J. Austral. Math. Soc. 19 (Series A) (1975), 309-311.

AN EXAMPLE FOR HOMOTOPY COMMUTATIVITY OF H-SPACES

F. D. WILLIAMS

(Received 7 September 1973)

Communicated by G. Versik

In this note we give an example of a homotopy commutative *H*-space *X* that is not dominated by any homotopy associative, homotopy commutative *H*-space. In particular, *X* is not dominated by $\Omega^2 S^2 X$.

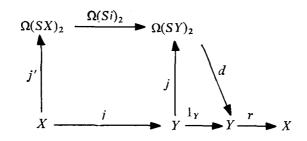
We recall that a space X is *dominated* by a space Y provided that there exists maps $i: X \to Y$ and $r: Y \to X$ such that $r \circ i$ is homotopic to the identity map of X (written $r \circ i \sim 1_X$). We let Ω and S denote the loop space and suspension functors, respectively.

If P denotes a homotopy property, then we call a functor T a universal example for P provided that a space X possesses property P if and only if X is dominated by T(X). For example, X is an H-space if and only if it is dominated by ΩSX ; hence ΩS is a universal example for the property of being an H-space. For another example, let X be an H-space. The projective plane of $X, P_2(X)$, is defined to be the mapping cone of the Hopf construction $X * X \to SX$. Then X is homotopy associative if and only if it is dominated by $\Omega P_2(X)$, since in that case the Hopf construction extends to a fibration over $P_2(X)$, Stasheff (1963). It is conjectured in Stasheff (1970) that an H-space X is homotopy commutative if and only if it is dominated by $\Omega^2 S^2 X$. We shall show that this conjecture is false by showing that there is no functor to the category of homotopy commutative, homotopy associative H-spaces that serves as universal example for homotopy commutativity. Our example is based on the following dfact.

THEOREM. Suppose that a space X is dominated by a homotopy associative, homotopy commutative H-space Y. Then X is dominated by $\Omega(SX)_2$. (Here $(SX)_2$ denotes $SX \times SX$ modulo the relation ~ given by $(*, w) \sim (w, *)$, $w \in SX$, * the basepoint of SX.)

Supported in part by a National Science Foundation Grant.

PROOF. If Y is as hypothesized, then it was shown in Williams (1971) that Y is dominated by $\Omega(SY)_2$. Let $i: X \to Y$, $r: Y \to X$ be such that $r \circ i \sim 1_X$ and $j: Y \to \Omega(SY)_2$, $d: \Omega(SY)_2 \to Y$ be such that $d \circ j \sim 1_Y$. Let $j': X \to \Omega(SX)_2$ denote the inclusion. Then from the diagram



We see that

 $(r \circ d \circ \Omega(Si)_2) \circ j' \sim r \circ d \circ j \circ i \sim r \circ i \sim 1_x.$

REMARK 1. It was shown in Williams (1971) that $\Omega(SY)_2$ does serve as universal example for homotopy commutativity for homotopy associative *H*-spaces (This fact also follows from Husseini (1963) and from Stasheff (1961).)

REMARK 2. For a space X to be a homotopy commutative H-space, it is sufficient that it be dominated by $\Omega(SX)_2$, Williams (1971).

EXAMPLE. Our example is based on ideas in Adams (1961). Let $m: S^3 \times S^3 \to S^3$ be an *H*-space multiplication whose separation element for homotopy commuta tivity is of order 2 or 4 in $\pi_6(S^3)$, James (1955). (Such a multiplication is no homotopy associative.) Let X be the space obtained by attaching cells to S^3 to kill the 2-component of $\pi_k(X)$ in dimensions ≥ 6 . The multiplication on S^3 extends to a homotopy commutative multiplication on X, since the obstruction lie in vanishing cohomology groups. Observe that $\pi_9(X) = \pi_9(S^3) \approx Z_3$. Further the 3-component of $\pi_9(\Omega^2 S^2 X)$ is isomorphic to the 3-component of $\pi_9(\Omega^2 S^5) = \pi_{11}(S^5) = Z_2$. Since $\Omega^2 S^2 X = \Omega(\Omega S(SX)$ and $\Omega S(SX)$ is obtained from $(SX)_2$ by attaching cells in dimensions greater that eleven, James (1955), $\pi_9(\Omega SX)_2) \approx \pi_9(\Omega^2 S^2 X)$. Since Z_3 cannot be a subgroup of a trivial group, X cannot be dominated by $\Omega(SX)_2$.

In conclusion, we remark that X provides an example similar to that of Adams (1961) of a homotopy vommutative, non-homotopy associative H-space

References

- J. F. Adams (1961), 'The sphere, considered an as H-space mod p', Quart. J. Math., Oxford (2 12, 52-60.
- S. Y. Husseini, (1963) 'Constructions of the reduced product type', Topology 2, 313-237.

I. M. James (1969), 'Products on spheres' Mathematika 6, 1-13.

I. M. James (1955), 'Reduced product spaces', Ann. of Math. 62, 170-197.

J. D. Stasheff (1963), 'Homotopy associativity of H-spaces I', Trans. Amer. Soc. 108, 275-292.

J. D. Stasheff (1970), H-spaces from a homotopy point of view, Lecture Notes in Mathematics, No. 161 (Springer Verlag, 1970).

J. D. Stasheff (1961), 'On homotopy Abelian H-spaces', Proc. Cambridge Philos. Soc. 57, 734-747.

F. D. Williams (1971), 'A theorem on homotopy commutativity', Michigan Math. J. 18, 51-53.

New Mexico State University Las Cruces New Mexico 88003 U. S. A.

[3]

311