behavior in reactive transport models

Double peaks in the ‘free’ concentration distribution CF are discussed by Michalak and
Kitanidis [9] using simulations. Theorem 6.1 tells us that CF(t, ·) can be seen as the partial
probability density function f̂ F

S (t, ·) of SF(t) if the initial distribution ν = (1, 0). We will
show in this section how double peaks can also be mathematically explained by means of our
stochastic reactive transport model. Let f F

Sn
(t, ·) be the probability density function of SF

n (t)

defined in Section 3. We are going to approximate f F
S (t, ·) by f F

Sn
(t, ·) since SF

n (t) converges
to SF(t) in distribution.

Michalak and Kitanidis considered Gaussian diffusion, i.e. theXks are normally distributed
random variables with mean 0 and variance 2D�t , which satisfy (3.1). So the characteristic
function of SF

n (t) can be written as

ϕF
t,n(u) = Eν[eiuSF

n (t)] = GF
n(Eν[eiu(X1+v�t)]) =

n∑
j=0

f F
n (j) exp (iv�tju−D�tju2),

where f F
n is the probability mass function of KF

n . Obviously,
∫ ∞
−∞ |ϕF

t,n(u)|du < ∞. Thus, by
the inverse Fourier transformation, using the fact that f F

n (0) = 0, we obtain

f F
Sn
(t, x) = 1

2π

∫ ∞

−∞
e−iuxϕF

t,n(u) du =
n∑
j=1

f F
n (j)√

4πjD�t
exp

(
− (x − jv�t)2

4jD�t

)
. (8.1)

So SF
n (t) is a mixture of Gaussian distributions with mean jv�t and variance 2jD�t . Recall

from [4] that the probability mass function f F
n ofKF

n can be unimodal or bimodal. This property
of KF

n gives rise to the same phenomenon for SF
n (t), i.e. one peak or two peaks appear in the

probability density function f F
Sn
(t, x) of SF

n = SF
n (t) for large n.

Michalak and Kitanidis focused on the case in which the solute is initially in the free phase
and evenly distributed over an interval of length L, i.e. the initial conditions of the PDEs in
(2.1) are given by

CF(0, x) = 1

L
1[0,L](x), CA(0, x) = 0.

So, to make the comparison, we look at the probability density function f F
S̃n
(t, x) of

S̃F
n (t) = SF

n (t)+ UL,

where UL is a uniformly distributed random variable over the interval [0, L]. Michalak and
Kitanidis pointed out that the double peaking behavior of the free concentration distribution is
a function of the so-called Damköhler number of the first kind, DaI = µLR/v, where R is the
dimensionless retardation coefficient. They stated that the timing of its appearance is controlled
by the mass transfer rate and the retardation factor, i.e. the dimensionless time t∗ = µ(R− 1)t .
The so-called Péclet number Pe = vL/D is kept constant at a value of 100. We translate these
parameters into our paper as follows:

a = t∗

n
, b = t∗

n(R − 1)
, D = vL

Pe
, �t = t

n
= t∗LR
nv(R − 1)DaI

.

The left-hand graphs in Figure 1 are a copy of the graphs of the normalized aqueous
concentration functions CF(t, ·)/maxx CF(t, x) (consisting of the free particles) in Michalak
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Figure 1: The left-hand graphs are the normalized concentration functions CF(t, ·)/maxx CF(t, x)

copied from Michalak and Kitanidis [9]. The right-hand graphs are the normalized probability density
functions f F

S̃400
(t, ·)/maxx f F

S̃400
(t, x) given in our paper. All graphs have Pe = 100, v = L = 1, and

R = 2, with DaI = 0.1 and t∗ = 3.6 (top row), DaI = 0.33 and t∗ = 3.2 (middle row), and DaI = 1.0
and t∗ = 3.0 (bottom row).

and Kitanidis [9] using simulations corresponding to different choices of the Damköhler number
DaI and dimensionless time t∗. The right-hand graphs in Figure 1 are the normalized density
functions f F

S̃400
(t, ·)/maxx f F

S̃400
(t, x) calculated using (8.1), and the same choices of DaI

and t∗. The number n is chosen large enough such that max (a, b) = max (λ�t, µ�t) ≤ 0.01.
From Figure 1, it is obvious that our model gives a much better view at the double peaking
phenomenon.

Moreover, for each t∗, by a numerical calculation we can obtain upper bounds for DaI such
that double peaks appear (see Table 1). For example, when t∗ = 2.0, two peaks occur for
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Table 1: R = 2,Pe = 100, v = 1, L = 1, n = 400.

t∗ 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 6.0 7.0 8.0 9.0 10.0
Damax

I 0.12 0.43 1.45 1.42 0.73 0.45 0.30 0.21 0.11 0.07 0.04 0.02 0.02

all DaI > 0 until DaI = Damax
I = 0.43. Table 1 suggests that double peaking is pronounced

for 2 ≤ t∗ ≤ 5, and almost dies out when t∗ < 1.5 or t∗ > 10.

9. Final remarks

We emphasize that the so-called ‘random walk method’ or ‘particle tracking method’ first
proposed by Kinzelbach [7] has a relation to our model, but has typically been used as a
simulation tool to perform numerical experiments (for a recent example, see [1]). In fact, it
was shown in [11] for the first time that if one takes an appropriate limit (in a similar way as in
[3]), then the Fokker–Planck equations of an extended version of our simple model to a Markov
chain, which also involves discrete steps in space, yield the partial differential equations in (2.1).

Finally, we remark that if we consider a continuous-time model, with displacement modeled
by Brownian motion with drift v, and kinetics induced by the natural continuous-time 2 × 2
Markov chain with rates λ andµ, then we can show that the same random variables S(t), SF(t),

and SA(t) are obtained.
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