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Alzheimer’s disease (AD) is the most common
neurodegenerative illness. The main risk factor for AD is age.
AD affects about 1% of individuals at age 65, with this rate
doubling every five years, so that 30% of 80-year-olds are
affected1,2. The Alzheimer’s Society of Canada estimates that
there are currently 500,000 Canadians suffering with
Alzheimer’s disease and this number is expected to rise to more
than one million by 20383. These numbers are mirrored in the
United States and the rest of the world where there are 5.1
million and 35 million affected respectively, and these numbers
are expected to grow to 15 million and 115 million by 20504-6.
Alzheimer’s disease is expensive, with the cost of caring for
Canadians with Alzheimer’s disease estimated at $15
billion/year now and projected to rise to a staggering $158
billion per year by 20383. Alzheimer’s disease already costs the
American economy more than US$150 billion/year5. These
estimates suggest that AD is poised to become a major challenge
for our health care system and our society.

Alzheimer’s disease is characterized by many neuro-
pathological changes including neurofibrillary tangles, and loss
of synapses and neurons, but it is amyloid plaques that
distinguish Alzheimer’s disease from other neurodegenerative
diseases7. Although Alois Alzheimer first described this disease
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more than 100 years ago, it was only in the 1980’s that β-
amyloid peptide (Aβ) was identified as the major component of
amyloid plaques. This led to the Amyloid Cascade Hypothesis,
which is the current leading model of pathophysiology in
Alzheimer’s disease. In its initial form, the Amyloid Hypothesis
posited that amyloid deposition in large macromolecular fibrils
was the initiating factor for AD, with numerous other
pathological changes occurring secondarily8,9. With anti-
amyloid therapies in phase 3 clinical trials, it is timely to review
the Amyloid Hypothesis as it was originally proposed and the
new directions that it is taking. The role of amyloid in
intracellular compartments will also be reviewed.
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Aβ is produced by the cleavage of a large transmembrane
protein call the Amyloid Precursor Protein (APP) (Figure 1).
First, APP is cleaved at a β-site by an aspartyl proteinase referred
to as BACE (beta-site APP-cleaving enzyme)10-15. Subsequently,
APP is cleaved again at a variable “γ” cleavage site by an
enzyme referred to as the γ-secretase (described below) to
release peptides ranging from 38-43 amino acids. The γ-
cleavage regulates the amount of Aβ produced, as well as the
relative amount of the more toxic 42 amino acid form of Aβ.
Amyloid precursor protein may also be cleaved at an α position
within the Aβ sequence, by an enzyme (or family of enzymes)
referred to as α-secretases, which prevents the production of
Aβ16-18. β-cleavage is the preferred pathway in neurons19. Once
produced, individual amyloid peptides (Aβ42 in particular) have
a high propensity to form aggregates that begin as small
assemblies of dimers and trimers, followed by ‘oligomers’ and
protofibrils, and the large insoluble fibrils that are seen in
amyloid plaques20,21.

THE AMYLOID HYPOTHESIS
The literature of AD encompasses numerous patho-

physiological mechanisms (reviewed in22) that often seem to be
dueling for the status of “most important”. Indeed the tissue loss
seen in gross pathology of AD (Figure 2) is likely the result of
many processes, and not merely the result of deposition of
amyloid plaques (Figure 3). However, the origins of amyloid
hypothesis are not rooted only in pathology, but also in genetics.

Chromosome 21
The genetic view of Alzheimer’s disease begins with the

longstanding observation that patients with Down’s syndrome
(Trisomy 21) invariably develop neuropathological features
indistinguishable from Alzheimer’s disease in early
adulthood23,24. This suggested a simple gene-dosage effect
caused by an extra copy of a critical gene on chromosome 21.
The purification and sequencing of the components in vascular
amyloid and amyloid plaques in 1984 lead to the discovery of
Aβ25,26 and to the subsequent cloning of the APP gene on
chromosome 2127,28. The cloning of APP (and subsequent
Familial Alzheimer’s Disease (FAD) genes below) has allowed
their study in cultured cells and the generation of mouse models.
In the case of APP, this led to the surprising finding that Aβ
production was not a rare pathological event but rather a normal
process. Aβ is produced by many cell types and is normally
present in plasma and cerebrospinal fluid (CSF)29-31. Synaptic
activity regulates the amount of Aβ secreted into CSF32,33 in
mice. In humans, Aβ is also rapidly secreted and cleared from
the CSF, presumably governed by similar mechanisms34.

The next major insight came from families with autosomal
dominant Alzheimer’s disease (Familial AD- FAD) that occurred
well before the age of 65. In some of these families, Alzheimer’s

Figure 1: Schematic of beta amyloid production. A. APP is a large
transmembrane protein that is cleaved first at a beta site by BACE, and
then at a gamma site by the gamma secretase to release Aβ. B. The
sequence of APP spanning the Aβ and transmembrane regions of APP
showing the sites of the α-, β- and γ-secretase cleavage sites. Examples
of some of the sites of AD-causing mutations are indicated.

Figure 2: Alzheimer’s disease gross pathology. Panel A shows
comparable coronal sections of a normal brain on the (left) compared
with the brain with a neuropathological diagnosis of AD (right). Inset are
close up images of the hippocampus showing a normal brain (B) and
demonstrating the marked atrophy/tissue loss in Alzheimer’s disease (C).
Scale bar 1 cm.
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Figure 3: Extracellular and Intracellular Pathology in Alzheimer’s disease. A-C) Human brain from an AD patient
stained with Modified Bielschowsky silver stain. A low power view of human temporal cortex (A) (scale bar 200 μm).
High power views of the same case, showing an amyloid plaque (B) with amyloid appearing brown and dystrophic
neuritis and tangles appearing black (Scale bar = 10μm) and (C) a neurofibrillary tangle (Scale bar = 10μm). D- F)
Immunohistochemistry with formic acid pretreatment (antigen retrieval) shows an (D) amyloid plaque stained with
antibodies to Aβ42 (green) and an antibody to AT8 (abnormally phosphorylated tau) in red. Nuclei are in blue. (Scale
Bar = 30 μm). (E) An amyloid plaque immunostained with an antibody against Aβ42 (green) in the brain of a transgenic
APP-Swe PS1-Δ exon 9 mouse (Scale bar 10 μm). F) Vascular amyloid in a human stained with an antibody to Aβ42
(green). (Scale bar 150 μm). G-H Classical Congo red stain of vascular and plaque amyloid showing red staining under
while light G (G), but apple-green birefringence under polarized light (H; 400X). I-J Intracellular amyloid is seen using
heat treatment (Retriever 2100) to immunostain intracellular granules of Aβ42 inclusions in humans (I, brown) (Scale
Bar 10mm). and transgenic mice Aβ42 (J; green) and nuclei (blue) (Scale Bar 10μm). K-L. Aβ42 is taken up into
lysosomes. Neuronal SN56 cells allowed to take up 250nM HiLyte Fluor 488 labeled Aβ42 for 24 hours. Aβ42 is green
(K) and lysosomes were marked by transfected LAMP1 tagged with mRFP (L; red). Merged image (M) shows colocalized
pixels in yellow marked with arrows (Scale Bar 10 μm)
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disease mapped to the APP gene. To date, 32 mutations (in 86
families) in APP have been described (http://www.molgen.
ua.ac.be/ADMutations). These mutations generally fall into
three classes. One type of mutation, the Swedish mutation, is
located adjacent to the β-cleavage site of APP where it increases
the rate of β-cleavage up to 10-fold, resulting in increased
production of all amyloid species35. Another group of mutations
near the γ-site of APP alters the specificity of the γ-secretase
cleavage by increasing the relative amount of the more toxic
Aβ42 produced (e.g. the London mutation)36-38. In addition,
point mutations within the Aβ sequence itself that appear to
decrease α-cleavage, increase the stability of Aβ or increase its
propensity to aggregate (e.g. the Arctic, Dutch and the Iowa
mutations39-41). FAD can also occur due to increased APP
expression due to promoter mutations42 or by the simple gene
duplication of APP43-45. Thus, from the point of view of genetic
defects on chromosome 21, anything that increases the amount
of Aβ or Aβ42 is tightly associated with AD.

Not just chromosome 21
Even early on, it was apparent that many FAD families

mapped outside chromosome 21. A FAD-linked locus was
mapped to chromosome 14 by Peter St. George Hyslop’s group
at the University of Toronto46. This led to the identification of
mutations in the protein presenilin-1 (PS1) and a second
homologous gene on chromosome 1 dubbed PS247,48. These
patients often have additional features such as seizures,
myoclonus, long tract signs, ataxia and psychiatric symptoms49.
With much subsequent work, presenilin was found to be the
catalytic protein in a large enzyme complex called the γ-
secretase, which is composed of at least 4 proteins (presenilin,
nicastrin, mAph1 and PEN250-55) Recombinant PS1 is able to
catalyze γ-secretase cleavage on its own56, and mutations at
either of two critical aspartate residues in PS-1 and PS-2 within
the catalytic site abolishes its enzymatic activity57. PS also
contains the binding site of pharmacological γ-secretase
inhibitors58,59. Currently, mutations in PS1 account for the largest
identified group of FAD, with 177 mutations described in PS1
(392 families) and 14 mutations described in PS2 (23 families)
(http://www.molgen.ua.ac.be/ADMutations)60.

While the exact mechanism(s) by which FAD PS mutations
alter γ-secretase function remain to be elucidated, they are
believed to cause AD by increasing the relative amount of Aβ42
to Aβ4056,61,62, even when they reduce the total amount of Aβ
produced63. The average age of onset in human families
correlates with the Aβ42/40 ratio64. It is interesting to note that
the identification of PS was based solely on genetics with no
preconceived notion of their biochemical functions.

Late Onset AD
The genetics of Late Onset Alzheimer’s disease has proven

more difficult. To date, the best-characterized locus is the
Apoliporotein (ApoE) gene. In humans, ApoE has three alleles
namely e2, e3, and e4 which differ by only a few amino acids.
Individuals with 1 e4 allele are at a 2-3 fold increased risk for
Alzheimer’s disease and having 2 e4 increases the risk about 12
fold65. Some studies suggest that the ApoE2 allele is protective
against AD66. The mode of action of ApoE also supports the
importance of amyloid, as the e4 allele appears to increase the

rate of Aβ fibril formation in-vitro67,68 and to increase the
observed amount of Aβ deposition in mice and humans69,70.
More recent evidence suggests that ApoE isoform also controls
Aβ clearance from the CSF of transgenic mice71.

It is estimated that 60-80% of Alzheimer’s disease risk may
be heritable72 and many groups are searching for the missing
genetic risk factors. In the last few years, new micro-array based
techniques of screening referred to as Genome Wide Association
Studies (GWAS) have substantially increased the number of
candidate genes73-76. The AlzGene database (http://www.
alzgene.org/TopResults.asp) currently lists the top ten genes
likely to be risk factors for AD. Unfortunately these putative
genes (assuming that they prove to be correct) each accounts for
only very small risk of AD (Odds Ratio of ~1.25) meaning that
they are much less powerful than ApoE73-77.

CHALLENGES TO THE ORIGINALAMYLOID HYPOTHESIS?
Despite the importance of Aβ, there were a number of

important drawbacks to the original Amyloid Hypothesis. The
most serious of these were that amyloid plaque load does not
correlate well with cognitive function or disease progression in
humans78,79 or mice80. In fact, neurofibrillary tangles (NFT’s)
correlated better with cognitive impairment, leading many to
suspect they might be the critical causative agent in AD78,79.

Tangles: the fall and the return
Neurofibrillary tangles (NFTs) are made up of intracellular

aggregates of paired helical filaments of the protein tau, which
have become hyperphosphorylated78,79 (Figure 3). Although
NFT’s correlate well with AD onset and progression81, to date,
no tau mutations have been found in AD families. Instead, tau
mutations cause phenotypically distinct diseases including
frontotemporal dementia, which do not display plaques,
suggesting that tau pathology in AD is downstream of Aβ79,82.
This idea also is supported by pathological studies in Down
syndrome and transgenic mice that demonstrate that amyloid
plaques precede the appearance of NFT’s83,84. Furthermore,
treatments that increase Aβ oligomers in mouse models lead to
increased tau pathology85-88. Conversely, immunotherapy to
deplete Aβ clears amyloid plaques and reduces early tau
aggregates, although later stage tau aggregates are not
reversible87. Other experiments suggest that tau does have a role
in AD as reducing tau levels or disrupting tau’s interactions with
signaling proteins reduces pathology and improves memory89-91.
Therefore, tau is likely still important in AD, but its effects are
downstream from Aβ.

Amyloid: Are Plaques a distraction?
Although amyloid plaques might be the most striking aspect

of AD pathology (Figure 3), the best pathological correlate of
cognitive impairment is loss of synapses92-95. Synaptic loss
correlates not with insoluble amyloid fibrils in plaques but with
levels of soluble amyloid species in the brain96.97. Aβ are now
recognized to aggregate into a wide variety of soluble structures,
from simple dimers and trimers to large soluble oligomers
sometimes referred to as Amyloid Derived Diffusible Ligands
(ADDLs) and Aβ56*95,98-100. These soluble aggregates are orders
of magnitude more toxic to neurons and synapses than the
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insoluble amyloid fibrils in plaques20.21. In animal models,
soluble Aβ impairs learning performance and decreases the
number of synapses100-102. These changes are reversible through
clearing or antibody chelation of Aβ103-105. Furthermore,
oligomeric Aβ binds directly to synapes containing glutamate
neurotransmitter receptors (including N-methyl D-Aspartic Acid
(NMDA) receptors) causing a rapid decrease in receptors,
reducing signaling, disrupting the structure of the
synapse99,103,106,107 and depleting synaptic vesicles108. Aβ
oligomers have also been proposed to impair LTP by binding to
the prion protein (PrP)109-111 although this is currently
controversial105,112. It is these small soluble amyloid oligomers
that are now the main focus of the Amyloid Hypothesis.

INTRACELLULAR AMYLOID. THE OTHER HALF?
While the discovery of soluble amyloid aggregates may

explain the acute effects of amyloid toxicity, it might not explain
more chronic changes of AD including alterations of neuronal
structure, neuronal loss, or the origin of plaques. One possible
inroad to understanding these changes comes from the study of
Aβ aggregation inside living cells.

The endosomal/ lysosomal system comprises a series of
intracellular compartments that are responsible for taking up
extracellular material and proteins from the cell surface.
Internalized material is transported to early endosomes, where
they are sorted, and then either recycled to the cell surface or
transported to late endosomes/ multivesicular bodies and then to
lysosomes (See Figure 4). A parallel system called macro-
autophagy (referred to hereafter as autophagy) provides a
parallel pathway for the degradation of long-lived intracellular
proteins and organelles such as mitochondria. Autophagy begins
with double-layered sheets of membrane arising from the
endoplasmic reticulum engulfing regions of cytoplasm to form
double walled autophagic vesicles. These vesicles may then fuse
with endosomes to acquire hydrolytic (digestive) enzymes, and
eventually fuse with lysosomes113,114.

Lysosomes are highly acidic (pH 4.5) compartments
containing > 80 hydrolytic (digestive) enzymes.115-118.
Lysosomes are recognized clinically because of more than 40
Lysosomal Storage Diseases (LSDs), which are usually caused
by the absence of a critical catabolic (digestive) enzyme resulting
in a buildup of undigested material in lysosomes. When they
involve the central nervous system, these diseases lead to
dementia and death119. Although lysosomes are traditionally
thought of as simply a waste disposal/digestive system, they are
now also recognized as a secretory compartment in a wide
variety of cell types including thyroid hormone, pulmonary
surfactant, albumin, cytotoxic compounds from lymphocytes and
neurtrophils120-122. Lysosomes are also able to fuse with the cell
membrane in order to repair damage to the cell surface123.

The endosomal/ lysosomal system plays a role in Aβ
production. This was best demonstrated in experiments in which
APP is labeled on the cell surface and followed as it is
internalized, cleaved into Aβ, and then secreted or retained
intracellularly124-128. Moreover, increasing the rate of
internalization of APP increases Aβ generation, and blocking
internalization reduces Aβ levels32,125,129-137. Autophagosomes
have also been demonstrated to contain APP, β- and γ-secretases
and to produce Aβ138, 139. Our own work has demonstrated that

APP and γ-secretase activity are highly enriched in
lysosomes140,141. We have also found that APP undergoes
unexpectedly rapid direct transport to the lysosome from the cell
surface142 and from internal compartments and these pathways
may play a role in Aβ production (unpublished observations)143.

Although the spontaneous intracellular accumulation of Aβ42
has long been recognized in cultured neuronal cells144-148, the
histological detection of intracellular Aβ in tissue has only been
recognized relatively recently. This is likely because the standard
techniques used to immunostain amyloid plaques rely on
concentrated formic acid; formic acid improves appearance of
plaques, but can wash away intracellular deposits149-151. Reliable
detection of intracellular Aβ therefore requires optimizal tissue
preparation techniques (antigen retrieval) along with careful
selection of highly specific, high affinity antibodies152 (reviewed
in153). Although it still has detractors154, the concept of
intracellular Aβ accumulation is now widely accepted153,155-157.
Figure 3 shows examples of extracellular and intracellular Aβ.

Intracellular accumulation of Aβ42 in the endosomal/
lysosomal system has been observed in transgenic Alzheimer’s
disease mice either before or accompanying cognitive
impairment, but well before the appearance of amyloid
plaques158-166. Intracellular Aβ42 has been shown in human

Figure 4: Overview of the endosomal/lysosomal and autophagy systems.
Proteins are synthesized in the ER and transit to the Golgi, where they
are glycosylated and exported. Cell surface proteins, transmembrane
proteins, and extracellular material are endocytosed to early endosomes
(EE). From there they may recycle to the cell surface or transit to the late
endosome (LE) and to the lysosome. APP can also be transported
directly from the cell surface to the lysosome. Macroautophagy begins
with membrane extending out of the ER, which becomes a Phagopore
that engulfs cytoplasm and organelles into double membrane bound
Autophagic Vacuoles. Autophagic Vacuoles can fuse with endosomes to
form Amphysomes or directly with lysosomes. Lysosomes that contain
residual indigestible autofluorescent material remain as lipofuscin
granules. Compartments implicated in Aβ production are marked * (it is
not known if Aβ is made in the late endosome and this compartment is
labeled *?). Compartments implicated in Aβ accumulation are shaded.
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neuropathological material in both Alzheimer’s disease and
Down’s Syndrome patients, where it also appears to fill neuronal
lysosomal compartments before the appearance of
plaques44,149,151,167-170. Recent studies using Laser Capture
Microdissection to collect groups of neurons from AD brains and
directly assay their Aβ content have confirmed that the
histological appearance of increased Aβ in fact reflects true
intracellular amyloid accumulation in human brain171,172.

The intracellular accumulation of Aβ may play a role in AD
pathology. This is because Aβ fibrils found in plaques are
preferentially nucleated by both lysosomal gangliosides
(complex lipids and carbohydrates) and the lysosomal pH of
4.5173-177. Furthermore, in-vitro experiments demonstrate that Aβ
fibril formation directly disrupts lipid membranes175,178. These
effects come together in experiments that show Aβ taken up
from the media can nucleate further Aβ aggregation155,179-182.
From there, it can directly disrupt the structures of neurons and
synapses183 or cause lysosomal rupture leading to cell
death184,185. Cell death is likely due to the release of digestive
enzymes into the cytoplasm, or their secondary activation of
programmed cell death pathways143,186.

The propensity for Aβ to aggregate in the acidic environment
of the lysosome suggests that extracellular amyloid plaques may
begin as amyloid ‘seeds’ in the lysosome. This idea is supported
by evidence that cell death begins only after intracellular Aβ42
is detected187 and that the amount of intracellular Aβ42 decrease
as plaques appear164,188. In addition, the presence of many active
lysosomal enzymes in plaques suggests that lysosomal contents
directly contributed to plaques189-192. Furthermore, remnants of
neuronal cell bodies are often seen in the center of mature ‘dense
core’ plaques suggesting that these cells were lysed to form the
beginnings of the plaque167,193. Recent experiments using
confocal microscopy in live mouse brains have demonstrated
that plaques can appear rapidly over 24 hours194, confirming that
plaques can appear acutely.

A different route to pathology in AD?
Abnormalities in the endosomal/lysosomal system have been

recognized in Alzheimer’s disease pathological material since
the early 1990’s. Even before the onset of clinical disease, there
is a marked increase in the number and size of lysosomes in
brain regions most vulnerable to Alzheimer’s disease. As
Alzheimer’s disease advances, lysosomes multiply and appear to
fill neurons115,191,195-197. Using electron microscopy, it is now
recognized that many of these compartments are autophagic
vacuoles that are also undergoing massive upregulation138,198. In
fact, the dystrophic neurites characteristic of AD are actually
neuronal processes filled predominantly with autophagic
vacuoles199. Autophagy in neurons is highly efficient and
autophagosomes are not normally observed, and their
appearance suggests a pathological failure of this system200.

The accumulation of lysosomes and autophagosomes in AD
is strikingly similar to the pathology seen in Lysosomal Storage
Diseases (LSDs)199. These diseases are also accompanied by a
prominent failure of autophagy119,199, and the failure of
autophagy can cause neurodegeneration on its own201 and may
represent a mode of cell death119. Conversely, the failure of the
lysosomal system in a number of LSD’s can also lead to elevated
levels of Aβ and tau; these include Niemann-Pick Type C202, Tay

Sach’s and Sandhoff’s disease203 and mucopolysaccharidosis204.
These effects can be partly replicated experimentally; inhibiting
lysosomal proteolysis causes buildup of autophagic vacuoles in
processes very similar to AD205, and overloading cells with
gangliosides inhibits APP degradation and increases Aβ
production203,206.

Recently, PSs have emerged as a potentially unifying factor
in these pathologies. PS1 is important for clearance of proteins
from endosomes207, for clearance of proteins by
autophagy199,208,209 and for trafficking through the endosomal
lysosomal system210. In a recent twist, PS mutations have been
shown to directly impair lysosomal function by preventing
lysosomal acidification211 suggesting that FAD might be in effect
a Lysosomal Storage Disease. Thus, PS mutations can lead to
cell death by two different pathophysiological processes. On the
one hand they are responsible for producing toxic Aβ species,
and on the other hand they block autophagy, impairing the cell’s
ability to clear Aβ (and perhaps tau).

Defects in autophagy and intracellular Aβ clearance may
represent a therapeutic target. This was shown dramatically in
recent experiments in which knocking-out an endogenous
lysosomal protease inhibitor (cystatin B) increases the clearance
of intracellular Aβ, reduces the number of autophagic vesicles,
decreases plaques, and prevents the development of cognitive
changes212. A number of ‘lysosomal modulatory’ drugs are under
study, that increase the levels of lysosomal enzymes and appear
to reduce Alzheimer’s pathology in a tissue slice model of
AD213,214.

Taken together, these data suggest that in addition to the acute
extracellular effects of Aβ oligomers, Aβ also accumulates
intracellularly as either a cause or a consequence of lysosomal
dysfunction, which results in neurons exhibiting neuro-
pathological changes reminiscent of classic LSD. These
intracellular changes can cause pathology independently from
the acute synaptotoxic effects of extracellular Aβ oligomers.
Amyloid plaque formation might be secondary to neuronal lysis
and release of intracellular Aβ.

CONCLUSIONS: WHERE TO FROM HERE?
Although the Amyloid Hypothesis has gone through a

number of twists and turns, amyloid still appears to be an
important causal factor in AD. However, the true proof of this
model will ultimately rest on whether amyloid-reducing
therapies can treat Alzheimer’s disease. A large number of
compounds are currently in clinical trials. Generally anti-
amyloid treatments fall into several classes, including
compounds that inhibit Aβ production (by inhibiting secretase
enzymes) and compounds which bind Aβ to impair aggregation,
neutralize toxicity or increase clearance215,216. These include
antibody-based strategies of active immunization and passive
immunization with monoclonal or polyclonal antibodies 87,217-222,
or small molecules such as Scyloinositol223. Although these
strategies are effective in treating mice, there have been a
number of high profile failures in clinical trials, including
Tarenflurbil and LY451039 (secretase modulators/ inhibitors)
and Alzmed (tramiprosate; an aggregation inhibitor)224. In
addition, we know from a discontinued Aβ vaccination trial in
humans, that clearance of Aβ plaques alone is not sufficient to
improve symptoms225,226.
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Some have taken these failures to mean that there is a
problem with the Amyloid hypothesis itself. Before coming to
that conclusion, we must first look at the limitations of these
trials. Currently, AD is a clinical diagnosis, made only after the
appearance of cognitive impairment. However, AD has a long
presyptomatic phase suggested to be years to decades227,228,
during which neuropathological changes and subtle cognitive
and imaging changes can be observed229-232. While the transition
from presymptomatic disease to AD is difficult to identify
clinically, it is important to be able to do so, because neuronal
loss begins at the earliest clinical changes of AD (transition from
a Clinical Dementia Rating scale score (CDR) of 0
(asymptomatic) to a CDR of 0.5 (very mild dementia)233,234.
Numerous biomarkers are under study to try to detect or predict
this transition to AD. These include CSF protein levels (tau and
Aβ), volumetric MRI to quantitate atrophy, and nuclear
medicine-based scans of brain glucose uptake and amyloid load
(e.g. Pittsburgh compound or PiB scans). Although these are
promising, they are still considered research tools227,235-238.

From animal studies, we know that even modest reductions in
Aβ production can dramatically reduce amyloid deposits and
improve memory165,223, but only early pathology may be
reversible87. In humans, a number of other factors will likely
complicate clinical applications. For example, amyloid found in
human brains is much more insoluble than amyloid produced in
mice,239 suggesting that it will be more difficult to clear. In
addition, the γ-secretase also processes a large number of other
important regulatory proteins (most notably the Notch receptor)
and inactivation is toxic in many tissues and lethal to embryos240-
242. A safe γ-secretase inhibitor will need to selectively block Aβ
production without impairing its other functions. It must also be
pointed out that the failed trials were first generation agents
which had significant technical limitations and were advanced to
phase 3 trials without being successful in phase 2 trials224.

More concerning, however, is that transgenic mice used to
develop these treatments generally do not exhibit the high levels
of neuronal loss seen in AD. In fact, it has been argued that
transgenic mice only model early AD, while the trials were
looking at established AD224. This fundamental mismatch
between the mouse models and the human patients might
therefore be the largest obstacle for the therapeutic application of
the Amyloid Hypothesis.

It may be that that anti-amyloid agents will only be effective
if they are used before irreversible damage has occurred, or in
other words before symptoms appear. Therapeutic trials may not
work without better diagnostics to allow identification of
patients with presymptomatic or very early AD,224. With the
oncoming tidal wave of patients, the cost of failure to treat or
cure Alzheimer’s disease will be staggering. If we are to affect
the course of AD, safer and more effective amyloid lowering
treatments will need to be coupled with better, earlier,
presymptomatic diagnosis.
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