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SUMMARY

Models for the risk business of an insurance company are often
constructed by weighting pure Poisson models. In this paper it is
verified that it is possible to calculate the probability of ruin in
such weighted models by weighting ruin probabilities of “pure
Poisson models.

1. INTRODUCTION

In this paper we are going to study a model for the risk business
of an insurance company where the claims are located according
to a stochastic process {N(¢f); o <t < oo} subordinated to the
Poisson process with a directing process {A(f); 0 < ¢ < oo}. This
terminology follows Feller [3]. The directing process A(f) will be a
real-valued and non-decreasing process such that P(A{o) = o) = 1.
We will later assume that A(f) has stationary, and independent
increments. Let {M(t); o << t < oo} be a Poisson process with
intensity 1, i.e.

PM(t) = k) :ﬁe-t,k:o, I,2,....
k!
The process N(¢f) is then defined by N(f) = M(A(¥)).

For each claim the company has to pay a certain amount counted
with its proper sign. As usually in the theory of risk these amounts
are assumed to be described by a sequence {X,}] of independent
random variables, each having the distribution function V(x).
These variables are further assumed to be independent of the
process N (t).

The stochastic process
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N (@)
X)) =Z Xy (X(t) =0if N(t) = o)
k=1
will thus serve as a model for the total amount of claims paid by
the company up to time .

Looking a bit more formally upon this definition we let the
stochastic vector process {(A(f), M(s), Xg); o <¢, s < 0, k=
=1, 2, ...} be defined on (Q, %, ITx) where Q is a sample space,
% the s-algebra of subsets of Q2 generated by the process and IIx a
probability measure on ¥. Let further £, I, B and N be the sub-
c-algebras of & generated by {A(f); o <t << oo}, {M(t); 0 <t < o}
{Xg; k=1,2,...} and {(A(), M(s)); o <f s < oo} respectively
and ITg, Ilgp, Iy and sy the corresponding marginal measures.

For every Le® MM and VB we have [yp(L N M) =
= Ie(L) . Ogp(M) and Hx(L NMNTV) = Oyl N M) Ig(V)
because of the independence assumptions.

We will always consider only the separable version of the processes
and further all measures will be assumed to be complete.

Let 9o and %o be the o-algebras generated by the above defined
processes {N(f); o <¢ < o} and {X(¢); 0 < ¢ < oo} respectively.
Let S be a countable but dense set in [0, c0). Because of the separa-
bility assumption {N(f) = k}=Y{M(s) = &, A(t) = s}. Thus MCNR.
In the same way it is shown that X.C%.

2. THE CASE OF A DIRECTING PROCESS WITH STATIONARY AND
INDEPENDENT INCREMENTS

It is shown in Feller [3] that for every non-decreasing process
A(#) with stationary and independent increments (s.i.i. process)

E eivh®) — ptn(w)

where
© eiux — I .
n(u) = [ —— Q(dx) + ibu
0+
Q (dx)
where b > oandj +%<oo

The behaviour of the sample functions of non-decreasing s.i.i.
processes is investigated by Walldin [5].

Since M(¢) is a s.i.i. process it follows from Feller [3] that also
N{(#) is a s.1.i. process.
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For N(f) we thus have
log I efuN@® =1t = (et¥k — 1) cp,
k-1

where ¢ > o forall kand X ¢ < oo.
k-1

N(#) is thus a bunch Poisson (Poisson par grappes) process. The
bunches are located according to a Poisson process with intensity

¢ = X ¢y, and the distribution of the size of the bunches is given
1

byfcl“forkzx,z,g,....

Theorem .
The relation between the measure Q and the sequence {cy}; is
‘given by

e . W
0+ k, ’
where
5 oy ifek=1
B T Joifk£1
Proof

We have E exp{iuN(t)} = E exp{A(f) (et — 1}).
Since Re(ei* — 1) < 0 we have

}gz(eiu — I)

0+
Thus the theorem holds since

(eft — 1)b + i } (x etu)k — xk - Q(dx)

Q(dx) + b(eit —1) = T (efoh — 1) i
k-

1

k=00+ k! X
(e — 1) b | (e — o) gn )
0+ X
—ew—n) o+ | g 2
0+ x

because of dominated convergence since ¢ — 1 is integrable with
e %Q(dx)

respect to
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Example
Put Q(dx) = «e™dx and b = o.
We have
) = ;fi‘f“_;_l o et dy = — o log(t — %‘)
(1]
and thus

E unr® :(I _ﬁ”’ ot
8

A(#) is then I'-distributed with the frequency function given by

Bat (*t-1) -8B f
- x* D ePZ for x >0
(o) =~

By direct calculations we get

w af
E JAUN@®) — ex(ett-1) p p@t-1) gPr g Bﬁ ot
! I =
from which it follows that
K73 B 1 k
P(N(t) = k) = <_>( )“t( ) fork=1,2,....
E/B+1 \B+1

From the theorem it follows that

o
ck_mfork—I,z,....

Now the probability of ruin may be calculated in the following
manner. Assume that E A(f) = ¢ which implies that E N(f) =1
and that v1 = E X}, exists. The probability of ruin ¢(yo) is then the
probability that yo 4 (v2 + x) £ — X (¢) falls below zero at any time
¢ > o'where yo is the initial value of the risk reserve and x the safety
loading [2].

The bunches of claims will occur according to a Poisson process
with intensity ¢ and the amounts to be paid for each bunch will
form a sequence of independent random variables each having the
distribution function

3 %k vex (y)
k-1 €

where VE* (x) is the k-fold convolution of V(x) with itself. Define
%0 by
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(@4t = (ot S Fho ot
k-1°¢

from which it follows that
U1+ % — U1 § cx k

k=1
¢

no =
Under the additional assumption that

2 ocp [ e® VE* (dx) < oo for some ¢ >0
k-1 0

{(yo) may be calculated according to the derivation in Cramér [2]
where ¢t plays the role of the operational time, xo of the safety

loading and E‘. k yies (x) of the distribution of the amount of
k-1 €
each claim.

3. THE CASE OF A DIRECTING PROCESS WITH INTERCHANGEABLE
INCREMENTS

The directing process {A(f); o < ¢ < oo} is said to have inter-
changeable increments if for all # = 2, 3,... and all finite T ¢
(0, o0) it holds that

(k—1) T

Pln udh— ) <) =

k-1 n n
i RT. R—1) T
—p[a 0 —ad =0 < ]
k=1 n n

for all ! permutations (¢1, . . ., 4p) of (1, ..., n) and for all (», . ..,
Biithlmann [1] has shown that for a process with interchangeable
Increments there exists a nontrivial sub-s-algebra D of £ such that
A(f) is a s.ii. process relative to ®. Further there exists a measure

IIp on D such that for every o <{s << ¢t < o0 we have

E ¢ A O-20) — [ ¢ o) [[n(de)

where
@ eiux —1
nu, 0) = [—— = Qdx, o) + ib(w)u

0+ x
is P-measurable in .
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Denote by IIDg the measure on § relative to @ and by TID¢ the
measure on N relative to D. Due to the theorem of Kolmogorov
D¢ and thus TPy are determined.

Since A(f) is a s.1.1. process relative to D also N(f) is a.s 1.1. process
relative to ). Define

o

cr(w) = [

+

- Qdx, o)

e O L Sk b(w)
X

-
N"l =
~ &

The sequence {cx(w)},=, is thus a sequence of D-measurable
functions. From the theorem of Kolmogorov and from the theorem
in section 2 it follows that the restriction Dy of TPy to NPo may
be expressed in terms of the sequence {cx(w)} ;.

Assume that E A(f) = . Define the D-measurable functions

clw) = E] cr(w)

k=1
_ 5 ko) Tk
Vi o) = X FE T
e Cr(w)
mlo) =u X FE

and

'1)1((,0) + % — U1 5 ck(m) .k
k-1

ralw) = ()

If for almost every w with respect to Ilp

[ e V(dx, w) < oo for some ¢ >0
0

the ﬁrobability of ruin ¢€(y,) relative to ® may be calculated.
Because of the assumption of separability the function

I(e) = Iifyo + (v1 4+ %) £ — X(¢) < o for some ¢ >0

o elsewhere
is Xo-measurable and thus furthermore ¥-measurable.
Since

4B (y0) = E(I(w) D)
D(ye) is D-measurable and P(yo) is given by
b(yo) = [ B(yo) & IIp
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Remark

If A(¢) = » .t where A is a I'-distributed random variable N(#)
is a Polya-process. In Segerdahl [4] the ruin probability is calculated
by a weighting procedure. If Q(dx, ) = o almost surely with respect
to IIp and if Me) = b(w) our result reduces to the result due to
Segerdahl.

4. A NUMERICAL ILLUSTRATION
Consider the case where N(#) is a Polya-process and where

— e >

Vix) = I—eZforx >0
0 for x < 0.

In our notations this implies that if A is a random variable defined
on (Q, D, II) where ‘
B Jyh
I'(h)
then A(f) = A . ¢ almost surely with respect to IIDg.

In Cramér [2] it is shown that for this choice of V(x) the ruin
probability ¢/(vo) is in the Poisson case (with intensity 1) given by

Y ehy dy

Mo (h < %) =

I . yr forx >o0
PV S
$(yo) =
1 forx <o
Since in the Polya case vni{w) = I, ¢(w) = A{w) and cxla) =0
for & = 2, 3, ... almost surely with respect to Ilp it follows that
rofw) = L7 HO)
Mo)
Thus
M) e-ii__x_*—:_)l@ Yo for Me) < T + %
1 ®
1
YDl = )T T
I for Mw) =21 + =

Define the function

8

F — ya_I Ba By .
(x, o, B) { Ta) eV dy

It then follows that
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U(yo) =1 —T(1 4+ %, A, ) +

h41
h o Pado b4 h— 20
h— Yo I+ I+ %
I+ %
In tables 1, ..., 4 this function is calculated for x =-0.0, 0.1,

0.z and 0.3 and for # = 1, 2, 5, 10, 25, 50 and 100. These values
are further compared with the ruin probabilities in the Poisson case
which is indicated by 4 = co.

Table 1
®=0 $(¥o)
Yo | B =1 =2 =5|h=10|h=25|h=50|h=100h = ®
0] 0.6321 | 0.7203 | 0.8245 | 0.8749 | 0.9205 | 0.9437 | 0.9601 | 1.0000
10| 0.4042 | 0.4589 | 0.5236 | 0.5717 | 0.6380 | 0.6905 | 0.7429 | 1.0000
20| 0.3862 | 0.4329 | 0.4838 | 0.5189 | 0.5671 | 0.6079 | 0.6533 | 1.0000
30| 0.3801 | 0.4240 | 0.4696 | 0.4992 | 0.5379 | 0.5703 | 0.6077 | 1.0000
40| 0.3771 | 0.4195 | 0.4624 | 0.48g0 | 0.5223 | 0.5495 | 0.5809 | 1.0000
50| 0.3752 | 0.4168 | 0.4580 | 0.4829 | 0.5128 | 0.5364 | 0.5635 | 1.0000
60 | 0.3740 | 0.4I50 | 0.455I | 0.4787 | 0.5063 | 0.5275 | 0.55I4 | I.0000
70| 0.3731 | 0.4I37 | 0.4530 | 0.4758 | 0.5017 | 0.52I0 | 0.5425 | 1.0000
80| 0.3725 | 0.4128 | 0.4515 | 0.4735 | 0.4982 | 0.5I6I | 0.5358 | I.0000
Q0 | 0.3720 | 0.4120 | 0.4502 | 0.4718 | 0.4954 | 0.5I23 | 0.5305 | I.0000
100 | 0.3716 | 0.4114 | 0.4493 | 0.4704 | 0.4932 | 0.5002 | 0.5262 | I1.0000
— | 0.3679 | 0.4060 0.44o5l 0.4579 | 0.4734 | 0.4812 | 0.4867 | 1.0000
Table 2
w =
0.1 Y(¥o)

Yo |Bb=1{h=2|h=5|h=10|h=25|h=350|h=100kh =

0| 0.6005| 0.6976 | 0.7858 | 0.8315| 0.8713 | 0.8897 | 0.9008 | 0.g0gI
10 | 0.3694 | 0.4080 | 0.4425 | 0.4588 | 0.4686 | 0.4663 | 0.4545 | 0.3663
20| 0.3512 | 0.3815| 0.4009 | 0.4016 | 0.3847 | 0.3578 | 0.3186 | 0.1476
30| 0.3451 | 0.3725 | 0.3864 | 0.3812 | 0.3533 | 0.3I5I | 0.2626 | 0.0595
40| 0.3420 | 0.3680 | 0.3791 | 0.3709 | 0.3373 | 0.2934 | 0.2340 | 0.0240
50| 0.3402 | 0.3653 | 0.3748 | 0.3648 | 0.3278 | 0.2806 | 0.2172 | 0.0097
60} 0.3390 | 0.3635 | 0.3719 | 0.3607 | 0.3215 | 0.272I | 0.2064 | 0.0039
70| 0.3381 | 0.3623 | 0.3698 | 0.3578 | 0.3171 | 0.2661 | 0.1988 | 0.0016
80| 0.3375 | 0.3613 | 0.3683 | 0.3556 | 0.3137 | 0.2617 | 0.1933 | 0.0006
90| 0.3369 | 0.3605 | 0.3671 | 0.3539 | 0.3112 | 0.2583 | 0.1890 | 0.0003
100 | 0.3365 | 0.3599 | 0.3661 | 0.3526 | 0.309I | 0.2556 | 0.1857 | 0.000I

— ®; 0.3329 | 0.3546 | 0.3575 | 0.3405 | 0.2910 | 0.2322 | 0.1584 | 0.0000
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Table 3

x= $(3)

0.2

Yo |h=1|h=2|h=5|h=10|h=25|h=50|h=100kh = o

0]0.5823 | 0.6670 | 0.7470 | 0.7864 | 0.8169 | 0.8280 | 0.8323 | 0.8333
10| 0.3376 | 0.3615 | 0.3686 | 0.3564 | 0.3180 | 0.2755 | 0.2305 | 0.I574
20 | 0.3194 | 0.3350 | 0.3267 | 0.2088 | 0.2344 | 0.1709 | 0.1088 | 0.0297
30 0.3133 | 0.3261 | 0.3126 { 0.2793 | 0.2064 | 0.1368 | 0.0717 | 0.0056
401 0.3103 | 0.3216 | 0.3056 | 0.2698 | 0.1930 | 0.1213 | 0.0564 | 0.00II
50| 0.3084 | 0.3190 | 0.3014 | 0.2641 | 0.1853 | 0.1127 | 0.0486 | 0.0002
60| 0.3072 | 0.3172 | 0.2987 | 0.2604 | 0.1803 | 0.1073 | 0.0440 | 0.0000
70| 0.3064 | 0.3159 | 0.2967 | 0.2578 | 0.1768 | 0.1036 | 0.0411 | 0.0000
80] 0.3057 | 0.3150 | 0.2952 | 0.2558 | 0.1742 | 0.1009 | 0.0390 | 0.0000
90 | 0.3052 | 0.3143 | 0.204I | 0.2543 | 0.1722 | 0.0989 | 0.0375 | 0.0000

100 | 0.3048 | 0.3137 { 0.2932 | 0.253I | 0.1707 | 0.0973 | 0.0363 | 0.9000

— | 0.3012 | 0.3084 | 0.2851 | 0.2424 | 0.1573 | 0.0844 | 0.0280 | 0.0000

Table 4

* = $(¥o)

Yo lb=1|b=2h=5|h=10{h=25h=50h=100h = o

0| 0.5596 | 0.6378 | 0.7090 | 0.7414 | 0.7628 | 0.7681 | 0.7692 | 0.7692
10 | 0.3086 | 0.3194 | 0.3032 | 0.2691 | 0.2026 | 0.1502 | 0.1122 | 0.0765
20 | 0.2005 | 0.2931 | 0.2624 | 0.2146 | 0.1297 | 0.0686 | 0.0304 | 0.0076
30| 0.2844 | 0.2844 | 0.2490 | 0.1972 | 0.1083 | 0.0477 | 0.0138 | 0.0008
40| 0.2815 | 0.2801 | 0.2425 | 0.1889 | 0.0987 | 0.0395 | 0.0088 | 0.0001
50 | 0.2797 | 0.2775 | 0.2386 | 0.1840 | 0.0934 | 0.0353 | 0.0067 | 0.0000
60! 0.2785 | 0.2758 | 0.2361 | 0.1808 | 0.0900 | 0.0329 | 0.0056 | 0.0000
70| 0.2776 | 0.2766 | 0.2343 | 0.1786 | 0.0877 | 0.031I2 | 0.0050 | 0.0000
80| 0.2770 | 0.2737 | 0.2329 | 0.1770 | 0.0860 | 0.030I | 0.0046 | 0.0000
9o | 0.2765 | 0.2730 | 0.2319 { 0.1757 | 0.0848 | 0.0292 | 0.0043 | 0.0000

100 | 0.2761 | 0.2724 | 0.23I1 | 0.1747 | 0.0837 | 0.0286 | 0.004I | 0.0000

. — | 0.2725 | 0.2674 | 0.2237 | 0.1658 | 0.0754 | 0.0236 | 0.0028 | 0.0000
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