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ON THE SUM OF POWERS OF THE DEGREES OF GRAPHS
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Abstract

For positive integers p and ¢, let G, be a class of graphs such that |[E(G)| < p|V(G)| — g for every
G € G4 In this paper, we consider the sum of the kth powers of the degrees of the vertices of a graph
G €G,, with A(G) > 2p. We obtain an upper bound for this sum that is linear in A"!. These graphs
include the planar, 1-planar, z-degenerate, outerplanar, and series-parallel graphs.
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1. Introduction

All graphs considered in this paper are simple, finite and undirected. For a graph G,
by V(G), E(G), A(G) and 6(G) we denote the vertex set, the edge set, the maximum
degree and the minimum degree of G, respectively. For convenience, we setn = |V(G)),
m = |E(G)|, A =A(G) and ¢ = 6(G) throughout this paper. For a vertex v € V(G), let
Ng(v) be the set of neighbours of v in G and let dg(v) = |[Ng(v)| be the degree of v
in G. For a positive integer k, the sum of the kth powers of the degrees of the vertices
of G, denoted by >4(G), is the value of } ey d’é(v). For other undefined notation
and terminology we refer the reader to [4].

In this paper, we consider the sum of the kth powers of the degrees of the vertices
of certain classes of graphs. First of all, it is trivial that }};(G) = 2m for every graph G.
For k > 2, de Caen [2] proved that

> G < m(nszl tn— 2).

This bound was generalised to hypergraphs by Bey [1] and improved to
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by Das [8]. De Caen’s inequality was also used by Li and Pan [7] to provide an upper
bound on the largest eigenvalue of the Laplacian of a graph. In [9], Cioab4 generalised
Das’ bound to

ELH()<_{§:«n+m—1my_y)

Now we restrict G to be a planar graph, that is, a graph that can be drawn in the
plane so that there are no crossed edges. Harant et al. [5] proved that

6 — OA* + (A — 6)5 12 12
Zk(G)S( A+ ( ) (n— ) &k (1)

A-¢ 6-06/ 6-90

if A(G) > 6.

The aim of this paper is to extend this inequality to a larger class. For our purpose,
we define G, , to be a class of graphs such that |E(G)| < p|lV(G)| — g forevery G € G, 4,
where p and g are positive integers. The following theorem is the main result.

Tueorewm 1.1. For every simple graph G € G, ; with A(G) > 2p,

5~

_ S\Ak _ k
Z G) < 2p —9)A* + (A -2p)S (n— 2q )+ 2q
k A-6 2p—-96/ 2p-96

It is easy to check that Theorem 1.1 (with p =3 and ¢ = 6) implies (1). Moreover,
the implicit condition A(G) > 2p in Theorem 1.1 is necessary. This is because there
exists a (2p — 1)-regular graph G with order at least 4 such that e < p(n — 2), where
e = |E(G)|; thus the kth powers of the degrees of the vertices of G are exactly Afn.
However, the leading coefficient of 7 in Theorem 1.1 is at most (2p — §)AF! + o(AF1).

A graph is 1-planar if it can be drawn in the plane so that each edge is crossed by
at most one other edge. Pach and Téth [6] proved that a simple 1-planar graph on n
vertices has at most 4n — 8 edges. This immediately yields a corollary of Theorem 1.1.

CoroLLARY 1.2. For every simple 1-planar graph G with A > 8,

Zk(G)S(S—cS)Ak+(A—8)6k(n_ 16 )+ 16

5~
A-06 8—-6) 8-6

Since every 7-regular 1-planar graph (for the existence of such a graph, see [3]) has
>+(G) = Afn, but the coefficient of n in Corollary 1.2 is at most (8 — §)AF™! + o(AF1),
the lower bound 8 for A in Corollary 1.2 is necessary.

A graph G is t-degenerate if 6(H) < t for every H C G. If G is a t-degenerate graph,
then G := G can be reduced to the null graph by the following steps.

Stepi (1 <i<n-—-1f) Remove a vertex of degree at most ¢ from G;, and
denote the resulting graph by G, ;.
Stepn—t+ 1 Remove all the vertices of G,,_1.
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In each of the first n — ¢ steps, at most ¢ edges are removed, and in the last step (note
that G,,_,+1, which has 7 vertices, may be a complete graph), at most #(z — 1)/2 edges
are removed. Therefore,

Ht-1) t(t+1)
|[EG)| < (VG| — 1) + = Hv(G)| - 7
Setting p =t and g =#(¢ + 1)/2 in Theorem 1.1, we immediately have the following

corollary.
CoroLLARY 1.3. For every simple t-degenerate graph G with A > 2t,

(2t = 8)AF + (A - 20)6* P+t P+t

2,0 Ao ("= 35)* g

A graph is series-parallel if it may be turned into K, by a sequence of the following

operations: (a) replacement of a pair of parallel edges with a single edge that connects

their common endpoints, (b) replacement of a pair of edges incident to a vertex of

degree two with a single edge. By this definition, one can see that every series-parallel

graph is 2-degenerate and contains at least two vertices of degree at most 2. Let G be

a series-parallel graph. If A = 3, then it is easy to verify that ,(G) < 2! + (n — 2)3*.

If A >4, then we can obtain an upper bound for the kth powers of the degrees of the

vertices of G as in Corollary 1.3 by setting 7 = 2 there. Combining these two cases, we
have the following corollary.

CoroLLARY 1.4. For every simple series-parallel graph G with A > 3,
(4—6)A"+(A—4)6"( 6 ) 6
< - .
2,0= A=5 ) Tl
Since outerplanar graphs are 2-degenerate, the bound in Corollary 1.4 also applies
to outerplanar graphs with A > 4.

2. Proof of Theorem 1.1

Since A(G) > 2p, and G € G, yields that 6 <2p — 1 <2p, we have 1 <6 <A. Itis
easy to see that Theorem 1.1 holds for k = 1. Thus in the following we let k > 2.

By n; we denote the number of vertices of degree i of a graph G. It holds trivially
that ) 5.;<a 1; = n. Since G has at most pn — g edges, > s<;<a in; < 2pn — 2q. Consider
the following program .

. &
max : f(x(g,...,xA)=ZIx,-
S<i<A

such that Z X, =n,

S<i<A
Z ix; <2pn—2q,
S<i<A
x;i>20(x;real,i=0,...,A).
Let (xs, . . ., xa) be an optimal solution of P. It follows that } . (G) < f(xs, . . ., Xp)-
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Cram 2.1. If A>2p + 2, then x; =0 for2p + 1 <i<A-1.

To prove the claim, assume that x; > 0 for some i€ 2p+1,..., A~ 1. Lety; = x;
for jefo,...,A=11\{i,2p}, yi=0, y2p, =x2p + (1 = 2p —i)/(2p — A))x; and yp =
XA+ (2p—0)/2p—A)xi. Then Xscjcnyj=n, Xs<jen Jyj<2pn—2q, y; >0 for
j=90,...,Aand

2p—i 2p—i
FOr e s ya) = (g x0) = (—ik + Zli’—_gAk + (1 - ;—_g)(Zp)k)xi

)
= (@ -+ S @ - ep)n
= (1= 2p)(@p)" + @p) A+ -+ 2pA 4 AT

— 2+ i+ 2P+ )
>0

for k > 2, a contradiction.
Coamnm 2.2, If 6 <2p—2,then x;=0ford+1<i<2p-1.

Assume that x; >0 for an ie{6+1,...,2p—1}. Let y;=x; for je{d+1,
- AN 2p), i = 0, y5 = x5 + ((2p = 1)/ (2p = ) x; and

Then Y5<jcn ¥j =1, Xs<jen Jyj <2pn—2q,y;=0for j=6,...,Aand

2p—i 2p—i
G- va) = F s xXp) = (—ik + %5" + (1 - %)(@f)xi

_ k_ ok 2p—i k N
= (@t~ + S50t~ @p)

=Q2p - +p) i+ 2pi2 + Y
- (@p) +@p) T+ +2ps T+ )

>0
for k > 2, a contradiction.
Cram 2.3. If A>2p + 1, then, among x5, . . . , Xa, only Xs, X2, and x5 may be nonzero;
if A=2p, then, among x;, . . ., xa, only x5 and x5 may be nonzero.

We only prove the first part of this claim, since the proof of the second part is similar.
Recall that 6 <2p— 1. If A>2p +2 and 6 <2p — 2, then by Claims 2.1 and 2.2, we
have x;=0forie{6+1,...,A - 1}\{2p}, and this claim holds. If 2p <A <2p+1
and 6 <2p — 2, then by Claim 2.2, x; =0 for 6 + 1 <i<2p -1, so only xs, xp, and
xa may be nonzero. If A>2p+2 and § =2p — 1, then by Claim 2.1, x; =0 for
2p+1<i<A-1,soonly x5, x5, and x5 may be nonzero. If 2p <A<2p+1 and
0 =2p — 1, then this claim follows trivially.
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We come back to the proof of Theorem 1.1. If A > 2p + 1, then by Claim 2.3 and the
restrictions of $, we obtain that x5 + xp, + xo = n and dx5 + 2px, + Axp < 2pn —2g,
which imply that 2p — d)xs > 2q + (A — 2p)x, and

2q A-¢

Xpp =N —Xsg—XASNH— ——— —
2 oA 2p-6 2p-0o

XA

Furthermore, since
2p-0)xa=Q2p—-06n—2p—-06)xs — (2p —6)xzp
and
(A=2p)xa <(2p = 6)xs =29 =2p = 6)n— 2p — 6)xa — 2p = 6)x2p — 2q,
we have
(A=8)xa<@2p—6)n—(2p —8)xzp — 2q.
It follows that xp < ((2p — &)n — (2p — 8)x2, — 2¢9)/(A - 6) and
f(xsy ..., xp) = 6kx5 + (2p)k)C2,7 + AkxA
= 6" (n — x2p — xa) + 2p)x2p + A*xp
= &n + (2p)* = ")xap + (A* = 6)xp

2q A6
<&n+ (2 "—5"( - - ) AK st
<dn+(2p) - d6)\n -5 2p-o +( )XA
2q 2q @2p)k - o*
-2 k( _ ) ot (Ak—dk——A—é)
2p)(n 2p—6+2p—6 + 2p—6( ) Jxa
2q 2q
<@ k( - ) 5~
e\ %) s
2p)k — &* 2p—8n -2
4N_y_gﬁ__m_wga_ﬁ_ﬁ
2p—-0 A-06
=mw®N+m—wWQ_ 24 ), 2y
A-6 2p—-6/ 2p-6

If A =2p, then by Claim 2.3 and the restrictions of #, we obtain that x5 + x2, = n
and 0xs + 2pxz, <2pn —2q. It follows that (2p — 6)xs > 2q and xp, =n—xs <n—
2q/(2p — 8), which implies that

sy ooy xp) = 8 x5 + 2p)xay
= 6" (n = x2p) + 2p)'x2y
= &'n+(2p)* = 63,
2q
<&n+ (2 k-ak( -—)
n (@)= n - 37
245
2p-06

= (2p)k("_ 21)235)+

This completes the proof of Theorem 1.1.
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