Approximation by means of Convergent Fractions.

By A. C. Dixon.

(Read and Received 13th January 1911).

This is a note on the theory of continued fractions,* in which the chief feature is the use made of the successive remainders or divisors which occur in the reduction of any given ratio to a continued fraction.

The treatment of the Pellian equation also differs from that which is generally given.

1. Let $A=A_{0}, B=A_{1}$ be two quantities to whose ratio we wish to approximate, and suppose $A>B$, both being positive.

Let $a_{2} \mathrm{~B}$ be the greatest integral multiple of B contained in A , and let $\quad \mathrm{A}_{2}=\mathrm{A}-a_{2} \mathrm{~B}=\mathrm{A}_{0}-a_{2} \mathrm{~A}_{1}$;
let $a_{3} \mathbf{A}_{2}$ be the greatest integral multiple of A_{2} contained in A_{1} and

$$
\mathrm{A}_{3}=\mathrm{A}_{1}-a_{3} \mathrm{~A}_{2} \text {, and so on, }
$$

$a_{m} A_{m-1}$ being the greatest integral multiple of A_{m-1} contained in A_{m-2}, and $\mathrm{A}_{m}=\mathrm{A}_{m-2}-a_{m} \mathrm{~A}_{m-1}$.

By successive substitution

$$
\mathbf{A}_{m}=(-1)^{m}\left\{q_{m} \mathbf{A}-p_{m} \mathbf{B}\right\}
$$

where p_{m}, q_{m} are formed by the law

$$
\begin{aligned}
& p_{m}=a_{m} p_{m-1}+p_{m-2}, \\
& q_{m}=a_{m} q_{m-1}+q_{m-2}
\end{aligned}
$$

and

$$
p_{0}=0, q_{0}=1, p_{1}=1, q_{1}=0,
$$

so that

$$
p_{1}, p_{2}, p_{3}, \ldots
$$

$$
q_{2}, q_{3}, q_{4}, \ldots
$$

are two increasing series of positive integers, since $a_{2}, a_{8} \ldots$ are positive integers.

[^0]Also $A_{0}, A_{1}, A_{2}, \ldots$ form a decreasing series of positive quantities.

Thus $\mathrm{A}_{m} / q_{m} \mathrm{~B}$ diminishes continually as m increases, that is, the difference between A / B and p_{m} / q_{m} diminishes continually as m increases and it is clearly an excess and defect alternately.

Also $p_{m} q_{m-1}-p_{m-1} q=-\left(p_{m-1} q_{m-2}-p_{m-2} q_{m-1}\right)=(-1)^{m-1}$, from which it follows as usual that p_{m} / q_{m} is nearer to A / B than any other fraction whose denominator $\ngtr q_{m}$.

Again, if we approximate by the same method to p_{m} / q_{m}, the quotients $a_{2}, a_{3}, \ldots a_{m}$ are the same as for A/B : for let

$$
\begin{aligned}
& \mathbf{A}_{0}^{\prime}=p_{m}, \mathbf{A}_{1}^{\prime}=q_{m}, \\
& \mathbf{A}_{r}^{\prime}=(-1)^{r}\left\{q_{r} \mathrm{~A}^{\prime}-p_{r} \mathrm{~B}^{\prime}\right\} .
\end{aligned}
$$

Then when $r<m, \frac{p_{r}}{q_{r}}-\frac{p_{m}}{q_{m}}$ is of the same sign as $\frac{p_{r}}{q_{r}}-\frac{\mathrm{A}}{\mathrm{B}}$, and therefore $\mathrm{A}_{r}{ }^{\prime}$ is always positive. Moreover

$$
\begin{aligned}
\mathbf{A}_{r_{-2}^{\prime}}^{\prime}= & a_{r} \mathbf{A}_{r-1}^{\prime}+\mathrm{A}_{r}^{\prime} \\
& >\mathrm{A}_{r-1}^{\prime},
\end{aligned}
$$

so that $\mathbf{A}_{0}{ }^{\prime}, \mathrm{A}_{1}{ }^{\prime}, \mathrm{A}_{2}{ }^{\prime} \ldots$ form a decreasing series of positive quantities, and $a_{r} \mathrm{~A}_{r_{-1}^{\prime}}^{\prime}$ is the greatest multiple of $\mathrm{A}_{r_{-1}}^{\prime}$ contained in $\mathrm{A}_{r_{-2}^{\prime}}$.

Thus the convergents to p_{m} / q_{m} are, so far, the same as to A / B, that is,

$$
p_{m} / q_{m}=a_{2}+\frac{1}{a_{3}+} \frac{1}{a_{4}+\ldots+\frac{1}{a_{m}} .}
$$

Also

$$
p_{m} / p_{m-1}=a_{m}+p_{m-2} / p_{m-1}^{-}=a_{m}+\frac{1}{a_{m-1}+} \frac{1}{a_{m-2}+\ldots+\frac{1}{a_{2}}}
$$

and

$$
q_{m} / q_{m-1}=a_{m}+\frac{1}{a_{m-1}}+\ldots+\frac{1}{a_{3}} \text { similarly }
$$

2. If the ratio A / B is a simple quadratic surd, say

$$
\mathrm{A}_{0}=\sqrt{\mathrm{N}}, \quad \mathrm{~A}_{1}=1
$$

where N is a positive integer, then a_{m+1} is the integer next below

$$
\left(q_{m-1} \sqrt{\bar{N}}-p_{m-1}\right) \div\left(p_{m}-q_{m} \sqrt{\overline{\mathrm{~N}}}\right)
$$

which

$$
=\left(\mathrm{N} q_{m} q_{m-1}-p_{m} p_{m-1}-(-1)^{m} \sqrt{\left.\overline{\mathrm{~N}}) \div\left(p_{m}^{2}-q_{m}^{2} \mathrm{~N}\right), ~\right)}\right.
$$

or

$$
\left(q_{m-1}^{2} \mathrm{~N}-p_{m-1}^{2}\right) \div\left(\mathrm{N} q_{m} q_{m-1}-p_{m} p_{m-1}+(-1)^{m} \sqrt{\mathrm{~N}}\right) .
$$

This fraction is positive and >1, and so is

$$
\left(p_{m}+q_{m} \sqrt{\bar{N}}\right) \div\left(q_{m-1} \sqrt{\bar{N}}+p_{m-1}\right)
$$

and so therefore is the product of the two, namely,
$\left(\mathrm{N} q_{m} q_{m-1}-p_{m} p_{m-1}-(-1)^{m} \sqrt{\mathrm{~N}}\right) \div\left(-\mathrm{N} q_{m} q_{m-1}+p_{m} p_{m-1}-(-1)^{m} \sqrt{\mathrm{~N}}\right)$.
Hence $(-1)^{m}\left\{p_{m} p_{m-1}-\mathrm{N} q_{m} q_{m-1}\right\}$ is positive but $<\sqrt{\mathbf{N}}$, and it follows that $(-1)^{m}\left(q_{m}{ }^{2}-\mathrm{N} p_{m}{ }^{2}\right)$ is positive but $<2 \sqrt{\mathrm{~N}}$.

Thus there must come a stage when the values of these two integers are repeated, that is, when

$$
\frac{q_{m-1} \sqrt{\bar{N}}-p_{m-1}}{p_{m}-q_{m} \sqrt{\bar{N}}}=\frac{q_{n-1} \sqrt{\bar{N}}-p_{n-1}}{p_{n}-q_{n} \sqrt{\bar{N}}}(n>m)
$$

and the series $a_{n+1}, a_{n+2} \cdots$ is the same as

$$
a_{m+1}, a_{m+2}, \ldots
$$

Since the rational and irrational parts must be equal separately in the last equation, we may reverse the radical sign and thus
or

$$
\begin{gathered}
\frac{p_{m}+q_{m} \sqrt{\mathrm{~N}}}{p_{m-1}+q_{m-1} \sqrt{\mathrm{~N}}}=\frac{p_{n}+q_{n} \sqrt{\mathrm{~N}}}{p_{n-1}+q_{n-1} \sqrt{\mathrm{~N}}} \\
a_{m}+\frac{p_{m-2}+q_{m-2} \sqrt{\mathrm{~N}}}{p_{m-1}+q_{m-1} \sqrt{\mathrm{~N}}}=a_{n}+\frac{p_{n-2}+q_{n-2} \sqrt{\mathrm{~N}}}{p_{n-1}+q_{n-1} \sqrt{\mathrm{~N}}} .
\end{gathered}
$$

In this, when $m>2$, the second term on each side is positive and <1. Thus $a_{m}=a_{n}$, and the recurrence begins a step further back, unless $m=2$; that is, the recurrence begins with the fractional part.

If $m=2, \frac{p_{2}+q_{2} \sqrt{\bar{N}}}{p_{1}+q_{1} \sqrt{\mathrm{~N}}}=a_{2}+\sqrt{\bar{N}}$, the integral part of which is $2 a_{2}$, and thus $a_{n}=2 a_{2}$ a well-known result. Also

$$
\begin{gathered}
\left(q_{n-1}^{2} \mathrm{~N}-p_{n-1}^{2}\right)(-1)^{n}=\left(q_{m-1}^{2} \mathrm{~N}-p_{m-1}^{2}\right)(-1)^{m} \\
=-1 \text { if } m=2,
\end{gathered}
$$

and thus

$$
p_{n-1}^{2}-\mathrm{N} q_{n-1}^{2}=(-1)^{n},
$$

affording a solution of the Pellian equation

$$
x^{2}-\mathrm{N} y^{2}= \pm 1
$$

3. To prove that the Pellian equation has no other solutions than those thus given, let x, y be a pair of positive integers such that

$$
x^{2}-\mathrm{N} y^{2}= \pm 1
$$

Since this may be written

$$
x \cdot x-\mathrm{N} y \cdot y= \pm 1
$$

it follows from the known theory of the equation

$$
a x-b y= \pm 1
$$

that x / y is the last convergent when $\mathrm{N} y / x$ is reduced to a continued fraction (in one of the two possible ways).

If we write this fraction $a_{2}+\frac{1}{a_{3}}+\ldots+\frac{1}{a_{m+1}}$ we have $\mathrm{N} y=p_{m+1}, x=q_{m+1}=p_{m}, y=q_{m}$.

Now the quotients in the continued fractions for p_{m+1} / p_{m} and p_{m+1} / q_{m+1} are the same in reverse order, and therefore in this case $a_{2}=a_{m+1}, a_{3}=a_{m}, a_{4}=a_{m-1}, \ldots$, since $p_{m}=q_{m+1}$.

Also, if we add $\sqrt{\mathrm{N}}$ to the last quotient the fraction takes the value

$$
\begin{gathered}
\frac{\left(a_{m+1}+\sqrt{\mathrm{N})} p_{m}+p_{m-1}\right.}{\left(a_{m+1}+\sqrt{\mathrm{N})} q_{m}+q_{m-1}\right.} \\
\text { or } \frac{p_{m+1}+\sqrt{\mathrm{N}} p_{m}}{q_{m+1}+\sqrt{\overline{\mathrm{N}} q_{m}}} \text { or } \frac{\mathrm{N} y+x \sqrt{\mathrm{~N}}}{x+y \sqrt{\mathrm{~N}}} \text { or } \sqrt{\mathrm{N}}
\end{gathered}
$$

Thus the quotients in the infinite continued fraction representing \sqrt{N} are

$$
a_{2}, a_{3}, \ldots, a_{m}, a_{m+1}+a_{2}, a_{3}, \ldots, a_{m}, a_{m+1}+a_{2}, \ldots
$$

which was to be proved, and it has further been shewn that the quotients in any period are the same when read in the reverse order.
4. Again, if h is a positive integer, and

$$
x^{2}-N y^{2}=\epsilon h, \text { where } \epsilon= \pm 1, \text { and } x \text { is prime to } y
$$

take p, q positive integers, so that $q x-p y=\epsilon$, and $p<x, q<y$, that is, p / q is the last convergent to x / y.

Then

$$
\begin{gathered}
x(x-h q)=y(\mathrm{~N} y-h p) \\
x-h q=a y, \mathrm{~N} y-h p=a x
\end{gathered}
$$

and

$$
x=a y+h q, \mathrm{~N} y=a x+h p, a \text { being integral. }
$$

Thus

$$
\frac{\mathrm{N} y}{x}=a_{2}+\frac{1}{a_{3}}+\ldots \frac{1}{a_{m}}+\frac{h}{a}
$$

where $a_{2}, a_{3} \ldots, a_{m}$ are positive integers, and $\frac{p}{q}, \frac{x}{y}$ are the two last convergents.

It follows that

$$
a_{2}+\frac{1}{a_{3}}+\ldots \frac{1}{a_{m}}+\frac{h}{a+\sqrt{\mathrm{N}}}=\frac{(a+\sqrt{\mathrm{N}}) x+h p}{(a+\sqrt{\overline{\mathrm{N}}}) y+h q}=\sqrt{\mathrm{N}},
$$

and $\sqrt{ } \overline{\mathrm{N}}$ is the value of an infinite continued fraction

$$
a_{2}+\frac{\bar{i}}{a_{3}}+\frac{1}{a_{4}}+\ldots \frac{1}{a_{m}}+\frac{h}{a+a_{2}}+\frac{1}{a_{3}}+\ldots
$$

recurring from * to *.
Also

$$
\begin{aligned}
\frac{\mathrm{N} y}{x} & =a+\frac{h p}{x}=a+\frac{h}{a_{m}}+\frac{1}{a_{m-1}}+\ldots+\frac{1}{a_{2}} \\
\frac{x}{y} & =a+\frac{h}{a_{m}}+\frac{1}{a_{m-1}}+\ldots+\frac{1}{a_{3}}
\end{aligned}
$$

and

$$
a+\frac{h}{a_{m}}+\frac{1}{a_{m-1}}+\ldots+\frac{1}{a_{2}+\sqrt{\mathrm{N}}}=\frac{\mathrm{N} y+x \sqrt{\mathrm{~N}}}{x+y \sqrt{\mathrm{~N}}}=\sqrt{\overline{\mathrm{N}} \dagger}
$$

so that $\sqrt{\mathrm{N}}=a+\frac{h}{a_{m}}+\frac{1}{a_{m-1}}+\ldots+\frac{1}{a_{2}+a}+\frac{h}{a_{m}}+\ldots$
recurring from * to *.
In the above work if $h^{2}<\mathrm{N}$

$$
x^{2}=\mathrm{N} y^{2}+\epsilon h>h^{2} y^{2}-h>(h y-1)^{2}
$$

so that $x \geq h y$ and $x-h q$ is positive.
Thus a is positive and $\frac{h}{a+\sqrt{\mathrm{N}}}$ is positive but <1.
Thus x / y is one of the convergents to $\sqrt{\mathrm{N}}$, a known theorem.
\dagger Hence $\sqrt{ } \overline{\mathbf{N}}-a$ is positive, that is, a must be $<\sqrt{\mathbf{N}}$ or else negative : in the former case $x ; y$ is a convergent, ordinary or intermediate, to $\sqrt{\bar{N}}$.
5. To extend the above proof of recurrence ($\$ 2$) to the case of a positive quantity (>1) of the form $\frac{a+b \sqrt{\mathrm{~N}}}{c+d \sqrt{\mathrm{~N}}}$ where a, b, c, d are rational, reduce the fraction to the form $\frac{-a_{0}+\sqrt{\mathrm{N}}}{a_{1}}$ where a_{0}, a_{1} are integral and positive or negative.

Then take $\epsilon \mathrm{A}_{0}=-\alpha_{0}+\sqrt{\bar{N},} \epsilon \mathrm{~A}_{1}=\alpha_{1}$, ϵ being ± 1 and of the same sign as a_{1},

$$
\epsilon \mathrm{A}_{m}=(-1)^{m}\left\{\beta_{m} \sqrt{\overline{\mathrm{~N}}}-a_{m}\right\}
$$

so that $\beta_{0}=1, \beta_{1}=0$ and the law of formation is again

$$
\begin{aligned}
& a_{m}=a_{m} a_{m-1}+a_{m-2} \\
& \beta_{m}=a_{m} \beta_{m-1}+\beta_{m-2} .
\end{aligned}
$$

$\beta_{2,} \beta_{3} \ldots$ are all positive since $\beta_{0}, \beta_{1}, a_{2}, a_{3} \ldots$ are so, and since the sequence $\mathbf{A}_{0}, \mathbf{A}_{1}, \ldots \mathbf{A}_{m} \ldots$ diminishes without limit,* α_{m} must be always positive for values of m exceeding a certain number. Then the reasoning of $\S 2$ applies with a, β in the place of p, q, and thus the fraction A_{0} / A_{1} yields a recurring continued fraction, the recurrence beginning where negative values of α_{m} stop.

[^1]
[^0]: *For the theory, see, for instance, Chrystal's Algebra, ohapters 32, 33.

[^1]: * Since $A_{m-2}=a_{m} A_{m-1}+A_{m}$ and $A_{m-1}>A_{m}$ it follows that $A_{m}<\frac{1}{1} A_{m-2}$.

