A NOTE ON ADDITIVE MAPPINGS

IN NONCOMMUTATIVE FIELDS

J. Vukman

In this paper we prove a result concerning the Cauchy functional equation, that is the functional equation $f(x+y)=f(x)+f(y)$,
in skew fields with characteristic not two.
This research has been inspired by the work of S. Kurepa [2].
THEOREM. Let F be a skew field of characteristic not two and let $f: F \rightarrow F$ be an additive mapping such that the relation

$$
\begin{equation*}
f(a)=-a^{2} f\left(a^{-1}\right) \tag{1}
\end{equation*}
$$

holds for all nonzero $a \in F$. Then we have $f(a)=0$ for all $a \in F$.
Proof. We intend to prove that
(2)

$$
(a b-b a) a f(a)=a(a b-b a) f(a)
$$

holds for all pairs $a, b \in F$. For the proof of (2) we need several steps. The first step is to prove that

$$
\begin{equation*}
f\left(a^{2}\right)=2 a f(a) \tag{3}
\end{equation*}
$$

holds for all $a \in F$. Since the characteristic of the field is not two it follows immediately that
(4)

$$
f(1)=0 .
$$

[^0]Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/87 $\$ \mathrm{~A} 2.00+0.00$.

We have also $f(0)=0$. Hence we may assume that $a \neq 0$ and $a \neq 1$.
In this case we have

$$
a^{2}=a-\left(a^{-1}+(1-a)^{-1}\right)^{-1}
$$

Then from the additivity of f and from (1) it follows that

$$
\begin{aligned}
& f\left(a^{2}\right)=f(a)-f\left(\left(a^{-1}+(1-a)^{-1}\right)^{-1}\right)=f(a) \\
& +\left(a^{-1}+(1-a)^{-1}\right)^{-2} f\left(a^{-1}+(1-a)^{-1}\right) \\
& =f(a)-(1-a)^{2} a^{2} a^{-2} f(a)-a^{2}(1-a)^{2}(1-a)^{-2} f(1-a) \\
& =f(a)-(1-a)^{2} f(a)+a^{2} f(a)=2 a f(a) .
\end{aligned}
$$

Thus the relation (3) is proved. Replacing a by $a+b$ in (3) one obtains easily that

$$
\begin{equation*}
f(a b+b a)=2 a f(b)+2 b f(a), a, b \in F \tag{5}
\end{equation*}
$$

Let us prove that

$$
\begin{equation*}
f(a b a)=a^{2} f(b)+3 a b f(a)-b a f(a) \tag{6}
\end{equation*}
$$

holds for all pairs $a, b \in F$. From (5) it follows that

$$
\begin{aligned}
& f(a(a b+b a)+(a b+b a) a)=2 a f(a b+b a)+2(a b+b a) f(a) \\
& =4 a^{2} f(b)+6 a b f(a)+2 b a f(a)
\end{aligned}
$$

On the other hand we obtain, using (2) and (5), that

$$
\begin{aligned}
& f(a(a b+b a)+(a b+b a) a)=f\left(a^{2} b+b a^{2}+2 a b a\right) \\
& =2 a^{2} f(b)+4 b a f(a)+2 f(a b a)
\end{aligned}
$$

By comparing these equations, we obtain relation (6). Let us write $a+c$ instead of a in (6). Then we have

$$
\begin{aligned}
& f((a+c) b(a+c))=(a+c)^{2} f(b)+3(a+c) b f(a+c) \\
& -b(a+c) f(a+c)
\end{aligned}
$$

and

$$
\begin{aligned}
& \quad f(a b a)+f(c b c)+f(a b c+c b a)=a^{2} f(b)+3 a b f(a) \\
& -b a f(a)+c^{2} f(b)+3 c b f(c)-b c f(c)+(a c+c a) f(b) \\
& +3 a b f(c)+3 c b f(a)-b a f(c)-b c f(a) .
\end{aligned}
$$

$$
\begin{equation*}
f(a b c+c b a)=(a c+c a) f(b)+3 a b f(c)+3 c b f(a)-b a f(c)-b c f(a) \tag{7}
\end{equation*}
$$

where a, b, c are arbitrary elements fxom F. All is prepared to prove that the relation

$$
\begin{equation*}
(a b-b a) f(a b)=a(a b-b a) f(b)+b(a b-b a) f(a) \tag{8}
\end{equation*}
$$

holds for all pairs $a, b \in F$. Let us write A for $f(a b(a b)+(a b) b a)$. Then from (7) we obtain

$$
\begin{aligned}
A= & (a(a b)+(a b) a) f(b)+3 a b f(a b)-b a f(a b)+3 a b^{2} f(a)-b a b f(a) \\
& \text { On the other hand since } A=f\left((a b)^{2}+a b^{2} a\right) \text { we obtain, using (3) }
\end{aligned}
$$

and (6), that

$$
\begin{aligned}
& A=f\left((a b)^{2}\right)+f\left(a b^{2} a\right)=2 a b f(a b)+a^{2} f\left(b^{2}\right)+3 a b^{2} f(a) \\
& -b^{2} a f(a)=2 a b f(a b)+2 a^{2} b f(b)+3 a b^{2} f(a)-b^{2} a f(a)
\end{aligned}
$$

By comparing these equations, we obtain (8). Let us write $a+c$ instead of a in (8). We have

$$
\begin{aligned}
& ((a+c) b-b(a+c)) f((a+c) b) \\
& =(a+c)((a+c) b-b(a+c)) f(b) \\
& +b((a+c) b-b(a+c)) f(a+c)
\end{aligned}
$$

which implies

$$
\begin{aligned}
& ((a b-b a)+(c b-b c))(f(a b)+f(c b)) \\
& =(a(a b-b a)+c(a b-b a)+a(c b-b c)+c(c b-b c)) f(b) \\
& +(b(a b-b a)+b(c b-b c))(f(a)+f(c))
\end{aligned}
$$

Now it is obvious that from (8) we obtain

$$
\begin{aligned}
& (c b-b c) f(a b)+(a b-b a) f(c b)=c(a b-b a) f(b) \\
& +a(c b-b c) f(b)+b(c b-b c) f(a)+b(a b-b a) f(c) .
\end{aligned}
$$

If we put $b=a$ in the relation above, we obtain

$$
(c a-a c) f\left(a^{2}\right)=2 a(c a-a c) f(a)
$$

which proves (2) since (3) holds and since the characteristic of the field is not two.

Relation (2) makes it possible to use Lemma 1.1 .9 of [1]. Let us assume that $f(a) \neq 0$ for some $a \in F$. Then from (2) it follows that $(a b-b a) a=a(a b-b a)$ holds for all $b \in F$. Hence since a cormutes with all its own commutators $a b-b a$ we can conclude that a is in the centre of F by Lemma 1.1.9 in [1]. Let us take $b \in F$ which is not in the centre of F. Then $a+b$ is not in the centre. Now we have $f(b)=0$ and $f(a+b)=0$, otherwise b and $a+b$ would be in the centre of F. Since f is additive we have finally
$0=f(a+b)=f(a)+f(b)=f(a)$ which contradicts $f(a) \neq 0$. The proof of the theorem is complete.

As we have mentioned, this work has been inspired by the work of S. Kurepa [2] where additive mappings with the additional requirement (1) on the real field are considered. One can prove that in the case where f is an additive mapping with the addition requirement (l) on a commutative field with characteristic not two it follows that f is a derivation (that is, an additive mapping such that $f(a b)=f(a) b+a f(b)$ for all a and b). This is obvious from the beginning of the proof of the Theorem (see also [2]). Therefore, since it is well-known that there exist commutative fields with nonzero derivations, the assumption that the field is noncommutative is essential in the Theorem.

References

[1] I.N. Herstein, Rings with involution, (University of Chicago Press, 1976).
[2] S. Kurepa, "The Cauchy functional equation and scalar product in vector spaces", GZas. Mat.-Fiz. Astr. 19 (1964), 23-36.

University of Maribor
VEKŠ
Razlagova 14
62000 MARIBOR
YUGOSLAVIA

[^0]: Received 23 February 1987. This research was supported by the Research Council of Slovenia. The author wishes to express his sincere thanks to Professor T.M.K. Davison for helpful conversations.

