Approximation by means of Convergent Fractions.

By A. C. DIXON.

(Read and Received 13th January 1911).

This is a note on the theory of continued fractions,* in which the chief feature is the use made of the successive remainders or divisors which occur in the reduction of any given ratio to a continued fraction.

The treatment of the Pellian equation also differs from that which is generally given.

1. Let $A = A_0$, $B = A_1$ be two quantities to whose ratio we wish to approximate, and suppose A > B, both being positive.

Let a_2B be the greatest integral multiple of B contained in A, and let $A_2 = A - a_2B = A_0 - a_2A_1$; let a_3A_2 be the greatest integral multiple of A_2 contained in A_1 and $A_3 = A_1 - a_3A_2$, and so on, a_mA_{m-1} being the greatest integral multiple of A_{m-1} contained in A_{m-2} , and $A_m = A_{m-2} - a_mA_{m-1}$.

By successive substitution

$$\mathbf{A}_m = (-1)^m \{ q_m \mathbf{A} - p_m \mathbf{B} \}$$

where p_m , q_m are formed by the law

	$p_m = a_m p_{m-1} + p_{m-2},$
	$q_m = \alpha_m q_{m-1} + q_{m-2},$
and	$p_0 = 0, q_0 = 1, p_1 = 1, q_1 = 0,$
so that	p_1, p_2, p_3, \dots

Q2, Q3, Q4,...

are two increasing series of positive integers, since $a_2, a_3...$ are positive integers.

* For the theory, see, for instance, Chrystal's Algebra, chapters 32, 33.

Also A_0 , A_1 , A_2 ,... form a decreasing series of positive quantities.

Thus $A_m/q_m B$ diminishes continually as m increases, that is, the difference between A/B and p_m/q_m diminishes continually as m increases and it is clearly an excess and defect alternately.

Also $p_m q_{m-1} - p_{m-1}q = -(p_{m-1}q_{m-2} - p_{m-2}q_{m-1}) = (-1)^{m-1}$, from which it follows as usual that p_m/q_m is nearer to A/B than any other fraction whose denominator $\geqslant q_m$.

Again, if we approximate by the same method to p_m/q_m , the quotients $a_2, a_3, \ldots a_m$ are the same as for A/B: for let

$$A_0' = p_m, A_1' = q_m,$$

 $A_r' = (-1)^r \{q_r A' - p_r B'\}$

Then when r < m, $\frac{p_r}{q_r} - \frac{p_m}{q_m}$ is of the same sign as $\frac{p_r}{q_r} - \frac{A}{B}$, and therefore A_r' is always positive. Moreover

$$A_{r'-2} = a_r A_{r'-1} + A_r'$$

> $A_{r'-1}$,

so that A_0' , A_1' , A_2' ... form a decreasing series of positive quantities, and $a_r A_{r'-1}$ is the greatest multiple of $A_{r'-1}$ contained in $A_{r'-2}$.

Thus the convergents to p_m/q_m are, so far, the same as to A/B,

that is,
$$p_m/q_m = a_2 + \frac{1}{a_3 + a_4 + \ldots + a_m}$$

Also
$$p_m/p_{m-1} = a_m + p_{m-2}/p_{m-1} = a_m + \frac{1}{a_{m-1} + a_{m-2} + \dots + a_2}$$

and

which

ad $q_m/q_{m-1} = a_m + \frac{1}{a_{m-1}} + \ldots + \frac{1}{a_3}$ similarly.

2. If the ratio A/B is a simple quadratic surd, say

$$A_0 = \sqrt{N}, A_1 = 1$$

where N is a positive integer, then a_{m+1} is the integer next below

$$(q_{m-1}\sqrt{\mathbf{N}} - p_{m-1}) \div (p_m - q_m\sqrt{\mathbf{N}})$$
$$= (\mathbf{N}q_m q_{m-1} - p_m p_{m-1} - (-1)^m \sqrt{\mathbf{N}}) \div (p_m^2 - q_m^2 \mathbf{N})$$

or $(q_{m-1}^2 N - p_{m-1}^2) \div (N q_m q_{m-1} - p_m p_{m-1} + (-1)^m \sqrt{N}).$

This fraction is positive and >1, and so is

$$(p_m + q_m \sqrt{\mathbf{N}}) \div (q_{m-1} \sqrt{\mathbf{N}} + p_{m-1}),$$

and so therefore is the product of the two, namely,

 $\begin{aligned} &(\mathrm{N}q_m q_{m-1} - p_m p_{m-1} - (-1)^m \sqrt{\mathrm{N}}) \div (-\mathrm{N}q_m q_{m-1} + p_m p_{m-1} - (-1)^m \sqrt{\mathrm{N}}). \\ & \text{Hence } (-1)^m \{p_m p_{m-1} - \mathrm{N}q_m q_{m-1}\} \text{ is positive but } < \sqrt{\mathrm{N}}, \text{ and} \\ & \text{it follows that } (-1)^m (q_m^2 - \mathrm{N}p_m^2) \text{ is positive but } < 2\sqrt{\mathrm{N}}. \end{aligned}$

Thus there must come a stage when the values of these two integers are repeated, that is, when

$$\frac{q_{m-1}\sqrt{N} - p_{m-1}}{p_m - q_m\sqrt{N}} = \frac{q_{n-1}\sqrt{N} - p_{n-1}}{p_n - q_n\sqrt{N}} (n > m)$$

and the series $a_{n+1}, a_{n+2}...$ is the same as

$$a_{m+1}, a_{m+2}, \ldots$$

Since the rational and irrational parts must be equal separately in the last equation, we may reverse the radical sign and thus

$$\frac{p_{m} + q_{m}\sqrt{N}}{p_{m-1} + q_{m-1}\sqrt{N}} = \frac{p_{n} + q_{n}\sqrt{N}}{p_{n-1} + q_{n-1}\sqrt{N}}$$

$$a_{m} + \frac{p_{m-2} + q_{m-2}\sqrt{N}}{p_{m-1} + q_{m-1}\sqrt{N}} = a_{n} + \frac{p_{n-2} + q_{n-2}\sqrt{N}}{p_{n-1} + q_{n-1}\sqrt{N}}.$$

or

In this, when m > 2, the second term on each side is positive and < 1. Thus $a_m = a_n$, and the recurrence begins a step further back, unless m = 2; that is, the recurrence begins with the fractional part.

If
$$m=2$$
, $\frac{p_2+q_2\sqrt{N}}{p_1+q_1\sqrt{N}}=a_2+\sqrt{N}$, the integral part of which is

 $2a_2$, and thus $a_n = 2a_2$, a well-known result. Also

$$(q_{n-1}^2 \mathbf{N} - p_{n-1}^2)(-1)^n = (q_{m-1}^2 \mathbf{N} - p_{m-1}^2)(-1)^m$$

= -1 if m=2,

 $p_{n-1}^2 - Nq_{n-1}^2 = (-1)^n$

and thus

affording a solution of the Pellian equation

$$x^2 - \mathbf{N}y^2 = \pm 1.$$

3. To prove that the Pellian equation has no other solutions than those thus given, let x, y be a pair of positive integers such that

$$x^2 - \mathbf{N}y^2 = \pm 1.$$

Since this may be written

$$x \cdot x - Ny \cdot y = \pm 1$$

it follows from the known theory of the equation

$$ax - by = \pm 1$$

that x/y is the last convergent when Ny/x is reduced to a continued fraction (in one of the two possible ways).

If we write this fraction $a_2 + \frac{1}{a_3} + \dots + \frac{1}{a_{m+1}}$ we have $Ny = p_{m+1}, x = q_{m+1} = p_m, y = q_m$.

Now the quotients in the continued fractions for p_{m+1}/p_m and p_{m+1}/q_{m+1} are the same in reverse order, and therefore in this case $a_2 = a_{m+1}, a_3 = a_m, a_4 = a_{m-1}, \ldots$, since $p_m = q_{m+1}$.

Also, if we add \sqrt{N} to the last quotient the fraction takes the value

$$\frac{(a_{m+1} + \sqrt{N})p_m + p_{m-1}}{(a_{m+1} + \sqrt{N})q_m + q_{m-1}}$$

or $\frac{p_{m+1} + \sqrt{N}p_m}{q_{m+1} + \sqrt{N}q_m}$ or $\frac{Ny + x\sqrt{N}}{x + y\sqrt{N}}$ or \sqrt{N} .

Thus the quotients in the infinite continued fraction representing \sqrt{N} are

 $a_2, a_3, \ldots, a_m, a_{m+1} + a_2, a_3, \ldots, a_m, a_{m+1} + a_2, \ldots$

which was to be proved, and it has further been shewn that the quotients in any period are the same when read in the reverse order.

4. Again, if h is a positive integer, and

 $x^2 - Ny^2 = \epsilon h$, where $\epsilon = \pm 1$, and x is prime to y,

take p, q positive integers, so that $qx - py = \epsilon$, and p < x, q < y, that is, p/q is the last convergent to x/y.

Then x(x-hq) = y(Ny-hp),

$$x - hq = ay$$
, $Ny - hp = ax$
 $x = ay + hq$, $Ny = ax + hp$, a being integral.

and

Thus
$$\frac{\mathbf{N}y}{x} = a_2 + \frac{1}{a_3} + \dots + \frac{1}{a_m} + \frac{1}{a_m}$$

where $a_{2}, a_{3}..., a_{m}$ are positive integers, and $\frac{p}{q}, \frac{x}{y}$ are the two last convergents.

It follows that

$$a_2 + \frac{1}{a_3} + \frac{1}{\ldots a_m} + \frac{h}{a + \sqrt{N}} = \frac{(a + \sqrt{N})x + hp}{(a + \sqrt{N})y + hq} = \sqrt{N},$$

and \sqrt{N} is the value of an infinite continued fraction

$$a_{2} + \frac{1}{a_{3}} + \frac{1}{a_{4}} + \dots + \frac{1}{a_{m}} + \frac{h}{a + a_{2}} + \frac{1}{a_{3}} + \dots$$

recurring from * to *.

Also
$$\frac{Ny}{x} = a + \frac{hp}{x} = a + \frac{h}{a_m} + \frac{1}{a_{m-1}} + \frac{1}{\dots + a_2}$$
$$\frac{x}{y} = a + \frac{h}{a_m} + \frac{1}{a_{m-1}} + \dots + \frac{1}{a_3}$$
$$d \qquad a + \frac{h}{a_m} + \frac{1}{a_{m-1}} + \dots + \frac{1}{a_2 + \sqrt{N}} = \frac{Ny + x\sqrt{N}}{x + y\sqrt{N}} = \sqrt{N} + \frac{1}{\sqrt{N}}$$

and

so that $\sqrt{N} = a + \frac{h}{a_m} + \frac{1}{a_{m-1}} + \dots + \frac{1}{a_2 + a} + \frac{h}{a_m} + \dots$

recurring from * to *.

In the above work if $h^2 < N$

$$x^2 = Ny^2 + \epsilon h > h^2y^2 - h > (hy - 1)^2$$

so that $x \ge hy$ and x - hq is positive.

Thus a is positive and $\frac{h}{a+\sqrt{N}}$ is positive but <1.

Thus x/y is one of the convergents to \sqrt{N} , a known theorem.

+ Hence $\sqrt{N} - a$ is positive, that is, a must be $<\sqrt{N}$ or else negative : in the former case x/y is a convergent, ordinary or intermediate, to \sqrt{N} .

5. To extend the above proof of recurrence (§2) to the case of a positive quantity (>1) of the form $\frac{a+b\sqrt{N}}{c+d\sqrt{N}}$ where a, b, c, d are rational, reduce the fraction to the form $\frac{-a_0 + \sqrt{N}}{a_1}$ where a_0, a_1 are integral and positive or negative.

Then take $\epsilon A_0 = -a_0 + \sqrt{N}$, $\epsilon A_1 = a_1$, ϵ being ± 1 and of the same sign as a_1 ,

$$\epsilon \mathbf{A}_m = (-1)^m \{ \beta_m \sqrt{\mathbf{N}} - a_m \},\$$

so that $\beta_0 = 1$, $\beta_1 = 0$ and the law of formation is again

$$a_m = a_m a_{m-1} + a_{m-2},$$

 $\beta_m = a_m \beta_{m-1} + \beta_{m-2}.$

 $\beta_2, \beta_3...$ are all positive since $\beta_0, \beta_1, a_2, a_3...$ are so, and since the sequence $A_0, A_1, ..., A_m...$ diminishes without limit,* a_m must be always positive for values of m exceeding a certain number. Then the reasoning of §2 applies with a, β in the place of p, q, and thus the fraction A_0/A_1 yields a recurring continued fraction, the recurrence beginning where negative values of a_m stop.

* Since $A_{m-2} = a_m A_{m-1} + A_m$ and $A_{m-1} > A_m$ it follows that $A_m < A_m > A_m > A_m$