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A NOTE ON ADDITIVE MAPPINGS

IN NONCOIWTATIVE FIELDS

J, VUKMAN

In this paper we prove a result concerning the Cauchy functional

equation, that is the functional equation fix + y) = fix) + fiy) ,

in skew fields with characteristic not two.

This research has been inspired by the work of S. Kurepa [2].

THEOREM. Let F be a skew field of characteristic not two and let

f:F + F be an additive mapping such that the relation

(1) f(a) = -a2f(a~1)

holds for all nonzero a e. F . Then we have f(a) = 0 for all a e F .

Proof. We intend to prove that

(2) (ab - ba)af(a) = a(ab - ba)f(a)

holds for all pairs a,b e F . For the proof of (2) we need several steps.

The first step is to prove that

(3) f(a2) = 2af(a)

holds for all a e F . Since the characteristic of the field is not two

it follows immediately that

(4) f(l) = 0 .
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We have also f(0) = 0 . Hence we may assume that a ^ 0 and a / 1

In this case we have

a = a - (a + (1 - a) )

Then from the additivity of / and from (1) it follows that

f(a) = f(a) - fda1 + (1 - a)'1)'1) = f(a)

+ (a'1 + (1 - a)~1)~2f(a'1 + (1 - a)'1)

= f(a) - (1 - a)2a2a2f(a) - a(l - a)2 (1 - a)~2f(l - a)

= f(a) - (1 - a)2f(a) + af(a) = 2af(a) .

Thus the relation (3) is proved. Replacing a by a + b in (3) one

obtains easily that

(5) f(ab + ba) = 2af(b) + Zbf(a), a,b e F .

Let us prove that

(6) f(aba) = a2f(b) + 3abf(a) - baf(a)

holds for all pairs a3b e F . From (5) it follows that

f(a(db + ba) + (db + ba)a) = 2af(ab + ba) + 2(ab + ba)f(a)

= 4a2f(b) + 6abf(a) + 2baf(a) .

On the other hand we obtain, using (2) and (5), that

2 2
f(a(ab + ba) + (db + ba)a) = f(a b + ba + 2aba)

= 2a2f(b) + 4baf(a) + 2f(aba).

By comparing these equations, we obtain relation (6). Let us

write a + a instead of a in (6). Then we have

f((a + a)b(a + a)) = (a + a)2 fib) + 3(a + o)bf(a + a)

- b(a + o)f(.a + o)

and

f(aba) + f(abo) + f(abo + aba) = a2f(b) + 3abf(a)

- baf(a) + o2f(b) + Zobf(c) - bof(o) + (aa + ca)f(b)

+ Zdbf(c) + 3abf(a) - baf(a) - baf(a) .
Using (6) we obtain

(7) f(abo + aba) = (aa + ca)f(b) + 3abf(a) + 3ebf(a) -baf(a)-baffa)

https://doi.org/10.1017/S0004972700003804 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700003804


501
Additive mappings

where a3baa are arbitrary elements from F . All is prepared to prove

that the relation

(8) (ab-ba)f(db) = a(ab -ba)f(b) + b(ab-ba)f(a)

holds for all pairs a,b e F . Let us write A for fCdb(db) + (db)ba) .

Then from (7) we obtain

A = (a(ab) + (db)a)f(b) + 3abf(ab) - baf(ab) + 3ab2f(a) - bdbf(a) .

2 2
On the other hand since A = f((db) + ab a) we obtain, using (3)

and (6), that

A = f((ab)2) + f(ab2a) = 2abf(ab) + a2f(b2) + 3ab2f(a)

- b2af(a) = 2dbf(ab) + 2a2bf(b) + 3ab2f(a) - b2af(a) .

By comparing these equations, we obtain (8). Let us write a + a

instead of a in (8). We have

((a + a)b - b(a + o))f((a + o)b)

= (a + a) ((a + o)b - b(a + a))fib)

+ b((a + o)b - b(a + o))f(a + a)

which implies

((ab - ba) + (db - ba))(f(db) + f(ab))

= (a(ab - ba) + a(ab - ba) + a(ob - ba) + o(db - ba))fCb)

+ (b(db - ba) + b(ab - bc))(f(a) + f(c)) .

Now it is obvious that from (8) we obtain

(ab - bc)f(ab) + (ab - ba)f(ab) = o(ab - ba)f(b)

+ a(cb - ba)f(b) + b(ob - ba)f(a) + b(ab - ba)f(a) .

If we put b = a in the relation above, we obtain

o

(aa - ac)f(a ) = 2a(aa - aa)f(a)

which proves (2) since (3) holds and since the characteristic of the

field is not two.

Relation (2) makes it possible to use Lemma 1.1.9 of [7]. Let us

assume that f(a) ̂  0 for some a e F . Then from (2) it follows that

(ab - ba)a = a(ab - ba) holds for all b e F . Hence since a commutes

with all its own commutators ab - ba we can conclude that a is in the

centre of F by Lemma 1.1.9 in CM. Let us take b e F which is not in

the centre of F . Then a + b is not in the centre. Now we have

f(b) = 0 and f(a + b) = 0 } otherwise b and a + b would be in the

centre of F . Since / is additive we have finally
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0 = f(a + b) = f(a) + fib) = f(a) which contradicts f(a) ? 0 . The

proof of the theorem is complete.

As we have mentioned, this work has been inspired by the work of

S. Kurepa [2] where additive mappings with the additional requirement

(1) on the real field are considered. One can prove that in the case

where / is an additive mapping with the addition requirement (1) on a

commutative field with characteristic not two it follows that f is a

derivation (that is, an additive mapping such that f(ab) = f(a)b + af(b)

tor all a and b ). This is obvious from the beginning of the proof of

the Theorem (see also [2]). Therefore, since it is well-known that there

exist commutative fields with nonzero derivations, the assumption that the

field is noncommutative is essential in the Theorem.
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