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overview paper

Behavior signal processing for vehicle
applications
chiyomi miyajima1, pongtep angkititrakul1 and kazuya takeda1

Within the past decade, analyzing and modeling human behavior by processing large amounts of collected data has become
an active research field in the area of human–machine interaction. The research community is striving to find principled ways
to explain and represent important behavioral characteristics of humans, with the goal of developing more efficient and more
effective cooperative interactions between humans, machines, and environment. This paper provides a summary of the progress
we have achieved to date in our study, which has focused specifically on interactions between driver, vehicle, and driving envi-
ronment. First, we describe the method of data collection used to develop our on-the-road driving data corpus. We then provide
an overview of the data-driven, signal processing approaches we used to analyze and model driver behavior for a wide range
of practical vehicle applications. Next, we perform experimental validation by observing the actual driving behavior of groups
of real drivers. In particular, the vehicle applications of our research include driver identification, behavior prediction related to
car following and lane changing, detection of emotional frustration, and improving driving safety through driver coaching. We
hope this paper will provide some insight to researchers with an interest in this field, and help identify areas and applications
where further research is needed.
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I . I NTRODUCT ION

Human behavior plays an important role in any system
involving human–machine interaction [1–3]. In regards to
driving vehicles, as in driver–vehicle–environment interac-
tion (Fig. 1), human errors contribute to more than 90
of fatal traffic accidents [4]. Understanding driver behavior
can be useful in preventing traffic collisions [5], as well as
enhancing the effectiveness of interactions between drivers,
vehicles, and the environment. The study of driver behav-
ior is a very challenging task due to its stochastic nature
and the high degree of inter- and intra-driver variability.
To cope with these issues, over recent decades data-centric
approaches have gained much attention in the research
community [2, 6–8]. Large amounts of data are being used
to approximate parameters of models in order to optimize
the performance of systems. However, at present, there are
no standard methodologies for processing this data and
using it to represent human behavior. In this article, we
focus on understanding human behavior from a signal pro-
cessing perspective, and on developing methodologies to
analyze and model the meaningful behavioral information
that is extracted.
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The first step towards analyzing and modeling driver
behavior is to collect a reasonable amount of realistic,multi-
modal observations.Here, observations, in the formof driv-
ing signals, represent behavioral variables as a time series
which possesses particular dimensions of behavioral char-
acteristics. With recent advances in sensing and computing
technologies, it is now practical to acquire large amounts
of real-world driving signals using an instrumented vehi-
cle, and to store all of this data. We took extra care in
designing and developing our instrumented vehicle so that
we could collect a broad range of driving signals which
would represent relevant information regarding the driver,
the vehicle, and the driving environment. Therefore, this
paper will begin with a description of the data collection
process and the driving data corpus, which is one of the
largest on-the-road driving corpora in existence, with data
collected from more than 550 participants at the time this
article was written [9]. Subsequently, we will discuss behav-
ior signal processing and modeling methods with practical
vehicle applications.
Driving behavior involves multiple layers of information

regarding a driver, ranging from short-term characteristics
such as a driver’s mental, physical, and cognitive states, to
longer-term characteristics such as goals, personality, and
driver identity. Hence, modeling driver behavior allows us
to detect or predict behaviors of interest during vehicle
operation, as well as to assess and improve driver behavior
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Fig. 1. Recursive relationship between driver, vehicle, and environment.

after vehicle operation. In this paper, we demonstrate that
driver-behavior models obtained from driving signals can
be used to identify drivers, predict driving behavior, detect
driver frustration, and assess recorded driving behavior.
In the course of our research, we have developed driver-

behavior models based on a probabilistic Gaussian mixture
model (GMM) framework. We first applied our GMM-
based driver model to capture relationships among the
related parameters of car-following behavior. We showed
that GMM-based car-following models representing pat-
terns of pedal operation in the cepstral domain could
achieve an accuracy rate of 89.6 in recognizing the
identities of 276 drivers. Furthermore, the GMM-based
behavior modeling framework was extended to predict
vehicle operation behavior, in terms of pedal-pressure,
given observed driving signals such as following distance
and vehicle velocity. The modeling framework is also capa-
ble of model adaptation, which allows the adapted model
to better represent particular driving characteristics, such
as an individual’s driving style. The experimental results
showed that the framework could achieve a prediction per-
formance of 19 dB signal-to-deviation ratio (SDR). In order
to model vehicle trajectory during lane changes, we devel-
oped a hiddenMarkov model (HMM)-based model to cap-
ture the dynamicmovement of vehicles. In conjunctionwith
a proposed hazard map of surrounding vehicles, we were
able to generate predicted vehicle trajectories during lane
changes under given traffic conditions with a prediction
error of 17.6m.
In addition, by employing a Bayesian network (BN),

driver frustration could be detected at a true-positive (TP)
rate of 80 with only a 9 false-positive (FP) rate. Finally,
using a system that automatically detects hazardous situ-
ations, we developed a web-based interface which drivers
can use to locate and review each hazardous situationwhich
occurred during their own recorded driving sessions. The
system also provides drivers with feedback on each risky
driving behavior that was detected, and coaches drivers
on how to appropriately respond to such situations in a
safer manner. Experimental evaluation showed that driv-
ing behavior could be improved significantly when drivers
used the proposed system. In this paper, we will describe
in detail the signal processing approaches we employed
for collecting, analyzing, modeling, and assessing human
behavior signals, and demonstrate the advantages of using
these techniques in vehicle applications.
This paper is organized as follows.We first introduce our

driving signal corpus and data collection methods in the

Fig. 2. Instrumented vehicle.

next section. In Section III, we describe our first applica-
tion of driver modeling for driver identification. Then, in
Section IV, driver behavior prediction is discussed for both
car-following and lane-changing tasks. Section V describes
our analysis of driver frustration using a combination of
speech and pedal actuation signals. An application involv-
ing the use of recorded driving data for driver education is
discussed in Section VI. Finally, we summarize and discuss
future work in Section VII.

I I . DR IV ING CORPUS

A data collection vehicle was designed for synchronously
recording audio and other multimedia data as drivers oper-
ated the vehicle on public roadways [9, 10]. Various sensors
were mounted on a Toyota Hybrid Estima with a 2360
cc displacement engine and an automatic transmission, as
shown in Fig. 2. Table 1 summarizes all the driving sig-
nals recorded by the system. Participants drove the instru-
mented vehicle on city streets and expressways in the city
of Nagoya, Japan. The data collection vehicle, route, and
equipment were the same for all drivers, and all the drivers
were trained and treated in the same manner. During the
experiment, drivers also performed carefully designed sec-
ondary tasks similar to activities likely to occur during
everyday driving. The secondary tasks were carried out
in the same order at very similar locations, so that data
from different drivers could be analyzed and compared.
Throughout each data collection session, an experimenter
monitored the experiment from the rear seat.

A) Collection protocol
In order to develop a technique for quantifying the cognitive
state/stress level of drivers, driving data are recorded under
various driving conditions with four different secondary
tasks. Detailed descriptions of the tasks and examples of the
spoken sentences are follow as:

• Signboard reading task: Drivers read aloudwords on sign-
boards, such as names of shops and restaurants, seen from
the driver seat while driving, e.g., “7–11”, “Dennys”.

• Navigation dialog task: Drivers are guided to an unfa-
miliar location by a navigator via a cell phone with a
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Table 1. Summary of driving data acquisition.

Recording system Specification Channel Rate Unit Data captured

Microphones Omni-directional condenser microphones 12 16 kHz Voltage Audio and speech
(SONY ECM-77B) and a closed-talk mic.

Video cameras CCD cameras (SONY DXC-200A) 4 29.4118 fps Images Driver’s face (left and right)
(pixels) and feet, front-view of road

Pedal sensors Pressure sensors 2 16 kHz N Gas and brake pedal pressure
(LPR-A-03KNS1 and LPR-R-05KNS1)

Steering sensor Potentiometer 1 16 kHz degree Steering angle
(COPAL M-22E10-050-50K)

Speed sensor Pulse generator JIS5601 1 16 kHz m/s Vehicle velocity
Distance sensors SICK DMT-51111 and MITSUBISHI MR3685 2 16 kHz m Distance to leading vehicle
Physiological sensors Chest belt POLAR S810i 1 100 Hz bpm Heart rate

Perspiration meter (SKINOS SKD-2000) 1 16 kHz mV Driver’s sweat
Electrodermal meter (SKIN SKSPA) 1 16 kHz mV Driver’s sweat

Accelerometers Crossbow CXL04LP3 3 16 kHz G Acceleration in x-y-z
Laser scanners Front: RIEGL LMS-140i-80 1 20 Hz m Objects in front

Back: RIEGL LMS-Q120i 1 50 Hz m Objects behind
Omni-directional camera Point Grey Ladybug 1 6 × 15 fps Images Driving environment
GPS Navicom GPS-M1zz 1 1 Hz Standard GPS information

hands-free headset. Drivers do not have maps, and only
the navigator knows the route to the destination.

• Alphanumeric reading task: Drivers repeat random four-
character strings consisting of the letters a–z and dig-
its 0–9, e.g., “UKZ5”, “IHD3”, “BJB8”. The original four-
character strings are supplied through an earphone.

• Music retrieval task: Drivers retrieve and playmusic using
a spoken dialog interface. Music can be retrieved by the
artist’s name or the song title, e.g., “Beatles”, “Yesterday”.

Drivers start from Nagoya University and return after
about 70 min of driving. Driving data are recorded under
the above four task conditions on city roads, and under two
task conditions on an expressway. Driving data without any
tasks are recorded as a reference before, between, and after
the tasks. Figure 3 shows some samples of driving signals.
After completing the route, the participant is asked to

assess his or her subjective level of frustration while driving,
by simultaneously viewing the front-view camera and facial
videos while listening to the corresponding audio record-
ing. The assessment is done on a customdesigned computer
interface, on which the driver continuously indicates the
intensity of their frustration by sliding a bar along a scale
from 0 to 30, i.e., from “no frustration” to “extremely frus-
trated”. The interface output is a continuous signal, and the
level of frustration is recorded every 0.1 s.

B) Data annotation
An effective annotation of the collected multimedia infor-
mation is crucial for providing a more meaningful descrip-
tion of the situations drivers experience. In our study, we
proposed a data annotation protocol that covers most of
the factors that might affect drivers and influence their
subjective feedback responses. The annotation labels are
comprised of six major groups: driver’s affective state
(level of irritation), driver actions (e.g., facial expression),
driver’s secondary task, driving environment (e.g., type of
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Fig. 3. Examples of driving behavior signals.

road, traffic density), vehicle status (e.g., turning, stopped),
and speech/background noise. The annotation protocol
designed in this research is comprehensive, and can be used
in a wide range of research fields. Further details of the
annotation protocol and a more detailed description can
be found in [11]. Having introduced our driving corpus,
in the following sections we will discuss signal processing
techniques and data-driven approaches for various vehicle
applications.

I I I . DR IVER IDENT I F ICAT ION

Driving behaviors differ among drivers. They differ in how
they hit the gas and brake pedals, in the way they turn the
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steering wheel, and in how much distance they keep when
following a vehicle. Consequently, intelligent transportation
systems (ITS) applications are expected to be personalized
for different drivers according to individual driving styles.
Oneway to achieve this is to assist each driver by controlling
a vehicle based on a driver model representing the typical
driving patterns of the target driver. Driver models for indi-
vidual drivers or for subgroups of drivers classified based
on their driving styles would be trained either in offline or
online mode, and an ITS application would choose a driver
model appropriate for assisting the target driver by identify-
ing the driver or finding themodel that suits his/her driving
styles.
The objective of this section is to demonstrate the abil-

ity to identify a driver from an observed pattern of pedal
operation. As a result of individual characteristics (e.g.,
personality traits, driving styles), pedal operation patterns
while driving differ among drivers. Figure 4 shows examples
of gas pedal operation signals of 150 sec in duration collected
in a driving simulator from two drivers, recordedwhile they
were following the same leading vehicle. Pedal operation
patterns are consistent for each driver, but differ between
the twodrivers.Wemodeled the differences in gas and brake
pedal operation patterns with GMMs [12] using the follow-
ing two kinds of features: (1) Raw pedal operation signals
and (2) Spectral features of pedal operation signals [13].
GMM is a statistical model widely used in pattern recog-

nition, including speech and speaker recognition [12]. It is
defined as amixture ofmultivariateGaussian functions, and
the probability of D-dimensional observation vector o for
GMM λ is obtained as follows:

p(o | λ) =
M∑

i=1

wiNi (o), (1)

where M is the number of the Gaussian components and
Ni (o) is the D-variate Gaussian distribution of the i th
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Fig. 4. Examples of gas pedal operation patterns for two drivers (Top: driver 1,
Bottom: driver 2) following the same leading vehicle.
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Fig. 5. General modeling of a driving signal.

component defined by mean vector μi and covariance �i :

Ni (o) = 1√
(2π)D |�i |

exp

{
−1

2
(o − μi )

′�−1
i (o − μi )

}
,

(2)
where (·)′ and (·)−1 denote transpose and inverse matrices,
respectively. wi is a mixture weight for the i th component
and satisfies

∑M
i=1 wi = 1.

A) Spectral features of pedal operation signals
As shown in Fig. 5, in driver modeling we assume that the
command signal for hitting a pedal e(n) is filtered with
driver model H(e jω), represented as the spectral envelope,
and that the output of the system is observed as pedal signal
x(n). In other words, a command signal is generated when
the driver decides to apply pressure to the gas pedal, and
H(e jω) represents the process of acceleration. This can be
described in the frequency domain as follows:

X(e jω) = E (e jω)H(e jω), (3)

where X(e jω) and E (e jω) are the Fourier transforms of
x(n) and e(n), respectively. We focus on driver character-
istics represented as frequency response H(e jω).
A cepstrum is a widely used spectral feature for speech

and speaker recognition [14], defined as the inverse Fourier
transform of the log power spectrum of the signal. Cep-
stral analysis allows us to smooth the structure of the
spectrum by keeping only the first several lower-order cep-
stral coefficients, and setting the remaining coefficients to
zero. Assuming that individual differences in pedal opera-
tion patterns can be represented by the smoothed spectral
envelope of pedal operation signals, we modeled the pedal
operation patterns of each driver with lower-order cepstral
coefficients. In addition, assuming that the spectral enve-
lope can capture the differences between the characteristics
of different drivers, we focused on the differences in spectral
envelopes represented by cepstral coefficients (cepstrum),
which were also modeled with GMMs.

1) Dynamic features of driving signals
In a way similar to research done on speech and speaker
recognition, we found that the dynamic features of driving
signals contain large amounts of information about driv-
ing behavior. Dynamic features are defined as the following
linear regression coefficients:

�o(t) =
∑K

k=−K ko(t + k)∑K
k=−K k2

, (4)
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where o(t) is a static feature of raw signals or cepstral
coefficients at time t and K is the half window size for
calculating the � coefficients. We determined from pre-
liminary experiments that the regression window is 2K =
800ms for both raw pedal signals and cepstral coefficients.
If o(t) is a D-dimensional vector, D dynamic coefficients
are obtained from the static coefficients, combined into a
2D-dimensional feature vector, and modeled with GMMs.

B) Driver identification experiments
1) Experimental conditions
Driving data from 276 drivers, collected on city roads in
the data collection vehicle, were used, excluding data col-
lected while the vehicle was not moving. Three minutes of
driving signals were used for GMM training and another
3min for testing. We used both brake and gas pedal sig-
nals in the real-vehicle experiments because drivers use the
brake pedal more often during city driving than during
expressway driving.
Cepstral coefficients obtained from the gas and brake

pedal signals are modeled with two separated GMMs, and
their log-likelihood scores were linearly combined. For
driver identification, the unknown driver was identified
as driver k̂ who gave the maximum weighted GMM log-
likelihood over the gas and brake pedal signals:

k̂ = arg max
k

{γ log P (G | λG ,k)

+ (1 − γ ) log P (B | λB ,k)}, 0 ≤ γ ≤ 1, (5)

where G and B are the cepstral sequences of the gas and
brake pedals and λG ,k and λB ,k are the kth driver models
of the gas and brake pedals, respectively. γ is a linear com-
bination weight for the log-likelihood of gas pedal signals.

2) Experimental results
The results for the 16-componentGMMs are summarized in
Fig. 6. The identification performance was rather low when
using raw driving signals: the best identification rate for raw
signals was 47.5with γ = 0.80. By applying cepstral analy-
sis, however, the identification rate increased to 76.8 with
γ = 0.76. We thus conclude that cepstral features capture
individual variations in driving behavior better than raw
driving signals and achieve better performance in driver
identification.

I V . DR IVER BEHAV IOR PRED ICT ION

Driver behavior models can be employed to predict future
vehicle operation patterns given the available observations
at the time of prediction. Here, two driving tasks are con-
sidered: car following [15, 16] and lane changing [17].

A) Car following
Car following characterizes longitudinal behavior of a
driver while following behind another vehicle [18]. In this
study, we focus on the way the behavior of the driver of the
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Fig. 6. Comparison of identification rates using raw pedal signals and cepstral
coefficients.

following vehicle is affected by the driving environment and
by the states of his or her own vehicle. There are several fac-
tors that affect car-following behavior, such as relative posi-
tion and velocity of following vehicle with respect to lead
vehicle, acceleration and deceleration of both vehicles, and
perception ability and reaction time of the follower. Figure 7
shows a basic diagram of car following and the corre-
sponding parameters, where v f

t , a f
t , ft , x

f
t represent vehicle

velocity, acceleration/deceleration, distance between vehi-
cles, and observed feature vector at time t, respectively.
The GMM-based driver-behavior model represents pat-

terns of pedal operation corresponding to the observed
velocity and following distance. The underlying premise of
thismodeling framework is that a driver determines gas and
brake pedal operation in response to the stimulus of vehicle
velocity and following distance. Consequently, such rela-
tionship can be modeled by the joint distribution of all the
correlated parameters. Figure 8 illustrates a car-following
trajectory (gray dashed line) on different 2-D parameter
spaces, overlaid with the contour of corresponding two-
mixture GMM distribution.

1) Feature extraction and model
representation
In our framework tomodel a pedal pattern, an observed fea-
ture vector at time t, xt , consists of vehicle velocity, following
distance, and pedal pattern (Gt) with their first- (�) and
second-order (�2) time derivatives as

xt = [v f
t , �v

f
t , �2v

f
t , ft , � ft , �

2 ft , Gt , �Gt , �
2Gt]

T ,
(6)

Fig. 7. Car following with corresponding parameters.
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Fig. 8. A car-following trajectory (gray dashed line) on different two-dimen-
sional parameter spaces, overlaid with the contour of corresponding two-mix-
ture GMM distribution.

where, in this modeling, the�(·) operator is defined as

�xt = xt −
∑

T

τ=1 τ xt−τ∑
T

τ=1 τ
, (7)

where T is a window length (e.g., 0.8 s). Next, let us define
a set of augmented feature vectors yt as

yt = [xT
t Gt+1]

T . (8)

Consequently, the joint density between the observed driv-
ing signals xt and the next pedal operation Gt+1 can be
modeled by a GMM �, with a mean vector μ

y
k and a

covariance matrix	
yy
k of the kth mixture expressed as

μ
y
k =

[
μx

k
μG

k

]
and 	

yy
k =

[
	xx

k 	xG
k

	Gx
k 	GG

k

]
. (9)

2) Pedal pattern prediction
The predicted gas pedal pattern Ĝ t+1 is computed using
the weighted predictions resulting from all the mixture
components of the GMM, as

Ĝ t+1 =
K∑

k=1

hk(xt) · Ĝ (k)
t+1(xt), (10)

where Ĝ (k)
t+1(xt) is a maximum a posteriori (MAP) predic-

tion of the observed parameters xt given the kth mixture
component which is given by

Ĝ (k)
t+1(xt) = arg max

Gt+1

{p(Gt+1|xt , φk)}

= μG
k + 	Gx

k (	xx
k )−1(xt − μx

k ). (11)

The term hk(xt) is the posterior probability of the
observed parameter xt belonging to the kth-mixture com-
ponent, as

hk(xt) = αk p(xt |φx
k )∑K

i=1 αi p(xt |φx
i )

, 1 ≤ k ≤ K , (12)

where p(xt |φx
i ) is the marginal probability of the observed

parameter xt generated by the i thGaussian component, and
αk is the prior probability of the kth mixture component.

3) Model adaptation
We applied Bayesian or MAP adaptation to re-estimate
the model parameters individually, by shifting the origi-
nal statistic (i.e., mean vectors) toward the new adapta-
tion data [12]. The universal or background driver-behavior
models were first obtained from a pool of driving data of
several drivers from the training set. The universal driver
models represent average or common driving characteris-
tics shared by several drivers. In this study, to enhance the
model’s capability, we took a further step of adapting the
parameters of the universal driver models, as described in
the following two scenarios.

• Driver adaptation: The goal of driver adaptation is to
adapt the model parameters to better represent a given
individual’s driving characteristics. In this scenario, the
driving data belonging to each particular driver are used
to adapt the universal model to obtain the adapted driver
models, namely driver-dependent or personalized driver
models. That is, each driver will be associated with an
individualized and unique driver model.

• On-line adaptation: The driving data at the beginning of
each car-following event are used to adapt the univer-
sal model, and subsequently, the on-line adapted driver
model is used to represent driving behavior for the rest
of each particular car-following event. The objective of
on-line adaptation is to capture the overall unique car-
following characteristics of a particular event (e.g., driver
and environment) that deviate from the average charac-
teristics of the universal models.

4) Experimental evaluation
Evaluation is performed using approximately 300 min
worth of clean and realistic car-following data from 68
drivers. Manual annotation is exploited to verify that only
concrete car-following events with legitimate driving sig-
nals that last more than 10 s are considered. The predic-
tion was performed on every sample (i.e., every 0.1 s).
Figure 9 compares the prediction performance of the uni-
versal, driver-adapted, and 30 s-on-line-adapted (using 30 s
of driving data) driver models with 4, 8, 16, and 32mixtures,
in terms of SDR.
The measurement SDR is defined as follows:

S DR = 10 log10

∑T
t=1 G 2(t)∑T

t=1(G(t) − Ĝ(t))2
[dB], (13)

where T is the length of a signal, G(t) is the actually
observed signal, and Ĝ(t) is the predicted signal. From the
results, we can see that the driver-adapted models showed
the best performance (approximately 19 dB SDR or 11.22%
normalized errors with 32-mixture GMMs).

B) Lane changing
In this section, we consider driving behavior related to con-
trol of vehicle trajectory during lane changes. Since lane
change activity consists of multiple states (i.e., examining
the safety of traffic environments, assessing the positions
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Fig. 9. Comparison of pedal prediction performance for car-following task
using different driver models.

of other vehicles, moving into the next lane, and adjusting
driving speed to traffic flow) [19], a single dynamic system
cannot model vehicle trajectory. In addition, the bound-
aries between states cannot be observed from the vehicle’s
trajectory.
To study lane-changing behavior, a set of vehicle move-

ment observations were made using a driving simulator.
Relative longitudinal and lateral distances from a vehicle’s
position when starting a lane change, xi [n], yi [n], and the
velocity of the vehicle, ẋi [n], ẏi [n], were recorded every 160
ms. Here, i = 1, 2, 3 are the indexes for the locations of sur-
rounding vehicles (Fig. 10), and {x0[n], y0[n]} represents
the position of the driver’s own vehicle. The duration of
lane-change activity, n = 1, 2, . . . , N , starts when V0 (the
drivers own vehicle) and V2 are at the same longitudinal
position and ends when V0’s lateral position reaches the
local minimum as shown in Fig. 10.

1) Modeling trajectory using a HMM
We used a three-state HMM [20] to describe the three dif-
ferent stages of a lane change: preparation, shifting, and
adjusting. In the proposedmodel, each state is characterized
by a joint distribution of eight variables:

v = [ẋ0, y0, �ẋ0, �ẏ0, �
2 ẋ0, �

2 ẏ0, ẋ1, ẋ2]
T . (14)

Here, the � operator is defined as in equation (4). In gen-
eral, longitudinal distance, x0, monotonically increases in
time and cannot be modeled by an i.i.d. process. Therefore,
we use longitudinal speed ẋ0 as a variable to characterize
the trajectory. Finally, after training the HMM using a set
of recorded trajectories, the mean vector μ j and covari-
ance matrix 	 j of the trajectory variable v are estimated
for each state ( j = 1, 2, 3). The distribution of duration N
is modeled using a Gaussian distribution.
The shape of a trajectory is controlled by the HMM and

the total duration of the lane change activity. When a driver
performs a lane change in a shorter time, this results in
a sharper trajectory. We generate a set of probable lane-
change trajectories by determining state durations d j using

Fig. 10. Lane-change trajectory and geometric positions of surrounding
vehicles.

uniform re-sampling. Once a set of state durations is deter-
mined, we apply either the maximum likelihood HMM sig-
nal synthesis algorithm (ML method) [21] or the sampling
algorithm [22] to generate the most probable trajectory.
Simply repeating this process will produce a set of proba-
ble vehicle trajectories which characterize a driver’s typical
lane-change behavior.

2) Trajectory selection
Although various natural driving trajectories may exist, the
number of lane-change trajectories that can be realized
under given traffic circumstances is limited. Furthermore,
the selection criteria of the trajectory, based on the traffic
context, differs among drivers (e.g., some drivers are more
sensitive to the position of the leading vehicle than to those
of vehicles to the side.) Therefore, we model the selection
criterion of each driver with a scoring function for lane-
change trajectories based on vehicular contexts, i.e., relative
distances to the surrounding vehicles.
In the proposed method, a hazard map function M is

defined in a stochastic domain based on the histograms of
the relative positions of the surrounding vehicles ri = [xi −
x0, yi − y0]t . To model sensitivity to surrounding vehicles,
we calculated a covariance matrix Ri for each of three
distances ri , i = 1, 2, 3, using training data. Since the dis-
tance varies more widely at less sensitive distances, we use
the quadratic form of inverse covariance matrices (R−1

i )
as a metric of the cognitive distance. Then we calculate
the hazard map function Mi for surrounding vehicle Vi as
follows:

Mi = 1

1 + exp{αi (r t
i R−1

i ri − βi )}
, (15)

where αi is a parameter of the minimum safe distance
defined so that the minimum value of cognitive distance
r t

i R−1
i ri of the training data corresponds to the lower 5

distribution values, and βi is the mean value of r t
i R−1

i ri .
Each hazardmapMi can be regarded as a posterioriprob-

ability of being in the safe driving conditionwithin the range
of distances Pr (safe|ri ), when the likelihood is given as an
exponential quadratic form. Therefore, integrating the haz-
ard maps for all surrounding vehicles can be done simply
by interpolating three probabilities with weights λi into an
integrated map M = ∑

i=1,2,3 λi Mi . Once the positions of
the surrounding vehicles at time n, ri [n], are determined,
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Mi can be calculated for each point in time, and by averag-
ing the value over the duration of the lane change, we can
compare the possible trajectories. Then the optimal trajec-
tory that has the lowest value is selected from among the
possible trajectories.

3) Experimental evaluation
Thirty lane-change trials were recorded for two drivers
using a driving simulator which simulated a two-lane urban
expressway with moderate traffic. The velocity of the vehi-
cles in the passing lane ranged from 82.8 to 127.4 km/h and
the distance between successive vehicles in the passing lane
ranged between 85 and 315m. The drivers were instructed
to pass the lead vehicle when they were able to, once dur-
ing each trial. The trained hazard maps M for the two
drivers shown in Fig. 11 depicts differences in sensitivity to
surrounding vehicles.
We generated possible lane-change trajectories for the

vehicles over a 20-s period using the two above-mentioned
methods, and then selected the optimal trajectory. Figure 12
illustrates sample trajectories generated using the sam-
plingmethod and the corresponding optimal trajectory, and
compares them with the actual trajectory. For quantitative
evaluation, we calculated the difference between the pre-
dicted and actual trajectories based on dynamic time warp-
ing (DTW) [23], using the normalized square difference
as a local distance, and measured it in terms of signal-to-
deviation ratio (SDR). Figure 13 (top) shows average SDRs
of the best trajectory hypothesis and all trajectory hypothe-
ses (mean), using the ML method (left) and the sampling
method (right). The sampling method was better at gener-
ating vehicle trajectories similar to the actual driver trajec-
tories than the ML method. Figure 13 (bottom) also shows
the SDRs when driver A’s model was used for predicting
driver B’s trajectory and vice versa. The SDR decreased by
2.2 dB when the other driver’s model was used to make
the prediction. This result confirmed the effectiveness of
the proposedmodel for capturing individual characteristics
of lane-change behavior. We also tested our method using
actual lane-change duration. When the actual lane-change
duration N is given, the root mean square error (RMSE)
between the predicted and actual trajectories can be calcu-
lated. The average RMSE for 60 tests was 17.6m, as a result
of predicting vehicle trajectories over a distance of about
600m (i.e., over a 20-s time period).
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Fig. 12. Examples of generated trajectories (black dotted lines) and optimal
trajectory (blue dashed line) using sampling method, compared with actual
trajectory (red solid line).
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V . DETECT ION OF DR IVER
FRUSTRAT ION

In this section, we propose a method that integrates fea-
tures of a different nature, in order to detect driver frus-
tration. The designed model is based on the assumption
that emotions are the result of an interaction with the envi-
ronment, and are usually accompanied by physiological
changes, facial expressions, or actions [24].

A) Analysis
A method for combining all of the different features and
annotation results in an efficient languagewas needed, and a
BN [25] was the natural choice to deal with such a task. One
of the important characteristics of a BN is the ability to infer
the state of an unobserved variable, given the state of the
observed ones. In our case, wewanted to infer a participant’s
frustration given the driving environment, speech recog-
nition errors (i.e., communication environment), and the
participant’s responses measured through the physiological
state, overall facial expression, and pedal actuation.
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Fig. 14. Proposed BN structure. Squares represent discrete (tabular) nodes, and
the circle represents a continuous (Gaussian) mode. The number inside each
node represents the number of mutually exclusive states the node can assume.
Labels outside nodes identify random variable type.

The graph structure proposed to integrate all of the avail-
able information is shown in Fig. 14. This model was based
on the following assumptions: (1) environmental factors
that may have an impact on goal-directed behavior (i.e.,
traffic density, stops at red-lights, obstructions, turns or
curves, and speech recognition errors) may also result in
driver frustration; (2) a frustrated driver is likely to exhibit
changes in his or her facial expression, physiological state,
and gas- and brake-pedal actuation behavior. In Fig. 14,
the squares represent discrete (tabular) nodes and the cir-
cle represents a continuous (Gaussian) node. The number
inside each node represents the number of mutually exclu-
sive states that the node can assume (e.g., “2” for yes/no
binary states, “4” for four levels of arousal). Random vari-
ables were identified by a label outside each node: “F”
(frustration), “E” (environment), and “R” (responses).
In addition to the graph structure, it is also necessary to

specify the parameters of the model, obtained here using
a training set. During parameterization, we calculate the
conditional probability distribution (CPD) at each node.
If the variables are discrete, this can be represented as a
table (CPT), which lists the probability of a child node tak-
ing on each of its different values for each combination of
the values of its parent nodes. On the other hand, if the
variable is continuous, the CPD is assumed to have a linear-
Gaussian distribution. For example, the continuous node
pedal actuation, which has only one binary parent, was rep-
resented by two different multivariate Gaussians, one for
each emotional state: frustrated and not frustrated. For each
observed environment (driving and communication) and
the corresponding driver responses, we can use Bayes’ rule
to compute the posterior probability of frustration as

P (F |E1, E2, E3, E4, E5, R1, R2, R3, R4)

= P (F |E1, E2, E3, E4, E5)

× P (R1|F )P (R2|F )P (R3|F )P (R4|F )

P (E1, E2, E3, E4, E5, R1, R2, R3, R4)
. (16)

The denominator was calculated by summing (marginal-
izing) out F . In addition, in this study we set a uniform
Dirichlet prior [26] to every discrete node in the network.
This was done in order to avoid over-fitted results due to the
ML approach used for calculating the CPTs. Without a pri-
ori, patterns thatwere not observed in the training setwould
be assigned zero probability, compromising the estimation.
The network input data are all of the available data–pedal

actuation signals, skin potential, and other binary signals
(environmental factors and speech recognition errors). At
a given time step t, frames of sizes L and M were used to
extract features from the skin potential and pedal actua-
tion signals, respectively. The results served as the network
inputs. The value of each binary label at the current time
step was directly entered into the network without further
processing. Frame shift was kept fixed at 0.5 s. For two con-
secutive frames, the value of current traffic density contin-
ues to remain in effect, for example, on future skin potential
and pedal actuation signals, in order to account for delayed
physiological and behavioral reactions. In addition, frustra-
tion was estimated for every frame (i.e., we did not pre-
select segments where we were certain of the presence or
absence of frustration, while ignoring ambiguous regions.)

B) Experimental evaluation
Within the data used in our experiments, 129 scenes of
frustration (segments with an original value above 0) were
found. On average, participants became frustrated 6.5 times
while driving in our experiment. The mean strength of
frustration scenes was 10.5, and the mean duration was
11.8 s. Figure 15 shows the estimation results for all drivers
concatenated side by side: actual frustration detected for all
20 participants (top); the posterior probability of the frus-
tration node calculated using the entire network (center);
and the quantized posterior probability using a threshold of
0.5 (bottom). The quantized probability for each driver was
further median-filtered to remove unwanted spikes. The
overall results show that the model achieved a TP rate of
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Fig. 16. Interface summarizes hazardous situations on a driving map.

80 with a FP rate of 9 (i.e., the system correctly esti-
mate 80 of the frustration and, when drivers were not
frustrated, mistakenly detected frustration 9 of the time).

V I . DR IVER COACH ING

We also developed a next-generation event data recorder
(EDR) by employing driver-behaviormodeling. It is capable
of detecting a wide range of potentially hazardous situa-
tions that would not be captured by conventional EDRs [27],
and we have shown that it can be used to improve driv-
ing safety by making drivers aware of their unsafe behavior.
Our automated diagnosis and self-review systemwas devel-
oped on a server computer as a web application for easy
access via networks from PCs or smart phones [28, 29]. The
system automatically detects nine types of potentially haz-
ardous situations from the driver’s own recorded driving
data. These include:

(1) Sudden deceleration
(2) Sudden acceleration
(3) Risky steering
(4) Excessive speed
(5) Ignoring a traffic light
(6) Ignoring a stop sign
(7) Insufficient following distance
(8) Risky obstacle avoidance
(9) Risky behavior at a poor-visibility intersection.

The current version will display up to five of the most haz-
ardous scenes for each hazard type by automatically gauging
the hazard level, using the magnitude of the difference from
pre-defined thresholds (for hazard types 1–7), or by using
the magnitude of the likelihood ratio between the risky
and safe driving models (for hazard types 8–9).1 The sys-
tem allows users to browse through detailed information

1Here, two GMM-based driver-behavior models were used, one to
represent safe driving behavior, and the other to represent risky driving
behavior. Risky driving behavior could be determined by performing a
hypothesis test of the observations against a pre-defined threshold [30]

on hazardous situations detected on a given day, repre-
sented by balloon icons on an actual driving map. Each
balloon represents a unique hazardous situation, with dif-
ferent colored balloons corresponding to different types of
hazards, as shown in Fig. 16. The system also provides statis-
tics on all the hazardous situations the driver encountered,
using the archived data recorded for that driver, and dis-
plays it on a pie chart using the number of occurrences for
each type of hazard. Therefore, the system could be used to
identify a tendency toward risky driving behavior, or other
personality traits possessed by an individual driver.
After clicking on a balloon on the map of the driving

route, the corresponding video and driving signals are dis-
played, along with explanations of the hazardous behavior
detected at that location and instructions on how the user
can improve the safety of their driving. The user can also
examine different kinds of driving signals related to that
particular driving scene. The safety instructions were pre-
pared in advance for each type of hazardous situation, based
on a potential driving danger analysis manual [31] (the
manual is based on traffic psychology and Japanese driv-
ing rules). In general, the system will inform the user why
a particular detected driving behavior is considered unsafe
in a given situation, and then coach the user by suggesting
safe driving behavior for that situation, in order to improve
their driving skills. Figure 17 shows an example of the inter-
face diagnosing a hazardous situation at an intersection. The
systemnotifies the user that he or she did not stop at the stop
sign, and crossed the intersection at a speed of 17 km/h. The
system then suggests that, in this situation, the driver should
stop completely at the stop sign and confirm that it is safe to
cross the intersection before proceeding.

A) Experimental evaluation
In order to validate the effectiveness of our system in reduc-
ing the number of detected hazardous situations (e.g., to
improve driving behavior), we recruited 33 drivers, includ-
ing 6 expert drivers, to participate in our experiment. The
subjects were asked to drive the instrumented vehicle three
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Fig. 17. An interface diagnosing a hazardous situation at an intersection.

times on three different days, following the same route,
which takes approximately 90 min to complete. We used
data from the second and the third sessions for our anal-
ysis, because we allowed the subjects to get familiar with
the vehicle during the first session. After the second session,
27 subjects used the driving diagnosis browser and received
feedback before taking part in the third session. We com-
pared the number of hazardous situations detected during
the second and third sessions. Figure 18 compares the num-
ber of detected hazardous situations. We can see that the
number of detected hazardous scenes for the non-expert
drivers decreased by more than 50 after using the system,
while there was no significant change for the drivers who
did not use the system.

V I I . SUMMARY AND FUTURE
WORK

We have presented some examples of human-behavior
signal processing and related modeling approaches, with
a focus on the interaction between driver, vehicle, and
environment. Utilizing multi-modal driving signals (e.g.,
brake/gas pedal pressure, steering-wheel angle, distance
between vehicles, vehicle velocity, vehicle acceleration, etc.),

Fig. 18. Number of detected hazardous scenes for non-expert drivers who did
not receive feedback (top), and for non-expert and expert drivers before and
after using the system (bottom).

we were able to capture meaningful characteristics of driver
behavior, and driver models were then employed to detect,
predict and assess driving behavior. Experimental evalua-
tions using real-world driving data have shown promising
outcomes with a wide range of vehicle applications, such
as recognizing driver identity, predicting driver behavior
during maneuvers (i.e., car following and lane changing),
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detecting mental states of drivers (i.e., frustration), and
assessing driving behavior for driver coaching. Our future
work will focus on identifying individual driving charac-
teristics, as well as examining variations in driving behav-
ior between drivers, by comparing drivers from different
countries, for example.
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