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For the Stokes number based on the Kolmogorov time scale StK up to O(102), the
particle subgrid stress (particle stress) in the volume-average framework is studied by
comparing the fluid residual stress, the particle Smagorinsky model and the particle
scale-similarity model. To obtain the numerical database of the particle-laden turbulence,
two-way coupling direct numerical simulation is carried out with isotropic and anisotropic
forcing conditions. As the particle stress is related to the local flow structure, which is not
reflected by StK , a new Stokes number StR is introduced to extract the effect of the intensity
of the fluid velocity fluctuation in the averaging volume. The degrees of agreement of the
principal axes (eigenvectors) of the particle stress models to those of the fully resolved
particle stress are regarded as functions of StR regardless of the averaging volume size.
The fluid residual stress model shows the highest degree of agreement over a small StR
range for both of the forcing cases, and similar predominance is also observed for the
correlation coefficient reflecting the magnitude of the particle stress. The effects of StR,
StK , the averaging volume size and the Reynolds number on the model coefficients are
investigated based on the intensities of the deviatoric and isotropic parts of the fully
resolved particle stress and its models. The Stokes number StR is found to be an essential
factor to determine the model coefficients, as each effect is extracted reasonably by fixing
StR.

Key words: particle/fluid flow, turbulence modelling

1. Introduction

Dilute particle-laden flow plays an important role in industrial equipment such as
pulverised coal boilers and cyclone separators, as well as in environmental phenomena
such as dust storms and the transport of particulate matter. Because it is computationally
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costly to predict the behaviour of all individual particles, it is necessary to establish
an averaged transport equation for the particles. If the Stokes number based on the
Kolmogorov time scale StK is much smaller than 1, then the difference between the
particle velocity and the fluid velocity can be described theoretically (Rani & Balachandar
2003; Shotorban & Balachandar 2007, 2009). For higher StK , the ensemble average of
the transport equations of Eulerian formalism is often employed, and the volume average
is also considered (Fox 2012). For both ensemble- and volume-averaging approaches,
quantities such as the particle velocity are decomposed into averaged and residual parts.
The particle subgrid stress (hereafter referred to as particle stress) term based on the
residual particle velocity appears in the averaged momentum equation of the particles. The
motion of the particles is affected by the properties of the particles and the background
turbulence, and it is challenging to close the particle stress term.

The ensemble-averaged equations are suitable for coupling with the direct numerical
simulation (DNS) or Reynolds-averaged Navier–Stokes (RANS) simulations of the fluid
phase because the average particle velocity corresponds to the information at a point
in space, and the averaging volume is not specified. The dispersed (particulate) phase
equations are derived based on the Boltzmann-type kinetic equation with probability
density function (p.d.f.) of the particle position and velocity (Février, Simonin & Squires
2005; Simonin et al. 2006; Fox 2012, 2014; Masi et al. 2014; Innocenti et al. 2019;
Sabat et al. 2019). This p.d.f.-based modelling is suitable for constructing the transport
equation of the particle stress and higher-order quantities as well as the continuity and
momentum equations, although some closure assumptions are inevitable in all cases (Fox
2012). Kaufmann et al. (2008) evaluated a simple particle stress model that is proportional
to the strain rate tensor of the averaged particle velocity (similar to the eddy-viscosity
model of fluid turbulence). The kinetic energy spectrum of the dispersed phase predicted
by their particle stress model showed good agreement with that obtained by tracking all
individual particles for the case StK = 0.17. Masi et al. (2014) showed that the models
based on the transport equations reproduce the spatial distribution of the particle stress
more accurately than the eddy-viscosity model. Innocenti et al. (2019) introduced the effect
of the unresolved fluid velocity at the particle position to improve the transport equation of
the particle stress. In the above studies, the order of magnitude of StK is up to O(1) except
for StK � 40 in Masi et al. (2014).

The volume-averaging approach (Anderson & Jackson 1967; Crowe et al. 1997) is
effective for modelling the instantaneous interaction between the turbulence structure and
the collective motion of particles in a spatial region larger than the minimum scale of
the background turbulence. This approach is reasonable for coupling with large eddy
simulation (LES), and the same averaging volume allows consistent modelling of both
phases. Although the continuity and momentum equations for the dispersed phase based
on the volume average are similar to those based on the ensemble average, the length scale
is the dominant factor for the particle stress model in the volume-averaging approach.
The particle stress model is correlated directly with the averaged particle velocity, and the
transport equations of turbulence quantities, such as the kinetic energy, are not considered
in most studies, although the kinetic energy equation can be derived (Pandya & Mashayek
2002). Shotorban & Balachandar (2007) showed that the eddy-viscosity model (similar
to the well-known Smagorinsky model of fluid turbulence) worked reasonably for small
Stokes numbers (StK � 0.3). Moreau, Simonin & Bédat (2010) compared three models,
including the fluid Smagorinsky model for the case StK = 5.1, and the model based on the
scale-similarity assumption of the particle velocity showed the highest correlation with the
actual particle stress. For a practical LES, a particle stress transport equation similar to a
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RANS model was applied to the pulverised coal combustion cases, and the need for model
development was indicated (Liu, Zhou & Xu 2010; Zhou 2018). From the perspective of
the fluid flow, the applicability of the volume-averaging approach was demonstrated for the
non-isothermal compressible flow interacting with a cloud of particles (Shotorban et al.
2013), and for the bubbly flow cases where the vertical motion of the dispersed phase is
significant (Dhotre et al. 1973; Ma et al. 2015), although the behaviour of the dispersed
phase was not the focus of these studies. Among the studies of the particle stress in the
volume-average framework, the value of StK is limited up to O(1), and larger StK cases
need to be investigated further.

We focus on the volume-averaging approach motivated by the need for the LES model
development. To understand the particle behaviour and to evaluate the model parameters, a
comparison of the model with the actual particle stress obtained by the detailed numerical
simulation (a priori test) is important. In the previous study of an a priori test (Moreau
et al. 2010), the investigated length of the averaging volume was up to several times the
Kolmogorov length scale. As the contributing scales of the turbulent flow for the particle
motion increase with StK (Tom & Bragg 2019), the relation between the particle stress and
the subgrid fluid motion needs to be clarified for a much larger averaging volume than in
the case of Moreau et al. (2010).

Most studies of the particle stress are based on the numerical database obtained by
the one-way coupling simulation (Moreau et al. 2010; Masi et al. 2014) in which the
particle does not influence the fluid phase. However, the disturbance of the fluid flow
caused by the particles is important for the particle motion inside the averaging volume.
To obtain more realistic information about particle-laden turbulence, the two-way coupling
simulation in which the fluid receives the reaction force from the particle was considered
(Squires & Eaton 1990; Sundaram & Collins 1999; Li et al. 2001; Rani, Winkler & Vanka
2004; Boivin, Simonin & Squires 2013). Particularly for finite-sized particle cases, the
importance of the two-way coupling simulation was confirmed, even for the dilute case
where the effect of the collision of particles can be ignored (Paris & Eaton 2001; Hwang
& Eaton 2006; Eaton 2009; Schneiders, Meinke & Schröder 2017; Mehrabadi et al. 2018).
Gore & Crowe (1989) concluded that the length ratio of the particle size to the turbulence
integral scale is a key parameter that determines whether the turbulence intensity increases
or decreases. Hwang & Eaton (2006) showed experimentally that the turbulence intensity
is reduced significantly by the falling particles for the case where the particle diameter
is close to the Kolmogorov scale and StK = 50, and this reduction in intensity was
not reproduced by the numerical simulations of the isotropic turbulence without gravity
(Hwang & Eaton 2006). This difference indicates the importance of the accuracy of the
two-way coupling model and/or the anisotropic effect of the particles owing to gravity.
Considering that the one-way coupling simulation has not reproduced quantitatively the
experimental result of the settling velocity (Good et al. 2014), the importance of resolving
the flow disturbance around the particles is also indicated in terms of the particle motion.

The particle-resolved simulation of the flow around each particle can produce
detailed information (Burton & Eaton 2005; Uhlmann 2005; Breugem 2012; Tenneti &
Subramaniam 2014), particularly for the effects of vortex shedding (Kajishima et al. 2001),
interphase heat transfer (Takeuchi, Tsutsumi & Kajishima 2013; Takeuchi et al. 2015) and
lubrication (Gu et al. 2018). However, when there is a large difference in the length scales
between the computational domain and the particle, the particle-resolved simulation is
almost impossible because of the huge computational cost. For dilute cases, to suppress
the computational cost, unresolved effects should be modelled as source terms at the scale
of the computational grid that does not fully resolve the flow around the particles. The
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improvement of the two-way coupling model for the dilute cases was attempted recently
(Gualtieri et al. 2015; Fukada, Takeuchi & Kajishima 2016, 2019, 2020; Fukada et al.
2018; Horwitz & Mani 2016, 2018; Ireland & Desjardins 2017; Esmaily & Horwitz 2018;
Balachandar, Liu & Lakhote 2019). The focus of these studies was the estimation of the
undisturbed fluid velocity at the particle position from the information of the disturbed
field. The present authors and co-workers (Fukada et al. 2016, 2018, 2019, 2020) proposed
a numerical model that correlates directly the disturbed flow and the fluid force on the
particle based on the volume-average technique (with a volume much smaller than that
for the LES) instead of reconstructing the undisturbed flow. In our proposed approach,
the fluid force model and the reaction force on the fluid are consistent because the same
averaging volume is used for both models. Based on our proposed two-way coupling
method, the particle motions in vortical flows as well as the flow disturbance were
reproduced accurately compared with a conventional model, particularly for the particle
size comparable to the grid spacing. Therefore, the proposed model was shown to be
suitable for turbulence laden with particles of size comparable to the Kolmogorov length
scale.

In this study, to understand the particle stress behaviour, an a priori test of particle
stress models is attempted for StK up to O(102) and a length of averaging volume of
O(10) times larger than the Kolmogorov length scale. Although the volume fraction of
the particle is as low as O(10−4), the two-way coupling DNS with the fluid–particle
interaction model (Fukada et al. 2016, 2018, 2019, 2020) is carried out to consider the
particle size comparable to the Kolmogorov length scale. The interaction between the
particles is represented through the modulation of the turbulent flow, and the collision of
the particles is ignored in the numerical simulation. Considering that the particle motion is
influenced by the fluid flow, the relation between the particle stress and the fluid residual
stress is evaluated by determining the degrees of agreement of the principal axes. The
particle Smagorinsky model and the particle scale-similarity model are also compared as
the particle stress models that consider implicitly the effect of the fluid motion. In addition
to the isotropic forcing condition, an anisotropic forcing is also applied to investigate
the effect of the energy spectrum on the model behaviour. As the effect of the local
flow information inside the averaging volume is important, a new indicator is introduced
to describe the effect of the local fluid velocity fluctuation on the particle stress. The
intensities of the isotropic and deviatoric components of the fully resolved particle stress
relative to those of the models are studied by varying StK , the volume size and the Reynolds
number of the turbulence.

The paper is organised as follows. The basic equations for the particle stress in the
volume-average framework are presented in § 2. The numerical method is summarised
briefly in § 3, and the energy spectra of the flows are shown in § 4. The particle stress is
analysed in § 5, and concluding remarks are given in § 6.

2. Volume-averaged equations and particle stress

We assume an incompressible flow and rigid spherical particles, and a phase change does
not occur. In general, the volume average includes a weight function of the distance from
the centre of the average (Anderson & Jackson 1967). In this study, a top-hat filter with
spherical volume V of a constant size is employed as the volume average. The volume V
is separated into the volumes occupied by the continuous (fluid) and dispersed (particle)
phases, and those are denoted as Vc and Vd, respectively. The volume averages of a variable
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B for the respective phases (i.e. phase average) at position x = (x, y, z) are defined as

〈B〉c (x) = 1
Vc

∫
Vc(x)

B(x′) dx′, (2.1)

〈B〉d (x) = 1
Vd

∫
Vd(x)

B(x′) dx′, (2.2)

where Vi(x) (i = c, d) indicates that the centre of V is at x. The volume fractions of both
phases are defined as

αc = Vc

V
, (2.3)

αd = Vd

V
. (2.4)

By taking the volume average, the continuity and momentum equations for the dispersed
phase are described as

∂αd

∂t
+ ∇ · (αd 〈w〉d) = 0, (2.5)

∂(αd 〈w〉d)

∂t
+ ∇ · (αd 〈w〉d 〈w〉d) = −∇ · (αdτ d) + F + αdgd, (2.6)

where t is the time, w = (wx, wy, wz) is the velocity field inside the particle volume, τ d
is the particle stress, F is the fluid force, and gd is the external force on the particles
(Anderson & Jackson 1967). To derive (2.5) and (2.6), the following relations are used:

αd

〈
∂B
∂t

〉
d

= ∂(αd 〈B〉d)

∂t
− 1

V

∫
Sd

Bw · n dS, (2.7)

αd 〈∇B〉d = ∇(αd 〈B〉d) + 1
V

∫
Sd

Bn dS, (2.8)

where Sd is the particle surface inside V , and n is the outward unit normal vector on Sd.
Although the velocity changes in space inside a rotating particle, w is identified as the

particle translational velocity wp = (wpx, wpy, wpz) because the particle is much smaller
than the averaging volume. The particle stress is described as

τ d = 〈ww〉d − 〈w〉d 〈w〉d . (2.9)

As the first term on the right-hand side of (2.9) is not obtained directly, the term τ d requires
a closure model. Although the resulting equations are very similar to those based on the
ensemble average, the modelling concepts are different (Fox 2012). We attempt a direct
description of the particle stress by the averaged variables.

Based on the same averaging volume, the continuity and momentum equations of the
fluid phase are

∂αc

∂t
+ ∇ · (αc 〈u〉c) = 0, (2.10)

∂(αc 〈u〉c)

∂t
+ ∇ · (αc 〈u〉c 〈u〉c) = −∇ · (αcτ c) − 1

ρc
(αc 〈p〉c) + ∇ · τ visc − F + αcgc,

(2.11)

where ρc is the fluid density, u is the fluid velocity, p is the pressure, τ c is the fluid residual
stress, τ visc is the viscous stress, and gc is the external force on the fluid. These equations
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are considered as LES equations. The terms τ c, τ visc and F are described further as

τ c = 〈uu〉c − 〈u〉c 〈u〉c , (2.12)

τ visc = ναc
〈∇u + (∇u)T〉

c

= ν
[∇(αc 〈u〉c) + ∇(αd 〈w〉d) + {∇(αc 〈u〉c) + ∇(αd 〈w〉d)}T]

, (2.13)

F = 1
V

∫
Sd

p
ρc

n dS − 1
V

∫
Sd

ν
{∇u + (∇u)T} · n dS, (2.14)

where ν is the kinematic viscosity. The value of τ c based on the DNS is used for
comparison to the particle stress τ d instead of modelling τ c.

3. Numerical method and condition

3.1. Two-way coupling simulation
The DNS of the particle-laden turbulence is explained below. The volume-averaged
equations (2.10) and (2.11) are also regarded as the basic equations of a general two-way
coupling simulation. For clarity about the averaging volume size, the notations Vs, αs
and 〈 · 〉s are used for the DNS instead of V , αc and 〈 · 〉c, respectively. The volume Vs is
defined as the sphere of radius Rs. In the DNS, the characteristic length of the averaging
volume is comparable to the grid spacing (�x) and the minimum scale of the background
turbulence. Therefore, the fluid residual stress τ c is negligible and omitted from (2.11),
whereas the model of the interaction force F is necessary. To treat the finite-sized particle
comparable to the Kolmogorov length scale, we use the models for the fluid force on the
particle surface developed by Fukada et al. (2016, 2018, 2019, 2020), which are explained
in the following.

The particles are tracked individually by the equations
dxp

dt
= wp, (3.1)

dwp

dt
= f

mp
, (3.2)

dΩp

dt
= πρcνd3

p

Ip

(
1
2
∇ × Uud − Ωp

)
, (3.3)

where xp is the particle centre, mp is the particle mass, f is the fluid force on the individual
particle, Ωp is the particle angular velocity, Ip is the moment of inertia, dp is the particle
diameter, and Uud is the estimation of the undisturbed fluid velocity (Fukada et al. 2018).
According to Fukada et al. (2018, 2020), f is modelled as

f = fF(Res, Q) m − πd3
p

4
∇Pud − ρc

πd3
p

12
dwp

dt
, (3.4)

where

Res = αs
∣∣〈u〉s (xp) − wp

∣∣ dp

ν
(3.5)

is the particle Reynolds number based on the volume-averaged velocity relative to the
particle,

m = 〈u〉s (xp) − wp∣∣〈u〉s (xp) − wp
∣∣ (3.6)
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is the unit vector in the direction of the relative velocity, Pud is the estimation of the
undisturbed fluid pressure, and Q = 2Rs/dp is the radius ratio between Vs and the particle.
The first term on the right-hand side of (3.4) indicates the viscous contribution, and the
other terms are the effect of the acceleration. The viscous contribution is modelled based
on the disturbed velocity 〈u〉s instead of the undisturbed velocity, and this estimation
reflects partially the history effect (Fukada et al. 2018), which is an advantage of the
present model as other undisturbed-flow-based models require a specific history model. As
the value of 〈u〉s depends on Rs, the viscous contribution fF includes the effect of Rs as the
non-dimensional parameter Q. The function fF is modelled based on the particle-resolved
simulation around a single particle (Fukada et al. 2019, 2020):

fF = 3πρcν
2 AF(Q) Res{1 + 0.15 ReBF(Q)

s }, (3.7)

where AF and BF are fitting functions. As Q becomes larger, AF and BF approach 1 and
0.687, respectively, and fF coincides with the Schiller–Naumann correlation (Clift, Grace
& Weber 1978).

The reaction force on the fluid is expressed as

F = 1
V

∑
particles

F F, (3.8)

where the function F F is part of the reaction force from one particle modelled as a function
of the relative direction m · (x − xp) and the distance |x − xp| as well as the fluid force f ,
to reflect the surface stress distribution on the particle (Fukada et al. 2020). The model F F
is constructed to satisfy the momentum conservation∫

whole space
F dV = −

∑
particles

f . (3.9)

In contrast to conventional two-way coupling simulations, the consistency between F in
(2.11) and f computed with 〈u〉s was established, as the common averaging volume Vs
is applied. For more detail, see Fukada et al. (2016, 2018, 2019, 2020). By determining
Rs = (

√
3/2)�x, (2.10), (2.11), (3.1), (3.2) and (3.3) are solved numerically with the

uniform grid. For the fluid phase, the variables (〈u〉s, 〈p〉s) are defined at staggered grid
points, and the second-order central difference scheme is used for the spatial derivatives.
The volume fraction αs is computed directly based on the relative position |x − xp| and
the sizes of the averaging volume Rs and the particle dp. The second-order Runge–Kutta
method is applied for the convective and viscous terms in (2.11) and for (3.1)–(3.3).
The pressure is obtained by solving the Poisson equation constructed by substituting the
intermediate velocity from (2.11) into (2.10) as the term ∂αs/∂t is determined explicitly
(here, subscript c is replaced with s). This procedure is an extension of the fractional step
method (Kim & Moin 1985) to the multiphase flow. The detail of the treatment of the
pressure is found in Fukada et al. (2016). The validation of the numerical method is shown
in Appendix A.

3.2. Numerical condition
For the initial condition, the particles are located regularly at cubic grid points. Initially,
the fluid velocity is zero, and the particle translational and angular velocities are also zero.
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Case Forcing type Ncell σ/ν2k3
0 νk2

0TL k0η Reλ

I256 Isotropic 2563 1.09 × 106 1.7 × 10−3 1.72 × 10−2 125
I384 Isotropic 3843 4.38 × 106 8.5 × 10−4 1.00 × 10−2 171
U256 Unidirectional 2563 1.09 × 106 — 2.22 × 10−2 120
U384 Unidirectional 3843 4.38 × 106 — 1.30 × 10−2 183

Table 1. Numerical condition and results of single-phase turbulence. Here, σ and TL are the intensity of
acceleration and the time scale, respectively. For more detail, refer to Appendix B.

The forced turbulence is considered in the cubic periodic box of length Lcube. The
forcing method is according to Eswaran & Pope (1988). The external force term in (2.11)
is

αcgc =
∑

0<|k|�√
2k0

ak exp(ik · x), (3.10)

where k = (kx, ky, kz) is the wavenumber vector, k0 = 2π/Lcube is the minimum
wavenumber, and ak is the complex vector to be given in the simulation; for the
isotropic turbulence simulation, ak is given randomly, and the forcing parameters are the
acceleration variance (σ 2) and the time scale (TL), which will be detailed in Appendix B.

The Smagorinsky constant for the single-phase LES is influenced by the forcing
condition (Germano et al. 1991). To compare the behaviour of the particle stress models,
the anisotropic forcing condition is also applied; the unidirectional and constant complex
vector ak is given as

ak = (σ, 0, 0) for k = (0, ±k0, 0), (3.11)

and the external force term becomes αcgc = (2σ cos(2πy/Lcube), 0, 0).
Table 1 shows the computational conditions and the results of the single-phase

turbulence as a reference for the particle-laden turbulence. We adopt two cases for the
number of computational cells Ncell = 2563 and 3843, and distinguish the case names
by appending I (i.e. isotropic) or U (i.e. unidirectional) to N1/3

cell . The time increment is
�t = 1.7 × 10−6(νk2

0)
−1 for the cases I256 and U256, and �t = 8.5 × 10−7(νk2

0)
−1 for

the other cases. The numerical results in the present study are averaged from 2 × 105 to
4 × 105 time steps unless noted otherwise. Although the mean velocity over the entire
domain is not always zero, this value does not influence the energy spectra and the other
statistical quantities (e.g. dissipation rate and particle stress) in this study.

The Kolmogorov length scale is

η =
(

ν3

ε

)1/4

, (3.12)

and the Reynolds number based on the Taylor length scale is

Reλ = urmsλ

ν
, (3.13)

where ε is the dissipation rate, urms is the r.m.s. value of each component of velocity, and
λ is the Taylor length scale computed by

λ =
√

15νu2
rms

ε
. (3.14)
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Figure 1. Velocity vector for (a,b) case I256, and (c,d) case U256 on (a,c) the x–y plane, and (b,d) the y–z
plane.

Although (3.12)–(3.14) are used conventionally for isotropic turbulence, the same
definitions are applied for the unidirectional forcing cases (i.e. U256 and U384). Figure 1
shows some snapshots of the velocity field on the x–y and y–z planes. Three-dimensional
turbulent flows are confirmed for both the isotropic and unidirectional forcing cases.
According to Yeung, Sreenivasan & Pope (2018), the resolution η/�x = 0.5 is adequate
for low-order statistics. Although the second-order centred finite difference is used in the
present study, the values of η/�x are larger than 0.5 for all the cases. The effect of the grid
resolution is assessed in Appendix A.

Table 2 shows the numerical conditions for particle-laden turbulence. To study the effect
of the particle inertia, particles with three kinds of diameters (distinguished as D1, D2 and
D3) are added to the base settings in table 1. The particle density is ρp = 1000ρc, and
the dispersed phase volume fraction in the whole domain is 1.0 × 10−4 for all cases; for
example, the numbers of particles in I256D1 and I256D3 are 85 921 and 3182, respectively.
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Case Base setting dp/�x dp/η StK

I256D1 I256 0.33 0.48 13.0
I256D2 I256 0.67 0.95 52.0
I256D3 I256 1.0 1.43 117.1
I384D1 I384 0.30 0.50 14.2
I384D2 I384 0.61 1.00 56.7
I384D3 I384 0.91 1.50 127.6
U256D1 U256 0.33 0.37 7.6
U256D2 U256 0.67 0.74 30.6
U256D3 U256 1.0 1.11 68.8
U384D1 U384 0.30 0.38 8.3
U384D2 U384 0.61 0.77 33.3
U384D3 U384 0.91 1.15 75.0

Table 2. Numerical condition for particle-laden turbulence. The base setting indicates the number of grid
cells and the forcing condition in table 1.

The Stokes number StK is defined by

StK = τp

τK
, (3.15)

where τp is the particle relaxation time scale,

τp = ρpd2
p

18ρcν
, (3.16)

and τK is the Kolmogorov time scale,

τK =
√

ν

ε
. (3.17)

The variables η and τK are based on the corresponding results for the single-phase
turbulence, and StK is related directly to the particle size; a case with a larger diameter
shows a larger StK value (see table 2). The particle diameter is comparable to the
Kolmogorov length scale. The corresponding range of StK is up to O(102), which is larger
than in the previous study (Moreau et al. 2010).

4. Energy spectrum of particle-laden turbulence

The energy spectrum is defined as

E(|k|) = Ex + Ey + Ez, (4.1)

with an energy component Ei in each direction of the following form:

Ei(|k|) =
∫

S(|k|)
1
2 ûi(k) ûi

∗(k) dS (no summation for i), (4.2)

where the superscript ∗ indicates the complex conjugate, û(k) is the Fourier-transformed
velocity, and S(|k|) is the surface of the sphere of radius |k|. Figure 2 shows E and
Ei for two isotropic forcing cases with and without particles (I256 and I256D2). The
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Figure 2. Energy spectra of isotropic turbulence. A solid line represents case I256D2, and a dashed line
represents case I256. The energy spectrum E and the components are indicated by different colours.

isotropy is confirmed as Ex, Ey and Ez almost overlap with each other. In the case
I256D2, E is slightly smaller for 10 < |k|/k0 < 50, whereas E is larger for |k|/k0 >

70 compared with the case I256. This pivoting effect owing to the particles was
observed in many studies (Elghobashi & Truesdell 1993; Sundaram & Collins 1999;
Boivin et al. 2013). The dispersed particles interact locally with the fluid and influence
directly the energy spectrum in the high wavenumber region (Schneiders et al. 2017),
leading to the increase in E. As the particles absorb energy from the large-scale
eddies (Sundaram & Collins 1999), E decreases in the low wavenumber region. The
enhanced energy dissipation in the high wavenumber region also attenuates the large-scale
eddies.

Figure 3 shows E and Ei for the anisotropic forcing case (U256D2). In contrast to the
isotropic forcing cases (figure 2), there are clear differences in Ex, Ey and Ez. As the
unidirectional external force is in the x direction (3.11), the component Ex is larger than
the other two components for the low wavenumber region (|k|/k0 < 5). The second largest
component at the lowest wavenumber |k|/k0 = 1 is Ey, indicating the formation of a large
vortex of the axis parallel to the z direction owing to the non-zero dUx/dy, where Ux is
the x-component of the time-averaged fluid velocity. In the wavenumber range |k|/k0 � 2,
the effect of vortices perpendicular to the z direction appears as Ez larger than Ey. This
difference in the vortical direction with respect to the wavenumber is consistent with the
observation that the vortices on two adjacent scales tend to align at perpendicular angles
to each other (Goto 2008). The energy levels of Ex, Ey and Ez for the case U256D2 can
be summarised as follows: Ey < Ez ≈ Ex in the wavenumber region 5 � |k|/k0 � 7, and
Ey ≈ Ez < Ex in the large wavenumber region (|k|/k0 � 50).

Figure 4 compares E for two forcing conditions (I256D2 and U256D2). Although
the energy levels are similar at |k|/k0 = 1, the reduction of E for high |k|/k0 (>20)

is more significant for the case U256D2. Therefore, the energy ratio between the
scales becomes larger for the unidirectional forcing case, indicating that the flow at
|k|/k0 = 1 is intensified relatively by the energy input as the velocity profile tends to
be aligned in the forcing direction, in comparison to the flow of the higher |k|/k0
region.
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Figure 3. Energy spectra of anisotropic turbulence for case U256D2. The energy spectrum E and the
components are indicated by different colours.
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Figure 4. Energy spectra of isotropic and anisotropic turbulences. The solid line represents case I256D2, and
the dashed line represents case U256D2.

5. Particle stress

5.1. Models of particle stress
To extract the effect of the direction of the particle stress tensor τ d, the deviatoric
and isotropic parts are compared individually with their corresponding models. The
isotropic and deviatoric parts of the tensors are denoted by the subscripts ‘iso’ and ‘dev’,
respectively; for example, the particle stress τ d obtained by DNS is decomposed into

τ d,iso = 1
3 (tr τ d) I, (5.1)

τ d,dev = τ d − τ d,iso, (5.2)

where I is the identity tensor.
The fluid residual stress is regarded as the particle stress model as the particles receive

the fluid force in the direction of decreasing relative velocities to the fluid. The particle
Smagorinsky model and the particle scale-similarity model are also introduced as models
that represent implicitly the effect of the fluid motion. The fluid residual stress model for
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the dispersed phase τ
f
d is given by τ c of (2.12) as

τ
f
d = τ c; (5.3)

the particle Smagorinsky model is only the deviatoric component as

τ
pS
d = τ

pS
d,dev = −(2R)2|Sp|Sp, (5.4)

where R is the radius of the averaging volume V , with

Sp = ∇〈w〉d + (∇〈w〉d)
T − 2

3 (∇ · 〈w〉d) I, (5.5)

|Sp| =
√

1
2 Sp : Sp; (5.6)

and the particle scale-similarity model is

τ
pB
d = (〈〈w〉d 〈w〉d〉d − 〈〈w〉d〉d 〈〈w〉d〉d

)
. (5.7)

The models τ
pS
d and τ

pB
d are the counterparts of the models for the single-phase turbulence

(Smagorinsky 1963; Bardina, Ferziqer & Reynolds 1983). For the isotropic part, we use
the model introduced by Moreau et al. (2010):

τ
pY
d = τ

pY
d,iso = (2R)2|Sp|2I. (5.8)

The models τ
pB
d,iso = (1/3)(tr τ

pB
d )I and τ

pY
d,iso for the isotropic part of the particle stress

are similar as both represent the fluctuation intensity of the particle velocity at the scale
larger than R. Note that ∇〈w〉d is determined uniquely as long as αd > 0 because the
derivatives of αd and αd 〈w〉d are well-defined (Fukada et al. 2018). However, 〈w〉d is the
C1 function, and the evaluation of ∇〈w〉d requires a spatial resolution that is finer than the
averaging volume, which is not adequate practically. Therefore, the gradient ∇ in (5.5) is
replaced with a discretisation operator ∇̃, and the particle Smagorinsky model relates the
smoothed velocity fluctuation at the grid scale and the particle stress. The discretisation
operator ∇̃ = (∂̃x, ∂̃y, ∂̃z) is defined as

∂̃i〈w〉d = −〈w〉d (x − (1/2)�X ei) + 〈w〉d (x + (1/2)�X ei)

�X
, (5.9)

where i is x, y or z, and ei the unit vector in the i direction. The average represented by the
outer brackets in the particle scale-similarity model (5.7) is computed with the values at
the seven points x ± (1/2)�X ex, x ± (1/2)�X ey, x ± (1/2)�X ez and x. The value of
〈w〉d in (5.7) and (5.9) is computed directly from the numerical results.

The particle stress models are used by multiplying model coefficients C with the
corresponding subscript and superscript:

CpS
devτ

pS
d,dev, CpB

devτ
pB
d,dev, C f

devτ
f
d,dev, (5.10a–c)

CpY
isoτ

pY
d,iso, CpB

isoτ
pB
d,iso, C f

isoτ
f
d,iso. (5.11a–c)

As the model coefficient CpS
dev is affected by the particle relaxation time and the time

scale of the flow, CpS
dev is not a constant, in contrast to the Smagorinsky model for the

single-phase turbulence. Although practical simulations require modelling of τ c, the exact
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Figure 5. Components of discretised gradient (a) ∂̃x〈wx〉d and (b) ∂̃x〈wy〉d , along a line parallel to the x-axis,
for the case I256D3 with k0R = 0.75.

value of τ c obtained from the two-way coupling DNS result is used in the present study
to focus on the relation between the particle and fluid unresolved motions. To compute the
particle stress models in the two-way coupling DNS framework, the radius of the averaging
volume R and the virtual grid spacing �X need to be determined. For a large R case, even
though StK is larger than 1, the motion of the particles depends on the flow at the averaging
scale. To investigate the effect of the flow at a scale larger than η, relatively large averaging
volumes of R/η = O(10) are considered, although this scale is not sufficient for a practical
LES. The following R values are employed: k0R = 0.75, 1.13 and 1.50 (correspondingly,
R/η = 44, 66 and 87 for the case I256; see also k0η values in table 1). For each k0R in each
simulation condition, we compare the fully resolved particle stresses and their models at
20 000 different combinations of x and t.

Figure 5 shows the influence of �X on ∂̃x〈wx〉d and ∂̃x〈wy〉d along a line in the x direction
for the case of the smallest number of particles (I256D3) and the smallest averaging
volume (k0R = 0.75). The intensity of the fluctuation is remarkably large for the smallest
�X/R (=√

3/6), while the intensity is suppressed and similar trends are obtained for the
other cases (�X/R = 2

√
3/3 and

√
3). In the present study, �X/R is set to be 2

√
3/3

to reflect the collective motion of the particles that is not sensitive to small random
disturbances.

To compare the roles of τ d,iso and τ d,dev , the energy transfer of the dispersed phase
between the grid scale and the subgrid scale is studied. By multiplying (2.6) by 〈w〉d, we
obtain the equation corresponding to the energy transport of the dispersed phase at the
grid scale:

∂

∂t

(
1
2

αd 〈w〉d · 〈w〉d

)
+ ∇ ·

{
1
2

αd 〈w〉d (〈w〉d · 〈w〉d)

}
= −∇ · (αdτ d · 〈w〉d) + αdτ d : ∇〈w〉d + F · 〈w〉d + αdgd · 〈w〉d , (5.12)

where the second term of the right-hand side is the energy transfer between the scales
owing to the particle stress. This energy transfer term is decomposed as

τ d : ∇̃〈w〉d = τ d,iso : ∇̃〈w〉d + τ d,dev : ∇̃〈w〉d, (5.13)

where the gradient is replaced by ∇̃ = (∂̃x, ∂̃y, ∂̃z) defined by (5.9), and αd is omitted.
Figure 6 shows the p.d.f.s of τ d : ∇̃ 〈w〉d, τ d,iso : ∇̃ 〈w〉d and τ d,dev : ∇̃ 〈w〉d for the case
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Figure 6. P.d.f.s of the energy transfer of the dispersed phase τ d : ∇̃ 〈w〉d and the components τ d,iso : ∇̃ 〈w〉d

and τ d,dev : ∇̃ 〈w〉d for the case I256D2 with k0R = 1.13.

I256D2 and k0R = 1.13. As the magnitudes of the isotropic and deviatoric contributions
are comparable, the particle stress models of both parts are important. The energy transfer
corresponding to the isotropic part τ d,iso : ∇̃ 〈w〉d is related to the divergence ∇̃ · 〈w〉d;
the p.d.f. of τ d,iso : ∇̃ 〈w〉d /ε takes a symmetric distribution centred at 0, although this
is caused by a mechanism that is different from the divergence-free condition of the
incompressible flow. The contribution of the deviatoric part τ d,dev : ∇̃ 〈w〉d tends to have
a negative value, and the sum of both contributions has a higher probability of being a
negative value, meaning that the energy is transferred from the grid scale to the subgrid
scale. Therefore, the particle stress model for the deviatoric part is important for the
prediction of the net energy transfer.

5.2. Principal axes of the particle stress
The agreement of the principal axes (APA) of the particle stress models with those of the
fully resolved particle stress is important to predict the sign of the energy transfer term. The
eigenvalues of the tensor τ are denoted as λα(τ ), λβ(τ ) and λγ (τ ), and the corresponding
eigenvectors (principal axes) are eα(τ ), eβ(τ ) and eγ (τ ), respectively. The eigenvalues
and eigenvectors are distinguished by λα > λβ > λγ ; a case of two identical eigenvalues
does not occur in this study. A degree of APA is given by the following direction cosines:

cos θα =
∣∣∣eα(τ d,dev) · eα(τmodel

d,dev )

∣∣∣ , (5.14)

cos θβ =
∣∣∣eβ(τ d,dev) · eβ(τmodel

d,dev )

∣∣∣ , (5.15)

cos θγ =
∣∣∣eγ (τ d,dev) · eγ (τmodel

d,dev )

∣∣∣ , (5.16)

where τ d is the particle stress based on the two-way coupling DNS results, and τmodel
d,dev

corresponds to τ
f
d,dev , τ

pS
d,dev and τ

pB
d,dev . Although the eigenvectors may have opposite

directions (e.g. −eα instead of eα), these two directions have no substantial difference.
Therefore, the absolute values are employed in (5.14)–(5.16).
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Another degree of APA is assessed by using the quaternion. By a rotation of the
coordinates, three eigenvectors eα(τmodel

d,dev ), eβ(τmodel
d,dev ) and eγ (τmodel

d,dev ) can be transformed
to eα(τ d,dev), eβ(τ d,dev) and eγ (τ d,dev), respectively. The rotation is quantified by the
quaternion

q(τ d,dev, τ
model
d,dev ) = cos

θq

2
+ ia1 sin

θq

2
+ ja2 sin

θq

2
+ ka3 sin

θq

2
, (5.17)

where a = (a1, a2, a3) is the rotation axis, θq is the rotation angle, and i, j and k are the
imaginary units of the algebra of quaternions (Farebrother, Groß & Troschke 2003). By
determining q(τ d,dev, τ

model
d,dev ), cos θq can represent a degree of APA between τ d,dev and

τmodel
d,dev ; a value close to 1 indicates a good agreement of the predicted particle stress field.

As q(τ d,dev, τ
model
d,dev ) and corresponding θq are not unique (e.g. q and −q indicate the same

rotation, and the corresponding θq are different), we take the smallest positive θq among
all possible values.

Figures 7–9 show the profiles of the p.d.f.s of cos θα , cos θβ and cos θγ for the three
stress models. The results for the cases I256D1, U256D1, I256D3 and U256D3 are shown
to compare the effects of the isotropy of the external forces and StK . For the eigenvector
eα (figure 7), the high probabilities are observed in the range cos θα > 0.9 for τ

pB
d,dev

and τ
f
d,dev of all four cases of isotropic/anisotropic forcing with small/large particle

diameters. As the probabilities of cos θα > 0.9 for τ
pB
d,dev are larger than those for τ

f
d,dev ,

the scale-similarity assumption is effective to predict the principal axis of the largest
eigenvalue λα . For the particle Smagorinsky model τ

pS
d,dev , the largest probability takes

place at approximately cos θα = 0.8 for the unidirectional forcing cases (figures 7b,d),
unlike the other two particle stress models. For the isotropic forcing cases (figures 7a,c),
the probabilities of cos θα > 0.9 for τ

pB
d,dev and τ

f
d,dev tend to decrease with StK (i.e. with

larger particle diameters), whereas the probabilities for τ
pS
d,dev remain at approximately the

same level regardless of StK , indicating the difference in the characteristics of the models
with StK .

The trends of cos θβ and cos θγ (figures 8 and 9) are similar to each other in some
aspects, as explained below. The probabilities of cos θβ > 0.9 and cos θγ > 0.9 for τ

f
d,dev

are larger than those for τ
pB
d,dev at the small StK cases (figures 8a,b and 9a,b), and the

advantage of the scale-similarity model observed in figure 7 no longer exists. For the
large StK case under the isotropic forcing condition (figures 8c and 9c), the probabilities
for τ

pS
d,dev are higher than those of τ

pB
d,dev and τ

f
d,dev . In addition, the difference in the

trends of cos θβ and cos θγ for τ
pS
d,dev is confirmed for the unidirectional forcing cases

(figures 8b,d and 9b,d); the maximum values of the probabilities are at around cos θβ = 1
and cos θγ = 0.7.

The intensity of the fluid velocity fluctuation inside the averaging volume V is related to
the radius R. The probabilities of cos θα > 0.9, cos θβ > 0.9 and cos θγ > 0.9 for τ

f
d,dev

increase with k0R for all the cases (figures 7–9). Therefore, although the particle motions
are different from the background flow around the individual particles, the motions are
affected by the flow of scales close to R, and this effect enhances with the volume size.

Considering that the collective particle motion is influenced by the flow inside the
averaging volume, and that the turbulence intensity varies in space, it is important to
evaluate the models based on locally averaged information. The Stokes number reflecting
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Figure 7. P.d.f.s of cos θα : (a) I256D1, (b) U256D1, (c) I256D3, (d) U256D3. The particle stress models are
indicated by different colours. The sizes of the averaging volumes are indicated by different symbols.

the effect of local information in the averaging volume is defined as

StR = τp
ε

u2
R
, (5.18)

where u2
R is the fluctuation intensity of the fluid velocity inside the volume obtained by

u2
R = 1

3 tr τ c, (5.19)

and the dissipation rate is calculated as

ε =
∫

|k|2 E(|k|) d|k| + 1
L3

cube

∑
particles

f · αs(〈u〉s (xp) − wp). (5.20)

The second term on the right-hand side of (5.20) indicates the unresolved dissipation in
the vicinity of the particle surface. By analogy with the scale estimation of turbulence
(Tennekes & Lumley 1972), the value u2

R/ε is considered as the time scale for dissipating
the eddy of velocity uR. Note that ε is the averaged value and that the effect of the
averaging volume size is reflected in (5.18) through u2

R (e.g. u2
R → 0 for R → 0). As an

indicator similar to StR, the locally defined time scale based on the strain rate and the eddy
viscosity of LES was introduced as the model input for the particle acceleration in the
Euler–Lagrangian framework (Gorokhovski & Zamansky 2018). Using (5.18), the degree
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Figure 8. P.d.f.s of cos θβ : (a) I256D1, (b) U256D1, (c) I256D3, (d) U256D3. The particle stress models are
indicated by different colours. The sizes of the averaging volumes are indicated by different symbols.

of APA based on the quaternion (5.17) is evaluated by the conditional probability Ax(StR)

of being cos θq � x for a fixed StR. A large value of Ax indicates that the model describes
accurately the particle stress field in terms of the degree of APA.

Figure 10 shows the conditional probability A0.8 for all the cases of the two-way coupling
simulations. The values of A0.8 for τ

pS
d,dev , τ

pB
d,dev and τ

f
d,dev are regarded as the functions

of StR, and the different trends for the models are observed clearly. In particular, τ
f
d,dev is

predominant for StR < 1 for all the cases, which corresponds to the result for the small StK
cases shown in figures 8(a), 8(b), 9(a) and 9(b). Bragg, Ireland & Collins (2015) showed
theoretically that the particle motion is related to the fluid velocity gradient at scale r if
the Stokes number based on r is smaller than 1; otherwise, the effect of the larger flow
structure is dominant. This theoretical result coincides with the predominance of τ

f
d,dev as

the particle motion is affected by the flow structure at the scale R for StR < 1. Note that
although R is much smaller than the upper limit of effective scales (e.g. the scale O(103)
times η for StK = 0.1; (Tom & Bragg 2019)) and the particles do not follow the subgrid
fluid flow, the flow at the scale R is still effective for the particle stress.

The conditional probability A0.8 for τ
pB
d,dev is larger than that for τ

f
d,dev for StR > 5 as

τ
pB
d,dev (related to the spatial variation of 〈w〉d) is related to the flow structure larger than

R. For the isotropic forcing cases (figures 10a,c), A0.8 for τ
pB
d,dev decreases with increasing
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Figure 9. P.d.f.s of cos θγ : (a) I256D1, (b) U256D1, (c) I256D3, (d) U256D3. The particle stress models are
indicated by different colours. The sizes of the averaging volumes are indicated by different symbols.

StR. Considering the case that the xx-component of the particle stress is dominant owing
to the positive and negative wpx of the individual particles inside the averaging volume,
the decreasing trend of A0.8 for τ

pB
d,dev is understood as 〈wx〉d, and its spatial variation can

be almost zero regardless of the flow structure at the scale R for large StR.
For the unidirectional forcing cases, as already shown in figure 3, Ey < Ez ≈ Ex for

the low-wavenumber region and Ey ≈ Ez < Ex for the high-wavenumber region were
observed, in contrast to the isotropic forcing cases where an equal distribution of energy
was observed. This uneven distribution of Ei suggests that the zz-component (related to
Ez) of τ

pB
d,dev estimated on the large scale tends to be large, while the predominance of this

component is reduced for the particle subgrid stress τ d,dev for small StR, indicating that
A0.8 for τ

pB
d,dev is suppressed. Therefore, A0.8 for τ

pB
d,dev does not exhibit a clear decreasing

trend with increasing StR in the unidirectional forcing cases (figures 10b,d) in contrast to
the isotropic forcing cases (figures 10a,c).

To examine the validity of using the averaged ε for StR defined by (5.18), the above
result for A0.8 is compared with that defined with the local dissipation εloc inside V . The
probability A0.8 based on εloc in figure 11 shows similar but diffused profiles in comparison
with that based on ε in figure 10, indicating that StR defined with ε is preferable to
extract the particle stress behaviour. The energy loss of the flow inside V is caused by
the convective transport as well as the viscous dissipation, and the rate of the energy loss
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Figure 10. Degree of APA for the models to those for the fully resolved particle stress based on the quaternion
cos θq against StR defined by (5.18): (a) I256DX, (b) U256DX, (c) I384DX, (d) U384DX, where DX is D1, D2
or D3. The particle stress models are indicated by different colours: red, blue and black represent τ

pS
d,dev , τ

pB
d,dev

and τ
f
d,dev , respectively. The sizes of the averaging volume are indicated by different line types. The particle

conditions (DX) are indicated by different symbols.

is different from εloc. In the case that the energy is supplied from the outside to maintain
the flow structure inside V , the lifetime of the flow structure becomes longer than the
estimated value u2

R/εloc. Therefore, the locally defined εloc is not always adequate, and the
mean value ε is employed for StR in this study.

5.3. Correlation coefficient for the deviatoric part
To investigate the characteristics of the magnitudes (related to the eigenvectors) as well as
the principal axes of the particle stress models, the correlation coefficient of the deviatoric
part is defined as

Ddev(StR) =
∑StR

δτ d,dev : δτmodel
d,dev√∑StR

δτ d,dev : δτ d,dev

√∑StR
δτmodel

d,dev : δτmodel
d,dev

, (5.21)
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Figure 11. Degree of APA for the models to those for the fully resolved particle stress based on the quaternion
cos θq against StR based on εloc: (a) I256DX, (b) U256DX, (c) I384DX, (d) U384DX, where DX is D1, D2 or
D3. The particle stress models are indicated by different colours: red, blue and black represent τ

pS
d,dev , τ

pB
d,dev

and τ
f
d,dev , respectively. The sizes of the averaging volume are indicated by different line types. The particle

conditions (DX) are indicated by different symbols.

where
∑StR indicates the summation at a fixed StR (hereafter, the conditional summation),

and δτ d,dev and δτmodel
d,dev are

δτ d,dev = τ d,dev −
∑StR

τ d,dev∑StR
1

, δτmodel
d,dev = τmodel

d,dev −
∑StR

τmodel
d,dev∑StR
1

, (5.22a,b)

respectively. Figure 12 compares the dependence of Ddev on StR for each model (τ pS
d,dev ,

τ
pB
d,dev and τ

f
d,dev). The trend of Ddev is similar to the degree of APA (figure 10) such

that the models τ
f
d,dev and τ

pB
d,dev show the highest and the second highest Ddev for StR <

1, which also confirms the effectiveness of StR for extracting the characteristics of the
particle stress in terms of the correlation coefficient. In general, by superposing a single
vortex of the scale R and disturbances, τ f

d,dev and τ
f
d,iso reflect the structures of the scale R

and smaller scales, respectively. Therefore, the correlation coefficient Ddev for the model
τ

f
d,dev is regarded as the contribution of the fluid motion of the scale R for StR < 1. The
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Figure 12. Correlation coefficients of the particle stress models for the deviatoric part Ddev : (a) I256DX, (b)
U256DX, (c) I384DX, (d) U384DX, where DX is D1, D2 or D3. The particle stress models are indicated by
different colours: red, blue and black represent τ

pS
d,dev , τ pB

d,dev and τ
f
d,dev , respectively. The sizes of the averaging

volume are indicated by different line types. The particle conditions (DX) are indicated by different symbols.

differences between figures 10 and 12 are also observed; as Ddev for τ
pB
d,dev in the case

U256DX (X = 1, 2, 3; figure 12b) shows a slightly decreasing trend with increasing StR in
contrast to the increasing trend of A0.8 (figure 10b), the prediction of the magnitude of the
particle stress by τ

pB
d,dev is preferable for small StR. For StR > 5, the Ddev values for τ

pS
d,dev

are close to those for τ
pB
d,dev for all the cases as τ

pS
d,dev and τ

pB
d,dev are related to the similar

fluctuation intensities of 〈w〉d at the same scale larger than R.
In addition to Ddev as the direct evaluation of the particle stress model, the correlation

coefficient of the energy transfer rate τ d,dev : ∇̃〈w〉d is also defined as

Hdev(StR) =
∑StR

δhdev δhmodel
dev√∑StR

δhdev δhdev

√∑StR
δhmodel

dev δhmodel
dev

, (5.23)
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where

δhdev = τ d,dev : ∇̃〈w〉d −
∑StR

τ d,dev : ∇̃〈w〉d

/∑StR
1, (5.24)

δhmodel
dev = τmodel

d,dev : ∇̃〈w〉d −
∑StR

τmodel
d,dev : ∇̃〈w〉d

/∑StR
1. (5.25)

Figure 13 shows the dependence of Hdev on StR for each model. For the models τ
pS
d,dev

and τ
pB
d,dev that are related to the fluctuation intensity of the particle velocity 〈w〉d, the

values of Hdev tend to be higher than those of Ddev (figure 12). This tendency for Hdev
is consistent with the result of Moreau et al. (2010). As a result, the models based on the
particle velocity 〈w〉d are preferable in the sense of the energy transfer rate (Hdev) for the
range StR > 1. For StR < 1, the model τ

f
d,dev is predominant as well as the model τ

pB
d,dev

for the energy transfer rate.

5.4. Correlation coefficient for the isotropic part
By replacing the subscript ‘dev’ with ‘iso’ in (5.21) and (5.22a,b), the correlation
coefficient of the isotropic part Diso is investigated. Figure 14 shows Diso for the models
τ

pY
d,iso and τ

pB
d,iso. As StR is fixed for the conditional summation, τ

f
d,iso = (ετp/StR)I takes

a constant component in the diagonals, and therefore Diso for τ
f
d,iso is not defined.

The correlation coefficient depends largely on the averaging volume and StK , and the
differences of the Diso distributions between the models are not as clear as observed in
figure 12. In the scale-similarity model, the unresolved particle stress is extrapolated from
the resolved scale and the effect of scales that are much smaller than R is not predicted
accurately, while the effect of the small scales is relatively weak for the deviatoric part.
Therefore, even for StR < 1, Diso for τ

pB
d,iso is not as high as Ddev (figure 12) for all

the cases. The model τ
pY
d,iso is more effective than τ

pB
d,iso for StR < 1 in the sense of the

correlation coefficient Diso.
Figure 15 shows the correlation coefficient of the energy transfer rate Hiso defined

similarly by replacing the subscript ‘dev’ with ‘iso’ in (5.23)–(5.25). The correlation
coefficient Hiso is almost over 0.8. As the isotropic components of the particle stress
tr τ d,iso and the models tr τmodel

d,iso are always positive, the prediction of the sign of
τmodel

d,iso : ∇̃〈w〉d is always correct, indicating higher values of Hiso than those of Diso
(figure 14). Even though the correlation coefficients are different (Diso and Hiso), the
advantages of the models are similar.

5.5. Model coefficients
As the behaviour of the particle stress depends on StR particularly for the deviatoric part,
we propose the model coefficients (5.10a–c) and (5.11a–c) as functions of StR. The model
coefficients C are determined to minimise the following functions:∑

StR(τ d,dev − τmodel
d,dev ) : (τ d,dev − τmodel

d,dev ), (5.26)∑
StR(τ d,iso − τmodel

d,iso ) : (τ d,iso − τmodel
d,iso ). (5.27)

Figure 16 plots the model coefficients for the deviatoric parts with respect to StR. The
behaviours of the coefficients for the respective stress models may be understood by a
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Figure 13. Correlation coefficients of the energy transfer rate by the particle stress models for the deviatoric
part Hdev : (a) I256DX, (b) U256DX, (c) I384DX, (d) U384DX, where DX is D1, D2 or D3. The particle stress
models are indicated by different colours: red, blue and black represent τ

pS
d,dev , τ

pB
d,dev and τ

f
d,dev , respectively.

The sizes of the averaging volume are indicated by different line types. The particle conditions (DX) are
indicated by different symbols.

comparison of the averaged magnitudes of the particle stress and its models (e.g. |τ d,dev|
and |τ f

d,dev|) in this subsection. According to the statistical results of the radial relative
velocity wr of two particles, the averaged magnitude of |wr| increases with the distance
r (order of magnitude of η), and d|wr|/dr (>0) decreases with increasing StK for 0.7 �
StK � 5 (Ray & Collins 2014). In other words, the magnitude of the difference of two
particle velocities inside a small volume increases with increasing StK . By analogy with
the result for wr, considering the effect of the flow at the scale R instead of η, the fluctuation
intensity of the particle velocity wp inside the volume V (i.e. |τ d|) increases relatively with
increasing StR (≈1) compared with the increases in |τ pS

d | and |τ pB
d | that are related to the

spatial variation of 〈w〉d. Therefore, CpS
dev and CpB

dev increase with increasing StR (figures
16a–d). For the fluid residual stress model (figures 16e, f ), the increasing trend of C f

dev is
observed as the increase of StR indicates a decrease in the magnitudes of u2

R and |τ f
d,dev|.
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Figure 14. Correlation coefficients of the particle stress models for the isotropic part Diso: (a) I256DX, (b)
U256DX, (c) I384DX, (d) U384DX, where DX is D1, D2 or D3. The particle stress models are indicated by
different colours: red and blue represent τ

pY
d,iso and τ

pB
d,iso, respectively. The sizes of the averaging volume are

indicated by different line types. The particle conditions (DX) are indicated by different symbols.

Most plots of CpS
dev under the different conditions overlap with each other (figures 16a,b),

while the coefficients of the other two models exhibit the effect of the Stokes number StK ,
the radius of the averaging volume k0R, and the Reynolds number Reλ. For C f

dev (figures
16e, f ), the lines of D1, D2 and D3 are independent of each other, indicating the effect of
StK . For a fixed StR ∝ StK/u2

R, the increase of StK implies the same proportional increase
of the local fluctuation intensity of the fluid velocity u2

R. However, the intensities of the
flow structures of scales larger than R do not increase in the same way as u2

R, and the effect
of the larger flow structures on wp is suppressed relatively for the particles having large
inertia. Therefore, with increasing StK through increasing the particle size from D1 to D3,
the increase of |τ d,dev| is relatively small compared with the intensity of the fluid velocity
(i.e. |τ f

d,dev|), and therefore C f
dev , decreases (figures 16e, f ).

The coefficient CpS
dev for the unidirectional forcing case (figure 16b) tends to be smaller

than those for the isotropic case (figure 16a). Therefore, a larger gap between |τ pS
d,dev| and

|τ d,dev| is indicated for the unidirectional forcing case. This tendency is explained by the
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Figure 15. Correlation coefficients of the energy transfer rate by the particle stress models for the isotropic
part Hiso: (a) I256DX, (b) U256DX, (c) I384DX, (d) U384DX, where DX is D1, D2 or D3. The particle stress
models are indicated by different colours: red and blue represent τ

pY
d,iso and τ

pB
d,iso, respectively. The sizes of the

averaging volume are indicated by different line types. The particle conditions (DX) are indicated by different
symbols.

energy spectra (figure 4) in which the decreasing rate of E for the unidirectional forcing
case is larger, and the disturbing effect of the small flow structure on |τ d,dev| is relatively
low.

In figure 16(c), in the range StR < 1 for the isotropic forcing condition, CpB
dev for

k0R = 0.75 (corresponding to R/η = 75, based on table 1) in the high Reλ case (I384D1)
is smaller than values for k0R = 1.13 and 1.50 (corresponding to R/η = 66 and 87,
respectively) in the low Reλ case (I256D1). This non-monotonic trend of CpB

dev with respect
to R/η is also observed for the unidirectional forcing condition for StR < 1 (figure 16d);
the values of R/η for k0R = 0.75 in the case U384D1 (at Reλ = 183), k0R = 1.13 in
the case U256D1 (at Reλ = 125) and k0R = 1.50 in the case U256D1 are 58, 51 and
68, respectively. Therefore, the result indicates that the above non-monotonic trend is
influenced by Reλ at a fixed R/η. According to the result for the radial relative velocity at
StK ≈ 1 (Ray & Collins 2011), the magnitude of |wr| at a fixed r/η is increased particularly
for r/η > 1 with increasing Reλ. By replacing η with R, the increase of |τ pB

d,dev| reflecting
the spatial variation of 〈w〉d at the scale larger than R is suggested, indicating the decrease
of CpB

dev with increasing Reλ. A different trend is observed for C f
dev . The above relation
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Figure 16. Model coefficients of the particle stress models for the deviatoric part Cdev : (a,c,e) isotropic forcing
cases; (b,d, f ) unidirectional forcing cases. Black and red colours represent low (I256DX, U256DX) and high
(I384DX, U384DX) Reynolds number cases, respectively, where DX is D1, D2 or D3. The sizes of the averaging
volume are indicated by different line types. The particle conditions (DX) are indicated by different symbols.

between |wr| and Reλ also indicates an increase of |τ d,dev| with increasing Reλ. Therefore,
for the isotropic forcing condition, the coefficients C f

dev for the high Reλ case (I384) are
larger than those for the low Reλ case (I256) regardless of R/η (figure 16e). For the
unidirectional forcing condition (figure 16f ), the increase of C f

dev at the high Reλ case
(U384D1) with respect to its value at the low Reλ case (U256D1) is suppressed as C f

dev at
k0R = 0.75 in the case U384D1 is smaller than values at k0R = 1.13 and 1.50 in the case
U256D1. This suppression indicates that the fluctuation intensity of wp in V is not reduced
by decreasing Reλ as the fixed R/η for lower Reλ corresponds to the larger fraction of the
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Figure 17. Model coefficients of the particle stress models for the isotropic part Ciso: (a,c,e) isotropic forcing
cases; (b,d, f ) unidirectional forcing cases. Black and red colours represent low (I256DX, U256DX) and high
(I384DX, U384DX) Reynolds number cases, respectively, where DX is D1, D2 or D3. The sizes of the averaging
volume are indicated by different line types. The particle conditions (DX) are indicated by different symbols.

wavelength of the time-independent sinusoidal (unidirectional) forcing that induces the
spatial distribution of wp.

By analogy with the result that d|wr|/dr (>0) becomes larger for smaller StK (≈1) (Ray
& Collins 2014), it is understood reasonably that the increase of |τ d,dev| corresponds to
the increase of C f

dev with increasing k0R for StR < 1, as observed in the cases I256D1
and I384D1 in figure 16(e) and the cases U256D1 and U384D1 in figure 16( f ). The
increase of CpB

dev with increasing k0R for StR < 1 is also observed (figures 16c,d). The
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almost independent trend of CpS
dev from k0R (figures 16a,b) indicates that the dependence

of |τ pS
d,dev| (related to the spatial variation of 〈w〉d) on k0R is similar to that of |τ d,dev|.

Figure 17 plots the model coefficients for the isotropic parts with respect to StR,
and the trends are similar to those observed in figure 16. In the study of Moreau
et al. (2010), the Stokes number StK = 5.1 and the averaging volume R/η � 8 were
considered in the isotropic turbulence, whereas 7.6 � StK � 127.6 and R/η � 34 are the
focus in the present study for the large-scale multiphase flow. The model coefficients
reported in Moreau et al. (2010) were CpS

dev = 0.025, CpY
iso = 0.051 and CpB = 2.2 (without

decomposing the isotropic and deviatoric parts), and these values have orders of magnitude
similar to those of the values in this study.

Although the scale-similarity model can represent the inverse cascade of energy from
the subgrid scale to the grid scale, this model tends to make the computation unstable.
To suppress the instability and cover the weakness of each model, the following linear
combination models are also considered:

τ lc
d,dev = C′pS

devτ
pS
d,dev + C′pB

devτ
pB
d,dev + C′ f

devτ
f
d,dev, (5.28)

τ lc
d,iso = C′pY

iso τ
pY
d,iso + C′ f

isoτ
f
d,iso, (5.29)

where C′ are the weight coefficients with the corresponding subscript and superscript.
With the exception of the fluid residual stress term, similar models have been considered,
and the weight coefficients that are smaller than those for the individual models were
proposed (Moreau et al. 2010). As CpY

iso shows trends similar to CpB
iso, and τ

pY
d,iso tends to

exhibit a higher correlation coefficient than τ
pB
d,iso (figure 14), the model τ

pB
d,iso is excluded

from (5.29). The term C′ f
isoτ

f
d,iso in (5.29) is treated as a constant for a fixed StR. The weight

coefficients in (5.28) and (5.29) are determined in order to minimise (5.26) and (5.27) by
reading τmodel

d,dev = τ lc
d,dev . In figure 18, the weight coefficients for the deviatoric part show

trends similar to those in figure 16, although the magnitudes are decreased. In figure 19,
the reduction of C′pY

iso from CpY
iso (figures 17a,b) is significant, indicating the importance

of the constant term C′ f
isoτ

f
d,iso as the model of the isotropic part requires a bias, which

compensates for the difference between τ d,iso and C′pY
iso τ

pY
d,iso. For the deviatoric part, the

constant term is not necessary as the averages of τ d,dev and the models should be zero.

6. Conclusion

The behaviour of the particle stress τ d for the LES of the particle-laden turbulence is
investigated by making a comparison with the following models: the particle Smagorinsky
model τ

pS
d , the scale-similarity model τ

pB
d , the fluid residual stress model τ

f
d , and the

isotropic model τ
pY
d . To obtain the numerical database for the larger Stokes numbers StK

compared with the majority of previous studies, direct numerical simulation is carried
out for the turbulent flows laden with particles. As the sizes of the high StK particles are
comparable to the grid spacing, we employ the accurate two-way coupling method that
takes into account the effect of the disturbance caused by the particles. The flows with the
isotropic and unidirectional forcing are considered to investigate the effect of the energy
spectrum of the turbulence.

The particle stress models are compared from the perspective of the principal axes.
For the principal axis with the maximum eigenvalue, τ

pB
d shows the highest degree of
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Figure 18. Weight coefficients of the linear combination model for the deviatoric part C′
dev : (a,c,e) isotropic

forcing cases; (b,d, f ) unidirectional forcing cases. Black and red colours represent low (I256DX, U256DX) and
high (I384DX, U384DX) Reynolds number cases, respectively, where DX is D1, D2 or D3. The sizes of the
averaging volume are indicated by different line types. The particle conditions (DX) are indicated by different
symbols.

agreement with the fully resolved particle stress regardless of the turbulence anisotropy
and StK . However, for the other directions, the predominance of τ

pB
d is not always

observed, revealing the dependence of the model performance on the directions.
A new indicator was proposed to investigate further the behaviours of the particle stress

model depending on the local flow structure. For both of the isotropic and unidirectional
forcing conditions, we found that the degrees of agreement of the principal axes for the
models with those of the fully resolved particle stress are regarded as the functions of
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Figure 19. Weight coefficients of the linear combination model for the isotropic part C′
iso: (a,c) isotropic

forcing cases; (b,d) unidirectional forcing cases. Black and red colours represent low (I256DX, U256DX) and
high (I384DX, U384DX) Reynolds number cases, respectively, where DX is D1, D2 or D3. The sizes of the
averaging volume are indicated by different line types. The particle conditions (DX) are indicated by different
symbols.

the Stokes number StR based on the information about the flow in the averaging volume
regardless of StK and the radius of the averaging volume R. For all of the numerical
conditions, τ

f
d is better for StR < 1 than τ

pB
d and τ

pS
d . However, for StR > 5, τ

pB
d or τ

pS
d

works better, depending on the anisotropy of the turbulence.
The trends of the correlation coefficients between the particle stress and its models for

the deviatoric part are consistent with the degrees of agreement of the principal axes. The
correlation coefficients of the energy transfer rate of the models τ

pS
d and τ

pB
d tend to be

high for the range of the present condition. The predominance of τ
f
d becomes comparable

to that of τ
pB
d for StR < 1.

The effects of the parameters StK , R and Reλ on the model coefficients are extracted
by fixing StR, and the trends are understood based on the intensities of the deviatoric
and isotropic parts of the particle stress and its models. The model coefficients for the
deviatoric and isotropic parts exhibit increasing trends with increasing StR for all the
models, and these trends are consistent with the result of the radial relative velocity wr
against StK (Ray & Collins 2014). As the model coefficients show specific trends against
StR, the Stokes number based on the local flow information is an essential factor for
modelling the particle stress.
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For the unidirectional forcing condition, the model coefficient of τ
pS
d becomes smaller,

and this result is consistent with the high decreasing rate of energy of the flow against the
wavenumber. The differences in the directional components of the energy spectrum of the
flow are suggested to influence the trend of the degrees of agreement of the principal axes
against StR for the model τ

pB
d .

The effect of gravity is noted. According to Tom & Bragg (2019), the flow scales
contributing to the motion of the particles are shifted to larger scales by the particle
settling. Therefore, as the gravity effect is increased (i.e. the Froude number Fr = ν2/η3g
is decreased, where g is the gravity acceleration), the time scale for the interaction between
the particles and the flow of the scale R is reduced, and the effective Stokes number
becomes different from StR. As long as u2

R/ε represents the effective time scale for the
interaction, the Stokes number based on the local flow information is an essential factor
for modelling the particle stress for the gravitational condition.

To develop the particle stress model by including the fluid residual stress term τ c = τ
f
d

and the Stokes number StR ∝ (tr τ c)
−1, further modelling of τ c is required. In addition

to the basic models such as the Smagorinsky model and the scale-similarity model for
the fluid phase, there are other modelling approaches. In the one-equation approach,
the additional transport equation of the kinetic energy that is related to StR is solved
to determine the residual stress (Deardorff 1973). Although this one-equation model
improves the accuracy relative to the Smagorinsky model (Menon, Yeung & Kim 1996),
the principal axes coincide with those of the strain rate tensor as assumed in the
Smagorinsky model. To improve the model anisotropy, an extra anisotropic term was
proposed, and the effectiveness was shown for the wall turbulence (Abe 2013). As the
accuracy of the principal directions is important for the deviatoric part of the particle
stress model, this approach based on an extra anisotropic term is expected to be effective.
The applicability of the models of the fluid residual stress to the particle stress will be
investigated in future work.
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Appendix A. Validation of numerical method

A.1. Validation of two-way coupling model
To show the applicability of the numerical method employed in the present study, we
simulate the particle-laden decaying turbulence and compare the result with that reported
in Mehrabadi et al. (2018). Although the geometry is the same as that explained in § 3, the
external force is omitted and the number of grid points is smaller. An initial turbulence is
given to satisfy the continuity and the energy spectrum (4.1) corresponding to Reλ = 27
and k0η = 2π/96. A total of 1689 particles of ρp = 1800ρc and dp = η are distributed in
the domain, and the volume fraction in the whole domain is 1 × 10−3. The results of both
studies are expected to show similar trends after a relaxation time even though the initial
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conditions and early behaviours are different. In this study, the initial particle distribution
is determined as described in § 3.2. The initial particle velocities are the same as the fluid
velocities at the particle centres and the angular velocities are set initially to be zero. As
the model shown in § 3 takes the effect of the flow disturbance by the particle itself into
account, we refer to this model as the corrected model. The two-way coupling model with

f = 3πρcν
2 Res(1 + 0.15 Re0.687

s )m − πd3
p

4
∇p − ρc

πd3
p

12
dwp

dt
, (A1)

and the assumption αs = 1 instead of with (3.4) is also considered as the uncorrected
model. To compare the effect of two-way coupling models, both the corrected and
uncorrected models are considered. In the study by Mehrabadi et al. (2018), they attempted
the particle-resolved direct numerical simulation (PR-DNS) of Ncell = 10243 and the
simulation by the uncorrected and another corrected model of Ncell = 963, and they
showed good agreement of the results between the PR-DNS and the simulation by the
corrected model. The applicability of the present corrected model for different grid
spacings is shown by setting Ncell = 963 (dp/�x = 1) and Ncell = 643 (dp/�x = 0.67).

To compare the results, figures 20 and 21 show the temporal change of fluid energy

kf =
∫

E(|k|) d|k|, (A2)

and the energy dissipation rate ε, (see (5.20)), respectively. Although kf 0 and ε0 are initial
values in the study by Mehrabadi et al. (2018), for the present result, kf 0 and ε0 are scaling
parameters because the initial behaviours are different between the studies owing to the
difference in the initial condition. The scaling parameters are determined so that the results
for the single-phase case in both studies are consistent. For both figures, the results of the
corrected model show good agreement with those of PR-DNS, and the difference in Ncell
values is smaller than the difference in the model. The value of kf /kf 0 for the corrected
model is slightly smaller than that for the uncorrected model in the region tε0/kf 0 > 1.
The value of ε/ε0 for the corrected model is larger around tε0/kf 0 = 1 and smaller around
tε0/kf 0 = 10, compared with the result of the uncorrected model. These trends of kf /kf 0
and ε/ε0 for different models are consistent with the results reported by Mehrabadi et al.
(2018).

Figure 22 shows the p.d.f. of magnitude of the particle acceleration ap at three different
times. For each time, the present results for both Ncell by the corrected model show good
agreement with the PR-DNS result. This independence of the results with respect to grid
spacing is important to the numerical simulations for several different particle sizes, as
shown in table 2. In contrast to the corrected model, the difference in the results obtained
by the uncorrected model is confirmed as the disturbance of the fluid velocity depends
on the grid spacing. In summary, the corrected model employed in the present study is
reasonable for the numerical simulation of turbulence laden with particles having a size
comparable to the grid spacing.

A.2. Effect of grid resolution
Figure 23 compares the result for the model coefficients (corresponding to figures 16 and
17) between the case I384D1 and the similar case with higher grid resolution Ncell = 5123

(case I512D1). Note that the condition I384 corresponds to the lowest resolution case in the
sense of η/Δ (see table 1), and the D1 particle is more sensitive to the small flow structures
than the D2 and D3 particles, which requires higher resolution for the D1 particle.
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Figure 20. Temporal change of turbulence energy. The results obtained by Mehrabadi et al. (2018) are
indicated by the notation (M).
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Figure 21. Temporal change of energy dissipation. The results obtained by Mehrabadi et al. (2018) are
indicated by the notation (M).

In figures 23(b), 23(c) and 23(d), the effect of the grid resolution is smaller than the
effect of k0R. In figures 23(a), 23(e) and 23( f ), the increasing trends of CpS

dev , C f
dev and

C f
iso with increasing k0R are observed similarly for both grid resolution cases, and the

trends indicated in § 5.5 are unchanged. Therefore, the grid resolution in the present study
is reasonable to estimate the behaviour of the particle stress models.

Appendix B. External force on the staggered grid

To satisfy the continuity of the external force in the sense of the second-order central
difference, ak in (3.11) is determined further by another complex vector bk as

ak = bk − kΔ · bk

|kΔ|2 k, (B1)
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Figure 22. P.d.f.s of the magnitude of the particle acceleration: (a) tε0/kf 0 = 0.54, (b) tε0/kf 0 = 2.70, (c)
tε0/kf 0 = 4.87. The results obtained by Mehrabadi et al. (2018) are indicated by the notation (M). The vertical
axis is scaled according to the figure in Mehrabadi et al. (2018).

where

kΔ =
(

1 − exp
(

−2π �x
Lcube

kx

k0

)
, 1 − exp

(
−2π �x

Lcube

ky

k0

)
, 1 − exp

(
−2π �x

Lcube

kz

k0

))
,

(B2)

as explained below. The complex vector bk satisfies the relations

bk = b∗
−k, (B3)

bk = 0, (B4)

bk(t) b∗
k(t + s) = 2σ 2 exp

(
− s

TL

)
I, (B5)

where the superscript ∗ and the overline indicate the complex conjugate and the time
average, respectively, and TL is the time scale.

Equation (B2) is different from that used in the original work (Eswaran & Pope 1988)
because of the difference in the discretisation method. Here, following the discussion on
the fourth-order central difference scheme with the staggered arrangement of the variables
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Figure 23. Model coefficients of the particle stress models for different grid resolutions. Open symbols
represent case I384D1 (Ncell = 3843), and filled symbols represent case I512D1 (Ncell = 5123). Panels (a,c,e)
are for the deviatoric part of the particle stress, while panels (b,d, f ) are for the isotropic part. The sizes of the
averaging volume are indicated by different line types.

by Takiguchi (2000), the derivation of (B2) is summarised briefly for the second-order
scheme adopted in the present study. Even though the discretisation scheme is different,
the approach proposed by Takiguchi (2000) is applicable for other schemes.

As the spectral method is used in Eswaran & Pope (1988), the complex vector ak for the
external force (3.10) should satisfy the continuity condition

k · ak = 0, (B6)
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and kΔ = k is used instead of (B2). However, for the second-order central difference
scheme with the staggered grid, the continuity condition takes the form

gi,j,k
x − gi−1,j,k

x

�x
+ gi,j,k

y − gi,j−1,k
y

�x
+ gi,j,k

z − gi,j,k−1
z

�x
= 0, (B7)

where gx, gy and gz are components of αcgc (see (3.10)) located at the definition points of
the velocity components. The superscript indicates the index of the numerical grid point.
According to (3.10),

gi,j,k
x − gi−1,j,k

x =
∑

0<|k|�√
2k0

akx exp(
√−1 k · x){1 − exp(−√−1 kx �x)} (B8)

gi,j,k
y − gi,j−1,k

y =
∑

0<|k|�√
2k0

aky exp(
√−1 k · x){1 − exp(−√−1 ky �x)} (B9)

gi,j,k
z − gi,j,k−1

z =
∑

0<|k|�√
2k0

akz exp(
√−1 k · x){1 − exp(−√−1 kz �x)} (B10)

are confirmed, where the imaginary unit is described by
√−1 instead of i to avoid

ambiguity. Based on (B8)–(B10), the continuity is achieved by (B2).
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