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SUMMARY

Models for the risk business of an insurance company are often
constructed by weighting pure Poisson models. In this paper it is
verified that it is possible to calculate the probability of ruin in
such weighted models by weighting ruin probabilities of' pure
Poisson models.

i. INTRODUCTION

In this paper we are going to study a model for the risk business
of an insurance company where the claims are located according
to a stochastic process {N(t); o < t < 00} subordinated to the
Poisson process with a directing process {A(t); o Ĉ t < 00}. This
terminology follows Feller [3]. The directing process A(t) will be a
real-valued and non-decreasing process such that P(A(o) = o) = 1.
We will later assume that A(t) has stationary, and independent
increments. Let {M(t); o < t < 00} be a Poisson process with
intensity 1, i.e.

P{M(t) = k) = — **, k = • o, i, 2,

The process N(t) is then defined by N(t) = M{A(t)).
For each claim the company has to pay a certain amount counted

with its proper sign. As usually in the theory of risk these amounts
are assumed to be described by a sequence {Xn}1 of independent
random variables, each having the distribution function V(x).
These variables are further assumed to be independent of the
process N(t).

The stochastic process
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X{t) = S I j (X{t) = o if N{t) = o)
*=i

will thus serve as a model for the total amount of claims paid by
the company up to time t.

Looking a bit more formally upon this definition we let the
stochastic vector process {(A(t), M{s), Xjc); o ^ t, s < oo, k =
= i, 2, . . .} be defined on (O, 38, 11$) where Q is a sample space,
38 the cr-algebra of subsets of Q generated by the process and 11$ a
probability measure on 38. Let further £, $Jl, 93 and ?fl be the sub-
d-algebras of 38 generated by {A(t); o < t < oo}, {M(t); o < t < oo}
{Xk; k = i, 2, . . .} and {(A(£), M(s)); o < i, s < oo} respectively
and Ftg, Ilsjjj, Ilsg and Ils^ the corresponding marginal measures.

For every L e £, Af s 5CR and F s 53 we have Ilfft(£ H M) =
= n«(L). ns9}(M) and nag(L n M n v) = ngi(L n M) • n ^ F )
because of the independence assumptions.

We will always consider only the separable version of the processes
and further all measures will be assumed to be complete.

Let 5do and 38o be the cr-algebras generated by the above defined
processes {N(t); o ^ t < oo} and {X(t); o < t < oo} respectively.
Let S be a countable but dense set in [o, oo). Because of the separa-
bility assumption {iV(*) = k}=%{M{s) = k, A{t) = s}. Thus %)C9t
In the same way it is shown that 38oC38.

2. THE CASE OF A DIRECTING PROCESS WITH STATIONARY AND

INDEPENDENT INCREMENTS

It is shown in Feller [3] that for every non-decreasing process
A(t) with stationary and independent increments (s.i.i. process)

where
• glUX £

7)(w) = J D,(dx) + ibu
0+ x

" atdx)
where b > 0 and f —-— < 00

The behaviour of the sample functions of non-decreasing s.i.i.
processes is investigated by Walldin [5].

Since M(t) is a s.i.i. process it follows from Feller [3] that also
N(t) is a s.i.i. process.
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For N(t) we thus have

log E eiuN& = t . i (eitlk — 1) cfc
fc-i

where c^ ^ 0 for all ft and S c# < 00.
fc-i

iV(£) is thus a bunch Poisson (Poisson par grappes) process. The
bunches are located according to a Poisson process with intensity

c = 2 Ck and the distribution of the size of the bunches is given
1

by — for ft = 1, 2, 3, . . . .
c

Theorem

The relation between the measure O and the sequence {cjc}l is
given by

where
i if ft = i
o if ft ^ i

Proof

We have E ex.p{iuN(t)} = E exp{A(£) (eiu — i}).
Since Re(eiu — i) < o we have

o + x

Thus the theorem holds since

- 0 0+ ft-'

1) b + J (***» —
0 +

» exleiu

= (e<« _ j) b + J i J
0+ *

because of dominated convergence since ex — 1 is integrable with
. . erespect to
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Example

Put Q.(dx) = a.e-&xdx and & = o.
We have

= J a rPa; <fo = — a log(i — —)

and thus

p,
is then F-distributed with the frequency function given by

f or x > o

By direct calculations we get

£ JuN(t) — f ex(eiu-i) P „(<*«-1) e-&x J^X _

o i \<*t) 0 + i — el"
from which it follows that

P(N(t) = k) = ( —)(—-—)"'( ] for k = i, 2, . . . .

From the theorem it follows that

cic = _ — for k = i , 2, . . . .

Now the probability of ruin may be calculated in the following
manner. Assume that E A(t) = t which implies that E N(t) = i
and that vi = E X^ exists. The probability of ruin <\>(yo) is then the
probability that yo + (vi + x) t — X{t) falls below zero at any time
t > o where y0 is the initial value of the risk reserve and x the safety
loading [2].

The bunches of claims will occur according to a Poisson process
with intensity c and the amounts to be paid for each bunch will
form a sequence of independent random variables each having the
distribution function

£ c± v** [x)
fc-1 0

where Ffc* (x) is the Mold convolution of V(x) with itself. Define
xo by
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(Vl + x) t = (xo + 2 — k Vi) Ct
fc-1 c

from which it follows that

vi -{- 11 — vi 2 Cjc k
fc _i

c
Under the additional assumption that

2 cfc J e°* Vfc* (<fo) < 00 for some a > 0
fc-i 0

<Kyo) may be calculated according to the derivation in Cramer [2]
where ct plays the role of the operational time, xo of the safety

loading and 2 — Vk* (x) of the distribution of the amount of
fc-i c

each claim.

3. THE CASE OF A DIRECTING PROCESS WITH INTERCHANGEABLE

INCREMENTS

The directing process {A(2); o < t < 00} is said to have inter-
changeable increments if for all n = 2, 3, . . . and all finite T s
(0, 00) it holds that

M
 (klkT. . .(* — 1 ) 7 \ ,1

n {A — - AC !—) < %*} =
-i n n \

= P \ n {Afi - A )

n
for all n\ permutations {i%, . . . , in) of (1, . . . , n) and for all (xi, . . . ,
xn)-

Biihlmann [1] has shown that for a process with interchangeable
increments there exists a nontrivial sub-tr-algebra 2) of £ such that
A(t) is a s.i.i. process relative to X>- Further there exists a measure
IIj) on X> such that for every o ^ s < i < 00 we have

E e *«<A«)-A<»» = j e (*-«)i(tt'u) Ux,{d(x>)

where
•/)(«, co) = J Q(i^, to) -f- ib(t£>)u

0+ ^

is S-measurable in to.
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Denote by II3>g the measure on £ relative to 25 and by Il^g the
measure on 91 relative to 25. Due to the theorem of Kolmogorov
n£>£ and thus 112^ are determined.

Since A(t) is a s.i.i. process relative to 25 also N(t) is a.s i.i. process
relative to 25- Define

i+ «/ A;

The sequence {cfc(w)}fcti is thus a sequence of D-measurable
functions. From the theorem of Kolmogorov and from the theorem
in section 2 it follows that the restriction n£>sfto of n^gj to 9to may
be expressed in terms of the sequence {cfc(«)} j ^ .

Assume that E A(t) = t. Define the ©-measurable functions

V(x, «) = £
fc-i

Wl(tt) = Wl £
and

«i(«) -f- x

c(co)
If for almost every w with respect to UD

J e°x V(dx, to) < oo for some CT > o
0

the probability of ruin ^@(yo) relative to 25 may be calculated.
Because of the assumption of separability the function

i if yo + (vi + x) t — X(t) < o for some t > o
1 (<x>) = ,

o elsewhere

is 38o-measurable and thus furthermore 36-rneasurable.
Since

0) = £ ( / ( « ) |25)

o) is 25-measurable and <\)(yo) is given by

+(yo) =
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Remark

If A(t) = X • t where X is a F-distributed random variable N(t)
is a Polya-process. In Segerdahl [4] the ruin probability is calculated
by a weighting procedure. If Cl(dx, co) = 0 almost surely with respect
to IIT) and if X(w) = b(u>) our result reduces to the result due to
Segerdahl.

4. A NUMERICAL ILLUSTRATION

Consider the case where N(f) is a Polya-process and where

1 — e~x for x > 0
0 for x < 0.

In our notations this implies that if X is a random variable defined
on (Q, X), II) where

V(x) =

*) = J V-1^w e-*y dy

then A.(t) = X • t almost surely with respect to
In Cramer [2] it is shown that for this choice of V(x) the ruin

probability î (yo) is in the Poisson case (with intensity 1) given by

<\>{yo) =

Since in the Polya case wi(co) = i, c(w) = X(co) and Cfc(co) = 0
for k = 2, 3, . . . almost surely with respect to IITI it follows that

, I

i + ?

i

- e
y

i -|- x
for

for

X

X

>

<

0

0

Thus

X(co) - i l L ^ '2^1 yo forX(co)<i + x
-—— e i + x

1 for X(w) ^ 1 + x
Define the function

v ' ' r / o r(«)
It then follows that
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<\i(yo) = i — F(i + x, h, h) +

\
h

i + x

In tables i, . . . , 4 this function is calculated for x = 0.0, 0.1,
0.2 and 0.3 and for h = 1, 2, 5, io, 25, 50 and 100. These values
are further compared with the ruin probabilities in the Poisson case
which is indicated by h = 00.

Table 1

x=o

0

10

20

3O
40

5°
60
70
80

90

100

—*• 00

+(y0)
A = 1

0.6321

0.4042

0.3862

0.3801

O-3771

0-3752

0-374°

o-373i

0-3725
0.3720

0.3716

0.3679

h = 2

0.7293

0.4589

0.4329

0.4240

0.4195
0.4168

0.4150

O-4I37
0.4128

0.4120

0.4114

0.4060

A = 5
0.8245

0.5236
0.4838

0.4696

0.4624

0.4580

0-4551
04530

°-45!5
0.4502

0.4493

0.4405

A = 10

0.8749

O-57I7
0.5189

0.4992

0.4890

0.4829

0.4787

O.4758

O-4735
0.4718

0.4704

0-4579

A = 25

0.9205

0.6380

0.5671

O-5379
0.5223

0.5128

0.5063

0.5017

0.4982

0.4954

0.4932

0-4734

A = 50

O-9437
0.6905

0.6079

0.5703

O-5495

05364

O-5275
0.5210

0.5161

0.5123
0.5092

0.4812

A = 100

0.9601

0.7429

O-6533
0.6077

0.5809

0.5635

O-55I4

O-5425
O-5358

O-53O5
0.5262

0.4867

A = 00

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

K =
O.I

y<>

0

10

20

30
40
50
60
70
80
90

100

—> CO

Table 2

A = 1

0.6065

0.3694

o-3512

O-3451

0.3420

0.3402

O.339O

0.3381

O-3375
0.3369

0.3365

0.3329

A = 2

0.6976

0.4080

0-3815

0-3725
0.3680

0.3653

0-3635
0.3623

03613
0.3605

O-3599

0.3546

A = 5

0.7858

0.4425

0.4009

0.3864

O.379I

O.3748

o.37!9
0.3698

0.3683

0.3671

0.3661

O-3575

A = 10

0.8315

0.4588

0.4016

0.3812

0.3709

0.3648

0.3607

O-3578

O.3556

0-3539
0.3526

03405

A = 25

0.8713

0.4686

0-3847

O-3533

O-3373
0.3278

0.3215

0-3171

0.3137
0.3112

0.3091

0.2910

A = 50

0.8897

0.4663

O.3578

03151

0.2934

0.2806

0.2721

0.2661

0.2617

0.2583

0.2556

0.2322

A = 100

0.9008

O-4545
0.3186

0.2626

02340

0.2172

0.2064

0.1988

O.I933
0.1890

0.1857

0.1584

A = 00

0.9091

0.3663

0.1476

00595

0.0240

0.0097

0.0039

0,0016

0.0006

0.0003

0.0001

0.0000
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X =

0.2

ya

0

10

20

30
40

5°
60

70

80

90

100

—>• 00

Table 3

+(yo)

h = 1

0.5823

O-3376

0.3194

0.3133

03103
0.3084

03072
0.3064

0.3057
0.3052

0.3048

0.3012

A = 2

0.6670

0.3615
O-335O
0.3261

0.3216

0.3190

0.3172

0.3159

0.3150

o.3i43

0.3137

0.3084

h = 5

0.7470

0.3686

0.3267

0.3126

0.3056

0.3014

0.2987

0.2967

0.2952

0.2941

0.2932

0.2851

A = 10

0.7864

0.3564
0.2988

0.2793

0.2698

0.2641

0.2604

0.2578

0.2558

O.2543
0.2531

0.2424

A = 25

0.8169

0.3180

0.2344
0.2064

0.1930

0-1853
0.1803

0.1768

0.1742

0.1722

0.1707

OI573

A = 50

0.8280

0-2755
0.1709

0.1368

0.1213

0.1127

0.1073

0.1036

0.1009

0.0989

0.0973

0.0844

A = 100

0.8323

0.2305

0.1088

0.0717

0.0564

0.0486

0.0440

0.0411

0.0390

0.0375
0.0363

0.0280

A = 00

0-8333

O-I574
0.0297

0.0056

O.OOII

O.OOO2

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

X =

0.3

0

10

20

30

40

50
60

7°
80

90

100

—*• 00

A = 1

O.5596

0.3086

0.2905

0.2844

0.2815

0.2797

0.2785

0.2776

0.2770
0.2765

0.2761

0.2725

A = 2

0.6378

0.3194
0.2931

0.2844

0.2801

0.2775

0.2758

0.2766

0.2737

0.2730

0.2724

0.2674

A = 5

0.7090

0.3032

0.2624

0.2490

0.2425

0.2386

0.2361

0.2343
0.2329

0.2319

0.2311

0.2237

Table

Mo)

A = 10

0.7414

0.2691

0.2146

0.1972

0.1889

0.1840

0.1808

0.1786

0.1770

0-1757
0.1747

0.1658

4

A = 25

0.7628

0.2026

0.1297

0.1083

0.0987

0.0934

0.0900

0.0877

0.0860

0.0848

0.0837

0.0754

A = 50

0.7681

0.1502

0.0686

0.0477

0.0395

O-O353
0.0329

0.0312

0.0301

0.0292

0.0286

0.0236

A = 100

0.7692

0.1122

0.0304

0.0138

0.0088

0.0067

0.0056

0.0050

0.0046

0.0043

0.0041

0.0028

A = 00

0.7692

0.0765

0.0076

0.0008

0.0001

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000

0.0000
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