Precise Near-Infrared Radial Velocities

Peter Plavchan1, Peter Gao2, Jonathan Gagne3, Elise Furlan4, Carolyn Brinkworth5, Michael Bottom2, Angelle Tanner6, Guillem Anglada-Escude7, Russel White8, Cassy Davison8, Sean Mills9, Chas Beichman4, John Asher Johnson10, David Ciardi4, Kent Wallace11, Bertrand Mennesson11, Gautam Vasisht11, Lisa Prato12, Stephen Kane13, Sam Crawford11, Tim Crawford11, Keeyoon Sung11, Brian Drouin11, Sean Lin11, Stephanie Leifer11, Joe Catanzarite14, Todd Henry15, Kaspar von Braun12, Bernie Walp16, Claire Geneser1, Nick Ogden1, Andrew Stufflebeam1, Garrett Pohl1 and Joe Regan1

1Missouri State University
email: plavchan@missouristate.edu

2Caltech, 3University of Montreal, 4NASA Exoplanet Science Institute, 5National Center for Atmospheric Research/University Corporation for Atmospheric Research, 6Mississippi State University, 7University College London, 8Georgia State University, 9University of Chicago, 10Harvard, 11NASA Jet Propulsion Laboratory, 12Lowell Observatory, 13San Francisco State University, 14SETI Institute, 15Georgia State University, 16NASA Ames

Abstract. We present the results of two 2.3 μm near-infrared (NIR) radial velocity (RV) surveys to detect exoplanets around 36 nearby and young M dwarfs. We use the CSHELL spectrograph ($R \sim 46,000$) at the NASA InfraRed Telescope Facility (IRTF), combined with an isotopic methane absorption gas cell for common optical path relative wavelength calibration. We have developed a sophisticated RV forward modeling code that accounts for fringing and other instrumental artifacts present in the spectra. With a spectral grasp of only 5 nm, we are able to reach long-term radial velocity dispersions of \sim20–30 m s$^{-1}$ on our survey targets.

Keywords. instrumentation: spectrographs, techniques: radial velocities

1. Introduction

We are carrying out an exoplanet search to exploit the “M dwarf opportunity.” Approximately 70\% of main sequence stars are M dwarfs, spanning a factor of 5 in mass/radius and $\sim 10^3$ in luminosity. Due to their smaller masses and radii and cooler temperatures compared to FGK stars, transiting exoplanets produced deeper eclipses of M dwarfs, exoplanet habitable zones are closer, and exoplanet radial velocity amplitude reflex motions are larger. More recently, a new “M dwarf opportunity” for finding exoplanets has been identified with the Kepler mission: not only are planets smaller than 4 R_\oplus more common than Jovian planets, they are predominantly found around lower mass stars (Howard et al. 2012, Dressing & Charbonneau 2013).

There are several factors spoiling the “M dwarf opportunity.” First, M dwarfs are red and faint, with $V - K > 3.5$ mag and only 4 M4 or later dwarfs with $V < 12$ mag. Additionally, small planetary RV signals are comparable in amplitude and time-scale to numerous periodic perturbing stellar jitter signals such as rotational spot modulation & magnetic activity cycles (Vanderberg et al. 2015, Robertson et al. 2015). One solution to both of these challenges is to observe in the NIR, where M dwarfs put out much of their bolometric luminosity, and the amplitude of stellar jitter is diminished (Reiners et al. 2010, Plavchan et al. 2013a,b, 2015, Anglada-Escude et al. 2012).
Figure 1. Left: CSHELL NIR RV time-series for GJ 338A ($N_{\text{obs}}=6$, $\text{rms}=22$ m s$^{-1}$, $\chi_r^2=2.4$). Right: CSHELL NIR RV survey results, plotted as a function of RV rms and reduced chi-squared for both young and nearby M dwarfs in red and blue respectively.

Figure 2. A comparison of the potential exoplanet sensitivity of CSHELL and iSHELL. The solid black lines correspond to the RV semi-amplitude of Habitable Zone (HZ) exoplanets with the indicated masses as a function of stellar mass.

2. Results and Conclusions

We have obtained our goal precision of \sim30–60 m s$^{-1}$ in our young M dwarf survey from 2010–2012, and \sim20–30 m s$^{-1}$ in 2014 at higher SNR for nearby M dwarfs not previously surveyed by visible RV teams. We present a sample RV curve and our survey results in Figure 1. We are in the process of publishing our detailed survey results.

Looking towards the future, we have made the gas cells for iSHELL ($R \sim 75,000$, spectral grasp of 250 nm), which will replace CSHELL in 2016. We expect to get to <5 m s$^{-1}$ precision with iSHELL due to the increased spectral grasp alone (Figure 2). The increased efficiency, resolution, no fringing, and smaller number of bad pixels will provide further improvements.

References

Plavchan, P., et al., 2013a, SPIE, 8864, 0G
Plavchan, P., et al., 2013b, SPIE 8864, 1J