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Abstract. High contrast imaging from space must overcome photon noise of the diffracted star
light and scattered light from optical components defects. The very high contrast required (up
to 10−10 for terrestrial planets) puts severe requirements on the wavefront control system, as
the achievable contrast is limited by the quality of the wavefront. In this paper we present a
closed loop correction method for the shaped pupil coronagraph to minimize the energy in a
pre-defined region in the image where terrestrial planets would be found. The reconstruction
part uses three intensity measurements in the image plane with a pinhole added to the shaped
pupil for diversity. This method has been shown in simulations to be effective in the presence
of photon noise, deformable mirror modeling errors and overcoming defective actuators in the
deformable mirror.

Keywords. instrumentation: adaptive optics.

1. Introduction
Recently, the problem of high-contrast imaging (typically using a coronagraph) has

become of increasing interest. Here, we refer to the problem of imaging a very dim point
source very near a much brighter point or extended source (star). There are numerous
missions planned for both ground and space to search for planets and other objects
close to nearby stars [Beichman (1999)]. Our group at Princeton University has been
pioneering the Shaped Pupil Coronagraph (SPC) [Kasdin (2003)]. This imaging system
uses a binary apodization mask (shaped pupil) to shape the point spread function (PSF)
such that a predefined region in the image plane will have the high contrast needed. The
very high contrast required (up to 10−10 for terrestrial planets) puts severe requirements
on the wavefront control system, as the achievable contrast is limited by the quality of
the wavefront.

The performance of conventional AO systems typically has been limited by the accu-
racy of the wavefront phase estimation (known as phase reconstruction) and the ability
of the deformable mirror (DM) to achieve the arbitrary shapes required [Tyson (2000)].
However, as improvements have been made in both these areas, the ability to achieve
the deep nulls required for high contrast imaging has still been stalled [Poyneer (2004)].
We showed in [Give’on (2005)] that this is due to what we refer to as frequency folding.
We demonstrated that even with a perfect estimation of the wavefront and a DM limited
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only by the highest spatial frequency it can achieve, conventional phase conjugation is
limited by intermodulation products of its high frequency content.

In this paper we present a closed loop correction method for the shaped pupil coro-
nagraph to minimize the energy in a pre-defined region in the image where terrestrial
planets would be found. The correction part of the method is based on [Borde’ (2005)].
The innovative reconstruction part uses three intensity measurements in the image plane
with a pinhole added to the shaped pupil for diversity.

2. Wavefront Reconstruction – The “peak-a-boo” Algorithm
The electric field at the image plane, in the presence of aberrations in the system

is a complex valued function. The measured quantity by the CCD is proportional to
the intensity of the field where the complex field information is lost. The wavefront
reconstruction problem is to recover of the real and imaginary parts of the complex field
at the image plane.

Given a shaped pupil described by A(x, y), The electric field in the image plane for
the aberrated system operating in monochromatic light with wavelength λ and a focal
length f , is given by:

E(ξ, η) =
1

λf

∫ ∞

−∞

∫ ∞

−∞
A(x, y)eα(x,y)+ 2π

λ β(x,y)e−i 2π
λ f (xξ+yη)dxdy (2.1)

=
1

λf

∫ ∞

−∞

∫ ∞

−∞
A(x, y) [1 + Φ(x, y)] e−i 2π

λ f (xξ+yη)dxdy

where we define

Φ(x, y) = eα(x,y)+ 2π
λ β(x,y) − 1 (2.2)

which can be written as:

E(ξ, η) = E0(ξ, η) + EΦ(ξ, η) (2.3)
= E0(ξ, η) + ER

Φ (ξ, η) + iEI
Φ(ξ, η)

where ER
Φ (ξ, η) and EI

Φ(ξ, η) are the real and imaginary parts of EΦ(ξ, η), respectively,
and

E0(ξ, η) =
1

λf

∫ ∞

−∞

∫ ∞

−∞
A(x, y)e−i 2π

λ f (xξ+yη)dxdy (2.4)

EΦ(ξ, η) =
1

λf

∫ ∞

−∞

∫ ∞

−∞
A(x, y)Φ(x, y)e−i 2π

λ f (xξ+yη)dxdy

Since E0(ξ, η) is theoretically known (since we know A(x, y)), the reconstruction problem
is to recover ER

Φ (ξ, η) and EI
Φ(ξ, η).

The diversity for image plane measurements suggested here is a pinhole in the center
of the shaped pupil and using the actuators on the DM that are aligned with the pinhole
location to change the phase across it. Let the complex valued function hk (x, y) (k =
1, 2, 3) denote the electric field due to the pinhole and the phase difference across it
induced by the DM, then the corresponding electric field at the image plane in each case,
is given by:

Ek (ξ, η) =
1

λf

∫ ∞

−∞

∫ ∞

−∞
{A(x, y) [1 + Φ(x, y)] + hk (x, y)} e−i 2π

λ f (xξ+yη)dxdy (2.5)

= E0(ξ, η) + ER
Φ (ξ, η) + iEI

Φ(ξ, η) + ∆k (ξ, η)
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where,

∆k (ξ, η) =
1

λf

∫ ∞

−∞

∫ ∞

−∞
hk (x, y)e−i 2π

λ f (xξ+yη)dxdy (2.6)

and the three PSF’s are given by:

Ik = E∗
k Ek (2.7)

then, if we let

G12 = I2 − I1 − ∆∗
2∆2 + ∆∗

1∆1 − 2�{E0∆2} + 2�{E0∆1} (2.8)
G13 = I3 − I1 − ∆∗

3∆3 + ∆∗
1∆1 − 2�{E0∆3} + 2�{E0∆1}

A1 = 2 (�{∆2} − �{∆1})
A2 = 2 (�{∆2} − �{∆1})
A3 = 2 (�{∆3} − �{∆1})
A4 = 2 (�{∆3} − �{∆1})

then the real and imaginary parts of EΦ(ξ, η) are given by:

ER
Φ =

A4G12 − A2G13

A1A4 − A2A3
, EI

Φ =
A1G13 − A3G12

A1A4 − A2A3
(2.9)

3. Wavefront Correction
Let the DM be modeled with N ×N actuators on a square grid and its surface, φ(x, y),

following the super position principle,

φ(x, y) =
N −1∑
k=0

N −1∑
l=0

ak,lfk,l(x, y) (3.1)

where ak,l is the height of the actuator on the kth row and lth column and fk,l(x, y) is
the DM’s distinct influence function, centered at the actuator’s position.

Suppose we add this DM in the pupil plane to the expression in Eq. 2.2, assuming a
first order approximation for its effect and neglecting any cross terms between with DM
and the aberration. Furthermore, assuming the star light has been suppressed at the high
contrast region (either using a coronagraph or a shaped pupil), then the electric field in
the high contrast region at the image plane is given by

ÊH(ξ, η) = ÂΦ(ξ, η) + i
2π

λ
Âφ(ξ, η) (3.2)

where H denotes the high contrast region and the hat represents the Fourier Transform.
Following the correction method described in [Borde’ (2005)] which minimizes the total
intensity of light in the high contrast region, the condition for a stationary point with
respect to the heights of the actuators is given by:

N −1∑
m=0

N −1∑
n=0

am,n�
{〈

Âfm,n , Âfk,l

〉}
=

λ

2π
�

{〈
ÂΦ, Âfk,l

〉}
(3.3)

for all k, l = 1, 2, . . . , N . This condition can be put in a matrix notation and solved for the
heights of the actuators. The resulting DM configuration will minimize the total intensity
of light assuming a first order approximation for the DM. In order to take into account
the non-linearities in the system, we may close the loop and iterate. The following section
shows the simulation of this closed loop system.
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4. Simulation
Figure 1 shows the pupil used in these simulations. The image on the left is the shaped

pupil with its ideal PSF in the center (All PSF images are given in log scale. The axes
are in units of λ/D). In order to simulate the correction method described in this paper,
system aberrations were added to the model as described in Eq. 2.2. The phase aberration
was simulated with RMS = λ/100 and a 1/f3/2 power law (f in this case is the spatial
frequency). The amplitude aberration was simulated with RMS = 0.005 and a 1/f2

power law. A pinhole with a diameter of 5∗10−4m was added at the center of the shaped

Figure 1. The shaped pupil (left) used in the simulations here and its corresponding ideal PSF
(center) and the PSF of the system with aberrations (right). As seen in the figure on the right
the aberrations in the system effect the contrast in the image.

pupil, as described in Eq. 2.6. The DM actuators, aligned with the pinhole were used
to apply three different phase differences across the pinhole. The phase differences used
in this simulation were 0, λ/3 and 2λ/3. The following figure shows the PSF’s of the
system, simulating this diversity:

Figure 2. The three different images taken for the reconstruction part. As seen in the images,
the effect of the pinhole is to add more light everywhere in the image plane. This is the reason
this diversity performs well.

Simulations of this method has been successful in reconstructing the real and imaginary
parts of EΦ(ξ, η). The error in reconstruction (its absolute valued squared) is of the order
of 10−25 is the dark hole region.

Figure 3 shows the PSF at the end of each iteration for the closed loop system. “Iter-
ation 0” refers to the PSF of the system before the correction is applied. The DM was
modeled with 52× 52 actuators and the correction was on one side of the PSF (in order
to correct for both amplitude and phase), up to 25 λ/D. As seen in the figure, in this
ideal case, the correction converges after the third iteration.
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Figure 3.

5. Algorithm Robustness
The simulation shown above describes the ideal case. This section shows the simulation

results of the closed loop method described in this paper in non-ideal cases. The first
case is when the measured PSF follows a Poisson statistics for the arrival of photons at
the image plane. The second case is when the shape of the DM is not exactly a sum
of influence functions as assumed in the correction part (see Eq. 3.1) but an average
between this model and a spline interpolation between the actuators heights. The third
case is when some of the actuators fail and the DM surface at the location of the failed
actuators is pinned to the substrate. Figure 4 compares the convergence of these three
non-ideal cases to one another and to the ideal case.

The curve labeled “Ideal” describes the performance of the closed loop system when
all the actuators are active, the DM model is exact and the measurement of the three
images is deterministic. The curve labeled “Dead actuators” refers to the case when two
actuators that are aligned with the open area of the shaped pupil are pinned to the
substrate of the DM. The curve labeled “DM modeling error” refers to the case when the
surface of the DM is a spline interpolation between the actuators’ heights, rather than
a sum of influence functions. The curve labeled “Photon noise” refers to the case where
the PSF is the expected value of photons arriving at each CCD pixel. The measurement
of the PSF is Poisson distributed. The curve labeled “All” refers to the combination case
of all three modification to the model of the system.
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Figure 4. A plot comparing the convergence of the closed loop correction method in the presence
of photon noise, deformable mirror modeling errors and defective actuators in the deformable
mirror. The closed loop system was simulated in each case independently and then in the case
of all modifications in effect at the same time.

As seen in the plots, the three model modifications, in the distinct cases, caused the
closed loop system to converge in several more iterations. In the case of photon noise,
ringing occurs in the convergence, which is expected from the stochastic nature of the
system.

6. Summary and Future Work
This paper presents an innovative reconstruction method as part of a closed loop

wavefront correction system for shaped pupil coronagraphs. This method has been shown
in simulations to be effective in the presence of photon noise, deformable mirror modeling
errors and overcoming defective actuators in the deformable mirror. We hope to test this
reconstruction method in the lab in the near future and ultimately close the loop around
it with DMs.
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