FIRST DETECTION OF 13 CO J = 3 \rightarrow 2 IN NGC 253

W. F. Wall, D. T. Jaffe University of Texas, Astronomy Dept. Austin, Texas, USA 78712

ABSTRACT. The detected ¹³CO J = 3 \rightarrow 2 line in the center of the Sc galaxy NGC 253, along with lower frequency line data, provide further evidence that the starburst nucleus contains warm (T_K \sim 100 K), dense (n(H₂) \sim 10⁴-10⁵ cm⁻³) molecular gas.

1. Introduction:

NGC 253 is a nearby (D = 2.5 Mpc, de Vaucouleurs 1978) highly inclined (i = 78?5, Pence 1981) Sc galaxy undergoing a starburst. To explore the density and temperature structure in NGC 253's molecular gas, we have made observations of the J = 3 \rightarrow 2 (at the CSO), J = 2 \rightarrow 1 (at the JCMT and the SEST) lines of ¹³CO and ¹²CO – all with 20-24" resolution.

2. Results:

The results are as follows:

- (1) The ¹³CO J = $3 \rightarrow 2$ line originates in a $\leq 15''$ source while emission from the other lines is consistent with the $39'' \times 12''$ bar observed by Canzian *et al.* (1988).
- (2) The ¹³CO J = $3 \rightarrow 2/^{13}$ CO J = $2 \rightarrow 1$ ratio (= 2) implies warm (T_K ~ 100K), dense (n(H₂) $\approx 10^4 10^5$ cm⁻³) molecular gas at (0,0).
- (3) Spatial variation of the ¹³CO J = $3 \rightarrow 2/{}^{13}$ CO J = $2 \rightarrow 1$ ratio is likely due to density, as well as temperature, variations. HCO⁺ and HCN observations (Rieu *et al.* 1989) support this conclusion. Density variations can also explain the low 12 CO J = $3 \rightarrow 2$ to 12 CO J = $2 \rightarrow 1$ ratio observed $\gtrsim 30''$ to the northeast (n(H₂) $\lesssim 10^4$ cm⁻³).
- (4) The ¹³CO J = 2 \rightarrow 1/¹²CO J = 2 \rightarrow 1 ratio suggests a high ¹³CO/¹²CO abundance ratio (i.e. \sim 1/10), but opacity inhomogeneities along the line of sight through NGC 253 could yield high apparent ¹³CO/¹²CO abundances despite lower actual abundance.
- (5) $M(H_2) \approx 10^7 M_{\odot}$ for the central 40-50" diameter, when scaled for distance disagreements, is about 5 times smaller than the mass estimate of Scoville *et al.* (1985).

References:

Canzian, B., Mundy, L. G., Scoville, N. Z. 1988, Ap. J. Lett., 181, L27.
de Vaucouleurs, G. 1978, Ap. J., 224, 710.
Pence, W. D. 1981, Ap. J., 247, 473.
Rieu, N.-Q., Nakai, N., Jackson, J. M. 1989, Astron. Astrophys., 220, 57.
Scoville, N. Z., Soifer, B. T., Neugebauer, G., Young, J. S., Matthews, K., Yerka, J. 1985, Ap. J., 289, 129.

332

F. Combes and F. Casoli (eds.), Dynamics of Galaxies and Their Molecular Cloud Distributions, 332. © 1991 IAU. Printed in the Netherlands.