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Abstract

Parallel processing is a way to use resources efficiently by processing several jobs
simultaneously on different servers. In a well-controlled environment where the status of
the servers and the jobs are well known, everything is nearly deterministic and replicating
jobs on different servers is obviously a waste of resources. However, in a poorly controlled
environment where the servers are unreliable and/or their capacity is highly variable, it is
desirable to design a system that is robust in the sense that it is not affected by the poorly
performing servers. By replicating jobs and assigning them to several different servers
simultaneously, we not only achieve robustness but we can also make the system more
efficient under certain conditions so that the jobs are processed at a faster rate overall. In
this paper we consider the option of replicating jobs and study how the performance of
different ‘degrees’ of replication, ranging from no replication to full replication, affects
the performance of a system of parallel servers.
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1. Introduction

When scheduling jobs over multiple resources, it is natural to take advantage of the parallel
structure, where different jobs are served simultaneously on different servers. Replicating the
same job on different servers is usually considered a waste of resources; in many cases, such
as for manufacturing systems, it is not even feasible. However, for most computational jobs,
replicating a job is not only feasible but also practically effortless. We investigate situations
where using the option to replicate can be beneficial.

Recently, a new paradigm for distributed computing, called grid computing [3], has emerged
and is becoming popular. One distinctive feature of grid computing is the unusual characteristics
of the resources. The resource pool is a massive group of autonomous and unreliable servers
connected by the Internet, where each server is owned and/or controlled by an independent
entity. Examples are normal home users with PCs, high performance gaming consoles with
idle CPU cycles, and in a corporate environment, where computers assigned to employees are
left on most of the time. Currently, deployed grid applications include SETI@home [5] for the
search of intelligent life forms in outer space and Folding@home [6] for studying the structure
of protein molecules. In both cases, the job is a computation to be performed on an assigned
batch of data.
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The use of replication is not new. In the reliability literature, the life of a device is extended by
having redundant components (replicates) for specific functions [7]. Also, in the grid computing
literature, job replication has been used to control reliability (or fault tolerance) by estimating
the number of replicas to guarantee a certain probability of successful job completion [8]. In
contrast, the primary goal of replication in this paper is to increase efficiency, that is, to either
minimize the amount of time to complete a set of jobs or to maximize the service capacity of a
group of servers.

We define the service time of a job submitted to a server as the time between submission
and completion of the job on that server. In grid computing, the service time depends on
the load at the server, i.e. how the server is being used by the local owner at that time. That
is, it includes local queueing delays and downtimes, and, hence, can be highly variable. By
submitting replicates of the same job to multiple servers and using the first to complete, we are
protected from the case where the service time of one of them is unusually long. But replicating
jobs is done at the expense of sacrificing the opportunity to process more jobs simultaneously.
Thus, there is a trade-off between completing a job more quickly (by replicating) and serving
different jobs in parallel (by not replicating). Essentially, we are comparing the performance of
processing short jobs sequentially versus long jobs in parallel. Hence, we introduce the notion
of the ‘degree’ of replication and seek to optimize it.

To better illustrate this idea, suppose that there are 10 parallel servers. If we let each job
simultaneously occupy two servers (i.e. replicate twice), we would be able to process five
different jobs at a time, whereas if we let each job occupy five servers, we would only be able
to process two different jobs at a time. The latter would be said to have a higher degree of
replication. The goal of this paper is to characterize the performance of a system in terms of
the degree of replication.

We consider two performance objectives. One is to minimize the makespan for a fixed
number of jobs to be processed, and the other is to maximize the effective, or long-run, service
rate when arrivals occur according to a Poisson process. We also briefly consider minimizing
the expected response time. For all of our objectives, we assume that the degree of replication
must be chosen at the outset and that it is held fixed thereafter. That is, we consider a design
problem rather than a control problem.

Unless stated otherwise, we assume that service times are independent and identically
distributed (i.i.d.) both spatially and temporally. That is, the service times of jobs across
servers, replicated or not, are i.i.d., and the service times of subsequent jobs assigned to the
same server are i.i.d. as well. The spatial independence assumption is reasonable since the
service time duration of a job at a server depends primarily on the server (how busy it is,
for example) rather than the job. As for the assumption of distribution homogeneity across
servers, we assume that we group servers of similar service capacity, and we consider the
scheduling problem for each such group separately. Such grouping eases implementation as
well as analysis. The assumption that successive service times on a given server have the same
distribution is reasonable assuming that future changes in server speed and availability are
unpredictable, and given that we are tackling a design problem, so cannot change our decision
in the light of new information about the current speed of a server. For the model with job
arrivals (Section 4), it turns out that our objective to minimize the effective service rate in a
system is not sensitive to any temporal dependency structure of service times. But, for the
model with a fixed number of jobs in which our objective is to minimize makespan (Section 3),
the results will be different when successive service times are not independent. For simplicity
of analysis, we begin by assuming temporal independence of the service times and provide
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some discussion in the sequel of how positive temporal dependence changes the results we
obtain, assuming independence.

There has been work done on replication for cases where the optimal amount of replication is
an extreme value, i.e. minimal or maximal replication. Borst et al. [1] considered a multiserver
discrete-time queueing system with batch arrivals with random size. The service time of each
job has a geometric distribution. It was shown that a policy that distributes the jobs over the
servers as ‘evenly as possible’, i.e. minimal replication, minimizes both the number of jobs in
the system jointly across time as well as the mean response time of the jobs.

Koole and Righter [4] proved that, for a multiserver queueing system, if the service times have
a new worse than used (NWU) distribution (defined in Section 2) then a maximum replication
policy, i.e. processing jobs sequentially using all servers for each job, stochastically maximizes
the number of completed jobs jointly across time for an arbitrary arrival process of jobs. They
obtained an analogous result for the optimality of minimal replication for two servers and new
better than used (NBU) service times.

After some preliminary definitions in Section 2, we consider minimization of the expected
makespan, defined as the expected time required to complete all jobs, for a finite number of
jobs in Section 3.

Dobber [2] approximated the mean and standard deviations of order statistics necessary for
computing the expected makespan in terms of the mean and standard deviations of the service
distribution, and used the approximations to compare the performance of various degrees of
replication. Our approach is more analytic than Dobber’s. We give a condition that guarantees
monotonicity of the expected makespan in the degree of replication and characterize the
makespan random variable for particular distributions. For Bernoulli service time distributions,
we show that as long as the mean is at most 2

3 , maximal replication will be preferred to minimal
replication. We describe the effect of service time variability by showing that the performance
of maximal replication relative to minimal replication gets better with more variable service
times. Bounds and asymptotic results are also presented.

In Section 4 we assume a general arrival stream of jobs and approach the problem from
a queueing perspective. We investigate how the degree of replication affects the effective
service rate and, hence, the overall system load, ρ. We prove that if maximal replication is
optimal for the system load objective, it is also optimal for the makespan objective. We provide
monotonicity conditions for the system load in the degree of replication, and show the optimality
of minimal and maximal replications for NBU and, respectively, NWU service times. A closed-
form expression for the system load is found for the Bernoulli, shifted Bernoulli, and Pareto
distributions. We show that, for Bernoulli(p) service times, p = 1/e is an upper threshold for
maximal replication to be optimal.

Our general conclusion is that the degree of replication should increase with the variability
of the distribution.

2. Preliminaries

Here we define terms and relations that we will use frequently. For more detail and proofs,
see [9, pp. 3–112]. In what follows, X and Y are nonnegative random variables with finite
expectations.

2.1. Stochastic order relations

Definition 1. (Stochastic order.) The random variable X is said to be greater than Y in the
stochastic order, written as X ≥st Y , if FX(x) ≤ FY (x) for all x.
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An alternative definition is X ≥st Y if and only if E[h(X)] ≥ E[h(Y )] for all increasing h.

Definition 2. (Increasing and decreasing convex orders.) The random variable X is said to be
greater than Y in the increasing convex order, written as X ≥icx Y , or the decreasing convex
order, written asX ≥dcx Y , if E[h(X)] ≥ E[h(Y )] for all increasing or, respectively, decreasing
convex h.

We also have the tail characterization of the increasing convex order:

X ≥icx Y ⇐⇒
∫ ∞

x

F̄X(u) du ≥
∫ ∞

x

F̄Y (u) du for all x.

Definition 3. (Increasing and decreasing concave orders.) The random variableX is said to be
greater than Y in the increasing concave order, written as X ≥icv Y , or the decreasing concave
order, written asX ≥dcv Y , if E[h(X)] ≥ E[h(Y )] for all increasing or, respectively, decreasing
concave h.

Observe that the increasing concave order can be defined through the decreasing convex
order and vice versa:

X ≥icv Y ⇐⇒ X ≤dcx Y,

X ≥dcv Y ⇐⇒ X ≤icv Y.

Definition 4. (Convex order.) The random variableX is said to be greater than Y in the convex
order, written as X ≥cx Y , if E[h(X)] ≥ E[h(Y )] for all convex h.

Alternative definitions are as follows:

X ≥cx Y ⇐⇒ E[h(X)] ≥ E[h(Y )] for all convex h

⇐⇒ X ≥icx Y and X ≥dcx Y

⇐⇒ X ≥icx Y and E[X] = E[Y ].
From the last equivalence, X ≥cx Y implies that E[X] = E[Y ]. By taking h(x) = x2, this
also implies that var(X) ≥ var(Y ). Convex ordering may be used as a measure of relative
variability.

2.2. New better and new worse than used distributions

We define classes of distributions where there is an order relation between a nonnegative
random variable and an aged version of itself.

Definition 5. (NBU and NWU.) The random variableX is called NBU ifX ≥st (X−t | X > t)

for all t ≥ 0. If the opposite inequality holds then the random variable X is called NWU.

The terminology ‘larger is better’ originated in the reliability literature, where a longer
lifetime is considered to be better.

NWU is equivalent to P(X > x + t) ≥ P(X > x)P(X > t), which is equivalent to
H(x + t) ≤ H(x) + H(t) for all x and t , i.e. subadditive, and NBU is equivalent to P(X >

x + t) ≤ P(X > x)P(X > t), which is equivalent to H(x + t) ≥ H(x)+ H(t) for all x and
t , i.e. superadditive. Here H is the cumulative hazard rate function, H(x) = − log F̄ (x).

Definition 6. (New better and new worse than used in expectations.) The random variable
X is called new better than used in expectation (NBUE) if E[X − t | X > t] ≤ E[X]. If
the opposite inequality holds then the random variable X is called new worse than used in
expectation (NWUE).
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A class of distributions depending on the variability relative to the exponential distribution
can be defined.

Definition 7. (Harmonic new better and harmonic new worse than used in expectations.) The
random variable X is called harmonic new better than used in expectation (HNBUE) if X ≤cx
exponential(µ), where E[X] = 1/µ. If the opposite inequality holds then the random variable
X is called harmonic new worse than used in expectation (HNWUE).

We have
NWU ⇒ NWUE ⇒ HNWUE,

NBU ⇒ NBUE ⇒ HNBUE.

Since the coefficient of variation of an exponential random variable (RV) is 1, and convex
ordering implies ordering in the variance, NWU, NWUE, and HNWUE distributions have
coefficients of variation larger than or equal to 1.

2.3. Dependence measures and orders

We define measures of positive dependence and how two n-dimensional random vectors X

and Y can be ordered by the strength of positive dependence among their components. For
more details and proofs, see [10, pp. 387–404].

Definition 8. (Weak positive association (WPA).) If the RVs X1, . . . , Xn satisfy

cov(h1(Xi1 , Xi2 , . . . , Xik ), h2(Xj1 , Xj2 , . . . , Xjn−k )) ≥ 0

for all choices of disjoint subsets {i1, . . . , ik} and {j1, . . . , jn−k} of {1, 2, . . . , n}, and all
increasing functions h1 and h2 for which the above covariance is defined, thenX1, X2, . . . , Xn
are said to be weakly positively associated.

WPA characterizes an existence of positive dependence, but does not measure its strength. To
measure the relative strength of positive dependence between two random vectors, we introduce
the supermodular order. A function φ : R

n → R is supermodular if, for any x, y ∈ R
n, it

satisfies
φ(x)+ φ(y) ≤ φ(x ∧ y)+ φ(x ∨ y),

where the operators ‘∧’ and ‘∨’ denote coordinatewise minimum and maximum, respectively.

Definition 9. (Supermodular order.) The random vector X is said to be greater than Y in the
supermodular order, written as X ≥sm Y , if

E[φ(X)] ≥ E[φ(Y )]
for all supermodular functions φ : R

n → R.

It can be shown that if XI is a vector of independent RVs having the same marginals as X,
and X is weakly positively associated, then X ≥sm XI (see Theorem 9.A.23 of [10]).

Definition 10. (Positive upper and positive lower orthant dependence orders.) The random
vector X is said to be greater than Y in the positive upper orthant order, written as X ≥uo Y , or
the positive lower orthant order, written as X ≥lo Y , if P(X > x) ≥ P(Y > x) or, respectively,
P(X ≤ x) ≥ P(Y ≤ x) for all x ∈ R

n.
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Definition 11. (Positive quadrant dependence (PQD) order.) The random vector X is said to
be greater than Y in the PQD order, written as X ≥PQD Y , if X ≥uo Y and X ≥lo Y .

Note that when X and Y are bivariate, upper and lower orthant dependence orders are
equivalent, and, furthermore, if X ≥PQD Y then

cov(X) ≥ cov(Y )

when X and Y have the same marginals.
Let 1{.} denote the indicator function. Since the functionsφx = 1{y : y>x} andψx = 1{y : y≤x}

are supermodular for each fixed x, it is immediate that

X ≥sm Y �⇒ X ≥PQD Y .

3. Analysis of makespan under finite workload

In our first model we have a finite number of jobs to process using a predetermined number
of parallel servers, and we are interested in the makespan, i.e. the amount of time spent to
complete all jobs. For simplicity, we assume that there are n processors and n jobs. We
consider l-replication policies that replicate each job l times, where l is a factor of n. So,
for the case l = 1, i.e. the minimal replication policy, we run n different jobs on n different
processors in parallel. For the case l = n, i.e. the maximal replication policy, all jobs are
processed sequentially, where each job at the time of execution occupies all n processors with
its replicas. For the case 1 < l < n, we partition the processors and jobs into m groups of l
processors, where lm = n and each group consists of l jobs waiting to be processed by the group
of processors. See Figure 1. Other assumptions we make are that there is no communication
delay for transmitting problem data across the system, there is no overhead induced when
starting a new job, and there is no penalty for interrupting a running job. These assumptions are
all reasonable in a grid computing environment where the users of donated computers download
the software once, and thereafter just input/output data is transmitted.

Let us denote the service time of the kth replication of the ith job of group j as Xijk, i =
1, . . . , l, j = 1, . . . , m, k = 1, . . . , l. Because of our setup, we can also think of index k as
representing the kth server in group j . Assume that Xijk is nonnegative and i.i.d. for all i, j,
and k. We may express the makespan for l-replications as

M(l,n) := max
j∈{1,...,m}

l∑
i=1

min
k∈{1,...,l}Xijk. (1)

We can see that finding a closed form for the distribution of the makespan is generally intractable
since it is an l-fold convolution of a function raised to themth power. Consequently, computing
the expected value analytically is very difficult. However, for the purpose of motivating the
idea of replication, we estimated E[M(l,n)] through simulated values of log-normally distributed
service timesX for different coefficients of variation, cv = √

var(X)/E[X]. See Table 1. Recall
that an RV X has a log-normal distribution with parameters µ and σ if loge X ∼ N(µ, σ 2).
Note that the mean and variance of X is exp{µ + σ 2/2} and (exp{σ 2} − 1) exp{2µ + σ 2},
respectively. Observe that when cv is reasonably large, replication drastically reduces the
expected makespan.

For the extreme cases of minimal and maximal replications, either the convolution or the
exponent vanishes and this difficulty can be avoided. In particular, the maximal replication
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Figure 1: The beginning epoch of an l-replication policy where n processors are partitioned intom groups
of l each. Each group has l jobs assigned, where each job is replicated l times and processed concurrently.

Table 1: Expected makespan for 100 jobs with log-normal service time distribution with different
coefficients of variation on 100 servers. The minimum in each column is marked in bold.

cv
l

0.1003 0.7951 1.3108 11.2010

1 1.289 144 6.194 503 14.029 006 477.300 393
2 2.148 741 3.637 286 5.118 202 27.839 179
4 3.861 831 3.384 693 3.369 276 4.987 980
5 4.706 410 3.524 322 3.223 273 3.329 165

10 8.827 199 4.429 550 3.266 562 1.282 913
20 16.837 766 6.297 849 3.974 073 0.768 918
25 20.782 238 7.178 278 4.339 773 0.691 326
50 40.108 005 11.133 747 6.012 986 0.592 256

100 77.877 122 18.012 447 8.850 298 0.583 138

policy (l = n and m = 1) has makespan

M(n,n) =
n∑
i=1

min
k∈{1,...,n}Xi1k

and the minimal replication (l = 1 and m = n) has makespan

M(1,n) = max
j∈{1,...,n}X1j1.

Note that when evaluating E[M(1,n)] or E[M(n,n)], we do not need the temporal independence
assumption since, for maximal replication, we take the expectation over a sum.
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For service time distributions where maximal replication is optimal regardless of the number
of available servers, n, we have the following result.

Theorem 1. If M(r,r) ≤st M(k,r) for all r and all factors k of r , then M(1/2,n) ≥st M(l,n) when
l is even and a factor of n.

Proof. Fix the degree of replication l and observe that within each group of l servers, maximal
replication takes place. So the time it takes for a group to finish processing its l jobs is M(l,l).
For 2 ≤ k ≤ l, let Mi

(k,l), i = 1, . . . , n/ l, be i.i.d. versions of M(k,l), i.e. Mi
(k,l) =st M(k,n).

Then
M(l,n) =st max

1≤i≤n/l M
i
(l,l).

Splitting each group into two subgroups,

M(1/2l,n) =st max
1≤i≤n/l M

i
(1/2,l) ≥st max

1≤i≤n/l M
i
(l,l) =st M(l,n).

When n and l are powers of 2, we can apply Theorem 1 repetitively to get a monotonicity
property.

Corollary 1. IfM(n,n) ≤st M(l,n) for all l and n such that 2 ≤ l ≤ n, where l and n are powers
of 2, then M(l,n) stochastically decreases in l for all n.

The optimality of maximal replication for NWU service times [4] does not depend on the
number of servers, n, and by applying Theorem 1 we have the following result.

Corollary 2. If 2 ≤ l ≤ n, where l and n are powers of 2, and if service times are NWU,M(l,n)

stochastically decreases in l.

Since NWU distributions are highly variable (e.g. the coefficient of variation is greater than
or equal to 1 and larger than the exponential distribution in the convex ordering sense), this
is consistent with the general observation in the following section that more variability favors
more replication.

3.1. The impact of service time variability on the expected makespan

Recall that the motivation behind considering job replication was that we expected replication
to have an advantage over nonreplication when the service times are highly variable. It turns out
that this is indeed true under certain conditions. Here we establish an ordering between expected
makespans under two convex ordered service time distributions using the same policy. But we
were only able to show the result for minimal replication and maximal replication policies. We
use convex ordering as our measure of relative variability. We begin with the following lemma.

Lemma 1. The following implications hold, whereM andM ′ are the makespans with generic
service times X and X′, respectively.

1. X′ ≥icx X ⇒ M ′
(1,n) ≥icx M(1,n) ⇒ E[M ′

(1,n)] ≥ E[M(1,n)].
2. X′ ≥icv X ⇒ M ′

(n,n) ≥icv M(n,n) ⇒ E[M ′
(n,n)] ≥ E[M(n,n)].

Proof. For part 1, we have
M(1,n) = max

k∈{1,...,n}Xk.

Letting f (x) = max(x), x ∈ R
n, we can see that f (x) is convex in R

n and increasing convex
componentwise. Let g be an arbitrary, univariate, increasing convex function. Then it follows
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that the composition g ◦ f : R
n → R is also increasing convex componentwise. By changing

one component at a time,

E[g ◦ f (X1, X2, . . . , Xn)] ≤ E[g ◦ f (X′
1, X2, . . . , Xn)]

≤ E[g ◦ f (X′
1, X

′
2, . . . , Xn)]

≤ · · ·
≤ E[g ◦ f (X′

1, X
′
2, . . . , X

′
n)],

and it follows that M(1,n) = f (X1, . . . , Xn) ≤icx f (X
′
1, . . . , X

′
n) = M ′

(1,n).
For part 2,

M(n,n) =
n∑
j=1

min
i∈{1,...,n}Xij .

Let f (x) = ∑n
j=1 min(xj ) : R

n2 → R, where xj ∈ R
n, j = 1, 2, . . . , n. Since min(xj ) is

increasing concave componentwise, so is f (x). For any increasing concave function g, g ◦ f
is also increasing concave componentwise. So, by using the same reasoning as for part 1,

E[g ◦ f (X)] ≤ E[g ◦ f (X′)],
and we conclude that M(n,n) = f (X) ≤icv f (X

′) = M ′
(n,n).

Theorem 2. If X′ ≥cx X then E[M ′
(1,n)] ≥ E[M(1,n)] and E[M ′

(n,n)] ≤ E[M(n,n)].
Proof. The relation X′ ≥cx X is equivalent to X′ ≥icx X and X′ ≥dcx X. From Lemma 1

we have E[M ′
(1,n)] ≥ E[M(1,n)]. Also, X′ ≥dcx X is equivalent to X′ ≤icv X, so E[M ′

(n,n)] ≤
E[M(n,n)] follows from Lemma 1.

We can conclude that minimal replication performs better for less variable service time
distributions and that maximal replication performs better for more variable service time
distributions. Theorem 2 also implies that if the maximal replication policy is better than
the minimal replication policy for service time X, then the same is true for service times larger
than X in the convex sense.

By the optimality of maximal replication for exponential service time distributions [4], it is
possible to show that maximal replication is better than minimal replication for service times
that are more variable than the exponential.

Corollary 3. If X is HNWUE (see Definition 7) then maximal replication yields a smaller
makespan than minimal replication.

3.2. Geometric service time distributions

Suppose that the Xijk are i.i.d. geometric(p). Then,

min
1≤k≤l Xijk ∼ geometric(1 − (1 − p)l)

and

Yl :=
l∑
i=1

min
1≤k≤l Xijk ∼ negative binomial(l, 1 − (1 − p)l),
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Figure 2: Expected makespans under geometric(p) service times for n = 100 and (a) p = 0.2,
(b) p = 0.5.

which has the distribution function

FYl (x) =
x∑
j=l

(
x

j

)
(1 − (1 − p)l)j (1 − p)l(x−j).

Finally, the distribution function of M(l,n) can be found:

P(M(l,n) ≤ x) = [FYl (x)]n/l,
and its mean is

E[M(l,n)] =
∞∑
x=1

[1 − {FYl (x)}n/l].

It can be seen that, for geometric(0.2) service times, using five-replication reduces the expected
makespan of 100 jobs by half compared to scheduling the jobs in parallel. See Figure 2.

This result may seem like a contradiction to the optimality of maximal replication for NWU
service times since the geometric distribution is memoryless. But, if we extend the support
from the nonnegative integers to the nonnegative reals, the geometric distribution is not NWU.
It is required in [4] that the support be the real line for the optimality result to hold. It may also
seem to contradict the result of Borst et al. [1], but they permitted the degree of replication to
change over time.

3.3. Bernoulli service times

Consider the case when the service time distribution has probability mass accumulated on
two points. Such two-point distributions are interesting because they are easy to analyze and
yet they capture the effect of individual grid resources being in two states (e.g. busy/idle). They
also provide insight into the analysis of having general bimodal service time distributions. We
also use some of the theory we develop here for general bounded distributions in Subsection 3.1.
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We first consider the Bernoulli distribution taking values 0 or 1 and later extend to the case
where the distribution is shifted away from 0.

Suppose that the service time distribution of a job is Bernoulli with success probability p:

X =
{

1 with probability p,

0 with probability 1 − p.

The expected makespan for maximal replication is

E

[ n∑
i=1

min
k∈{1,...,n}Xi1k

]
= npn

and for minimal replication it is

E
[

max
j∈{1,...,n}X1j1

]
= 1 − (1 − p)n.

We observe that, for sufficiently large n, maximal replication will perform better than minimal
replication. This result relies heavily on the fact that Xijk has a nonzero probability of taking
the value 0, so, for a large number of replications, the minimum of the service times will be 0
with high probability.

Let us now find an expression for the expected makespan for l-replication. Since

min
k∈{1,...,l}Xijk =

{
1 with probability pl,

0 with probability 1 − pl,

we can see that
∑l
i=1 mink∈{1,...,l}Xijk := Yj has a binomial distribution, B(l, pl). The

expected makespan is

E[M(l,n)] = E
[

max
j∈{1,...,m}Yj

]

=
l∑

y=1

P
(

max
j∈{1,...,m}Yj ≥ y

)

=
l∑

y=1

{
1 − P

(
max

j∈{1,...,m}Yj ≤ y − 1
)}

=
l∑

y=1

{1 − [P(Y1 ≤ y − 1)]m}

= l −
l−1∑
y=0

{F(y)}m,

where F(·) is the distribution function of B(l, pl). It is easy to calculate this value for various
n, l, and p (see Figure 3). The shapes of the graphs for different combinations of (n, p)were all
either monotonically increasing, monotonically decreasing, or increasing and then decreasing
in l, which we conjecture to be true in general.

https://doi.org/10.1239/aap/1246886623 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1246886623


Job replication 557

0.5

1.0

1.5

2.0

0.0

1

2

4

3

5

6

0

E
xp

ec
te

d 
m

ak
es

pa
n

Degree of replication (l) Degree of replication (l)

(a) (b)

20 30 40 50 60 70 80 90 1000 10 20 30 40 50 60 70 80 90 1000 10

Figure 3: Expected makespans under Bernoulli(p) service times for n = 100 and (a) p = 0.5,
(b) p = 0.9.

Conjecture 1. For Bernoulli service times, E[M(l,n)] ≥ min{E[M(1,n)],E[M(n,n)]}, i.e. either
maximal replication or minimal replication is optimal.

As p approaches 1, it is evident that the maximal replication makespan will approach n,
which is larger than 1, the upper bound of the minimal replication makespan. By the results
of Figure 3, there is reason to believe that there is a certain upper threshold for p such that
maximal replication is better than minimal replication for all n.

Lemma 2. When service times are i.i.d. Bernoulli(p) on a system with n jobs and n servers,
there exists a cn, 0 ≤ cn ≤ 1, such that the expected makespan for maximal replication is no
larger than that of minimal replication if and only if 0 ≤ p ≤ cn.

Proof. The expected makespan is npn for maximal replication and 1− (1−p)n for minimal
replication. For n = 1, minimal and maximal replications are equivalent for allp. We only need
to verify then ≥ 2 case. For fixedn ≥ 2, let us consider the functionfn(p) = npn+(1−p)n−1
on the interval [0, 1]. Note that fn(0) = 0 and fn(1) = n − 1 > 0, so we can restrict our
attention to the form of the function fn(p) on the open interval (0, 1). Observe the second
derivative of fn(p):

f ′′
n (p) = n2(n− 1)pn−2 + n(n− 1)(1 − p)n−2 > 0;

we see that fn(p) is convex on (0, 1) for n ≥ 2. Also, p = 1/(n1/(n−1) + 1) is always a
root of the equation f ′

n(p) = 0, and we conclude that fn(p) has a minimum on (0, 1), and
since fn(0) = 0, the minimum value must be strictly smaller than 0. The convexity of fn(p),
fn(0) = 0, and the existence of a point 0 < a < 1, where fn(a) < 0, imply that the function
has a single root, cn, in the interval (0, 1), so it can be partitioned as (0, cn] ∪ (cn, 1), where
fn(p) ≤ 0 on (0, cn] and fn(p) > 0 on (cn, 0).

Theorem 3. For n ≥ 2, the sequence {cn} described in Lemma 2 is increasing in n.

Proof. Observe that the second term of fn(p) = npn + (1 − p)n − 1 decreases in n and
consider the first term npn. Letting n vary continuously while holdingp fixed, npn is decreasing
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on n ≥ 1/ log(1/p) or, equivalently, p ≤ e−1/n. Defining dn = e−1/n, fn(p) is decreasing in
n for all p ≤ dn. Note that dn increases in n. If cn ≤ dn for n ≥ 2 then we can conclude that
cn is increasing in n. To see if this condition holds, we exploit the fact that cn is an upcrossing
point of fn(p) and evaluate the sign of fn(dn). Now cn ≤ dn is equivalent to fn(dn) ≥ 0,
where

fn(dn) = n

e
− 1 + (1 − e−1/n)n.

Since the third term is always positive, it can be seen that at least forn ≥ 3, fn(dn) is nonnegative.
It remains to verify that c2 ≤ c3, where c2 = 2

3 . Now, c2 ≤ c3 is equivalent to f3(c2) ≤ 0,
which is indeed true since f3(

2
3 ) = − 2

27 .

Corollary 4. When service times are i.i.d. Bernoulli(p) with n jobs and n servers, if p ≤ 2
3

then the expected makespan of maximal replication is no larger than that of minimal replication
for all n ≥ 1.

Proof. Since c2 = 2
3 and cn is increasing for n ≥ 2, fn(c2) ≤ 0 for all n ≥ 2. Also, since

f1(c2) = 0, fn(c2) ≤ 0 for all n ≥ 1. Consequently, for all p ≤ c2 and all n ≥ 1, fn(p) ≤ 0.

Combining Corollary 4 with our earlier conjecture, we believe that maximal replication is
optimal whenever p ≤ 2

3 for Bernoulli(p) service times.
Note that the coefficient of variation of Bernoulli(p) is

√
(1 − p)/p, so the smaller p is

the more variable X is in this sense, and again we have a result consistent with our general
observation that more variability favors more replication.

For service time distributions that have a bounded support, we can use Corollary 2 and
the results for two-point distributions to compare the performance of minimal and maximal
replications. Without loss of generality, we may consider RVs bounded by 0 from below since
adding a constant to both of the RVs under comparison does not affect the convex order relation.

Lemma 3. Let X be an RV with support [0, b] and mean µ, and let Y be the corresponding
two-point distribution on the points {0, b} with the same mean. Then X ≥cx Y .

Proof. We use the tail characterization of convex ordering, i.e. X ≥cx Y if and only if∫ ∞
a
F̄X(x) dx ≥ ∫ ∞

a
F̄Y (x) dx for all a. Suppose that P(Y = b) = p, so that E[X] = E[Y ] =

pb. Now consider the function

h(y) =
∫ b

y

[F̄X(x)− F̄Y (x)] dx =
∫ b

y

[F̄X(x)− p] dx,

h′(y) = −F̄X(y)+ p.

Observe that, owing to the monotonicity of FX, the sign of h′(y) changes from negative to
positive as y increases from 0 to b. Also, since h(0) = h(b) = 0, we conclude that h(y) ≤ 0
on [0, b]. By the tail characterization of increasing convex ordering, X ≥icx Y . Since E[X] =
E[Y ], we have X ≥cx Y .

This lemma together with Theorem 2 provides a link between the performance of a bounded
service time and a two-point distributed service time.

Corollary 5. LetX be a bounded random variable denoting the service time, and letX′ be the
two-point distribution with the same mean having mass on the two boundary points of X. If
minimal replication yields a smaller makespan than maximal replication for X′, then minimal
replication yields a smaller makespan than maximal replication for X as well.
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By using the result of Lemma 2, it is a simple task to compare the performance of minimal
replication to the performance of maximal replication, provided that cn can be computed.

Corollary 6. Let X be a random service time with upper bound b and mean µ. If µ/b > cn
then minimal replication yields a smaller makespan than maximal replication, where cn is as
defined in Lemma 2.

Proof. Since b is an upper bound and 0 is a (trivial) lower bound for X, we may consider a
two-point distribution Y on {0, b}, where P(Y = b) = µ/b. Then E[Y ] = µ, and if µ/b > cn,
minimal replication is better than maximal replication for service times Y , and, consequently,
the same holds for X.

3.4. Shifted Bernoulli service times

Let us now consider the more realistic case where the lower bound of the two-point distri-
bution is δ (0 < δ < 1) away from 0. Now we may have an optimal l that is strictly between 1
and n. Let the service time be X, where

X =
{

1 with probability p,

δ with probability 1 − p,

and

Z = X − δ

1 − δ

is now a Bernoulli(p) RV. Expressing X in terms of Z and substituting it into (1), we obtain an
expression for the l-replication expected makespan for service time X:

E[M(l,n)] = E

[
max

j∈{1,...,m}

l∑
i=1

min
k∈{1,...,l}Xijk

]

= E

[
max

j∈{1,...,m}

l∑
i=1

min
k∈{1,...,l}{(1 − δ)Zijk + δ}

]

= (1 − δ)E

[
max

j∈{1,...,m}

l∑
i=1

min
k∈{1,...,l}Zijk

]
+ δl.

Note that the expectation part of the last expression is the makespan for the l-replication with
Bernoulli service times taking values 0 or 1. We may use the result derived for the Bernoulli
service times to plot this expression for various l, m, n, and p (see Figure 4).

It is interesting to see in these examples that there exist cases where the optimal degree of
replication occurs at a nonextreme l value.

When we have a strictly positive lower bound on the service time, processing jobs in sequence
creates an overhead which can be avoided by using minimal replication. So we can expect
minimal replication to be favorable over maximal replication in this case.

Theorem 4. For the shifted Bernoulli service time distribution, the expected makespan of
minimal replication is smaller or equal to that of maximal replication for all 0 ≤ p ≤ 1
if

δ ≥ 1 − 1 − 1/n

1 − p̂n−1 ,
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Figure 4: Expected makespan for n = 100 and (a) (p, δ) = (0.5, 0.02), (b) (p, δ) = (0.5, 0.005).
Nonextreme solutions where 10 or 20 replications of each job is optimal.

where

p̂ = 1

1 + n1/(n−1)

when n ≥ 2.

Proof. The expected makespan of maximal and minimal replications is npn + nδ(1 − pn)

and 1 − (1 − δ)(1 − p)n, respectively. For n = 1, these share the same value. Henceforth, we
assume that n ≥ 2. For fixed n, let fn(p) = E[M(n,n) −M(1,n)], where

fn(p) = (1 − δ){(1 − p)n − n(1 − pn)} + n− 1,

f ′
n(p) = (1 − δ){−n(1 − p)n−1 + n2pn−1},
f ′′
n (p) = (1 − δ){n(n− 1)(1 − p)n−2 + n2(n− 1)pn−2}.

Observe that f ′′
n (p) > 0 since 0 < δ < 1 and n ≥ 2. So fn(p) is convex in p. The positive

real root of the equation f ′
n(p) = 0 is

p̂ = 1

1 + n1/(n−1)
,

which lies strictly between 0 and 1. Evaluating the minimum value of fn(p),

fn(p̂) = n(1 − δ)(p̂n−1 − 1)+ n− 1.

A condition equivalent to fn(p̂) > 0 is

δ ≥ 1 − 1 − 1/n

1 − p̂n−1 .

In the above proof, note that fn(0) = δ(n− 1) > 0, fn(1) = n− 1 > 0, and fn(p) is convex.
So minimal replication is better than maximal replication near extreme values of p, which is
also when the variance of the service time is small. Also, near p = p̂, depending on n and δ,
either maximal replication is better than minimal replication or at least the performance gap
between them is minimized.
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3.5. General discrete service time distributions

For the general discrete distribution defined on a finite number of points, we show how to
compute E[M(l,n)] exactly. Let X have the discrete distribution

X =

⎧⎪⎪⎨
⎪⎪⎩
a1 with probability p1,

...

ak with probability pk,

let a� = (a1, . . . , ak), where (a1 ≤ a2 ≤ · · · ≤ ak), and let p� = (p1, . . . , pk), where p > 0
and a ≥ 0. Then X can be represented as X = a�Y , where Y is distributed multinomial(1,p).
Let {Xi; i = 1, . . . , l} be i.i.d. samples of X. We have

P(min{X1, . . . , Xl} ≥ ai) =
( k∑
j=i

pj

)l
,

P(min{X1, . . . , Xl} = ai) =
( k∑
j=i

pj

)l
−

( k∑
j=i+1

pj

)l
= p̃i ,

so min{X1, . . . , Xl} d= a�Ỹ , where Ỹ is distributed multinomial(1, p̃). Here ‘
d=’ denotes

equality in distribution. We have

l∑
i=1

min{Xi1, . . . , Xil } d=
l∑
i=1

a�Ỹi

d= a�
l∑
i=1

ỹi

d= a�Z,

where Z is multinomial(l, p̃). It remains to find the distribution function of the RV a�Z:

P(a�Z ≤ x) =
∑

1�z=l
z≥0

f (z)1{a�z≤x}(z),

where f (z) is the probability mass function of multinomial(l, p̃). Note that the number of
summands is ofO(lk−1). So when k is fixed, the time complexity of computing the distribution
is polynomial in l. Let Z1, ...,Zm be i.i.d. samples with the same distribution as Z. Finally, the
distribution function of {max a�Z1, . . . , a

�Zm} is {P(a�Z ≤ x)}m and the expectation can be
computed by summing the tail probability. So,

E[M(l,n)] =
lak∑
x=0

[1 − {P(a�Z ≤ x)}m].

Example 1. The expected makespan of a system with eight servers and service time distribution

a� = [1, 2, 3, 4], p� = [ 1
2 ,

1
4 ,

1
8 ,

1
8

]
,

is E[M(1,8)] = 3.552 372, E[M(2,8)] = 3.627 524, E[M(4,8)] = 4.480 234, and E[M(8,8)] =
8.031 373.
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We can use an appropriate discrete distribution to obtain an approximation for general
bounded continuous distributions. A difficulty is that the precision of the approximation
depends on k, the number of points in the discrete RV’s support, which impacts on the
complexity exponentially. But, since any bounded distribution can be stochastically bounded
by an appropriate bounded discrete distribution, and a fairly good bound can be obtained with
a relatively small k, this method can be useful for worst-case analysis.

3.6. Bounds for the l-replication makespan

For most service time distributions, finding the expected makespan for the general l-replica-
tion policy is analytically intractable. However, in some cases, by using its lower and upper
bounds, we can determine whether the optimal number of replications is a nonextreme repli-
cation policy (i.e. 2 ≤ l ≤ n− 1) by comparing it to the expected makespan of the analytically
tractable cases of l = 1 and l = n. If, for example, there is some 2 ≤ l ≤ n−1 that has an upper
bound smaller than both the makespan of minimal and maximal replications, can conclude that
the optimal number of replications is somewhere in the middle. We provide a lower bound and
an upper bound of M(l,n), the l-replication makespan.

Theorem 5. For M(l,n), the following inequality holds:

l E[X(1,l)] ≤ E[M(l,n)] ≤ l E[X(n−l+1,n)],
where X(i,j) is the ith order statistic (in increasing order) from a sample of size j .

Proof. By applying Jensen’s inequality, we obtain a lower bound for the l-replication
makespan:

E

[
max

j∈{1,...,m}

l∑
i=1

min
k∈{1,...,l}Xijk

]
≥ max
j∈{1,...,m} E

[ l∑
i=1

min
k∈{1,...,l}Xijk

]
= l E[X(1,l)].

For an upper bound, we have

E

[
max

j∈{1,...,m}

l∑
i=1

min
k∈{1,...,l}Xijk

]
≤ E

[ l∑
i=1

max
j∈{1,...,m} min

k∈{1,...,l}Xijk
]

≤ l E[X(n−l+1,n)].
The first inequality holds because, for any i.i.d. sequence Yij , i = 1, . . . , m, j = 1, . . . , l,

max
i∈{1,...,m}

l∑
j=1

Yij =
l∑

j=1

Yi∗,j ≤st

l∑
j=1

max
i∈{1,...,m}Yij ,

where i∗ is the maximizing index.
For the second inequality, consider an i.i.d. sample of size n laid out as a double array having

l rows and m columns, where lm = n. Then

max
j∈{1,...,m} min

k∈{1,...,l}Xijk ≤st X(n−l+1)

can be verified by the following procedure. Take the minimum value within each column to
obtain m numbers. Since the largest of the m numbers cannot be larger than the other l − 1
numbers in its column, the largest it can be is the lth largest of the n. The inequality follows
by combining this with a sample path argument for the stochastic order.
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When the support of the service time RV does not contain 0, we have the following result.

Lemma 4. Let the service time distribution X be a strictly positive RV such that X > c > 0.
Then

E[M(l,n)] ≥ lc.

Proof. Let Xijk be i.i.d. RVs having the same distribution as X. Since X > c,

min
k∈{1,2,...,l}Xijk > c for each i, j,

l∑
j=1

min
k∈{1,2,...,l}Xijk > lc for each i,

M(l,n) = max
i∈{1,2,...,m}

l∑
j=1

min
k∈{1,2,...,l}Xijk > lc.

We can see here that, for sufficiently large n, more replication will result in a higher makespan
when service times are bounded away from 0.

3.7. Asymptotic properties

Since grid computing involves a large set of servers, we study the asymptotic properties of
the makespan RV as n → ∞. The makespan RV for maximal replication,

n∑
j=1

min{X1,j , . . . , Xn,j },

is of particular interest since, for large n, it is a sum of many small RVs and we can expect it to
have some limiting properties.

Theorem 6. Let {Yi,j ; i, j = 1, . . . , n} be i.i.d. exponential(λ) RVs, and let {Xi,j ; i, j =
1, . . . , n} be an i.i.d. random sample of size n2 from a distribution stochastically smaller than
exponential(λ), i.e. Xi,j ≤st Yi,j . Then,

lim
n→∞ P

( n∑
j=1

min{X1,j , . . . , Xn,j } ≤ 1

λ

)
= 1.

Proof. Since, for each (i, j), Xi,j ≤st Yi,j ,

P(Xi,j > a) ≤ P(Yi,j > a) for i, j = 1, . . . , n,
n∏
i=1

P(Xi,j > a) ≤
n∏
i=1

P(Yi,j > a),

and, consequently,

min{X1,j , . . . , Xn,j } ≤st min{Y1,j , . . . , Yn,j } for each j.

Note that the right-hand side has distribution exponential(nλ). Summing each side with respect
to j , we have

n∑
j=1

min{X1,j , . . . , Xn,j } ≤st

n∑
j=1

min{Y1,j , . . . , Yn,j }.
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Let us represent the distribution functions of the left-hand side RV as Fn and the right-hand side
RV as Gn. Then an equivalent expression for the above stochastic order is Fn(x) ≥ Gn(x).
Note thatGn is the distribution function of Erlang(n, nλ), which converges to the constant 1/λ
in distribution as n → ∞. Since Fn(x) ≥ Gn(x) holds pointwise for all n and the (pointwise)
convergence of Gn(x) is guaranteed,

lim inf
n→∞ Fn(x) ≥ G∞(x)

for each x in the domain. This implies that, for x ≥ 1/λ, limn Fn(x) = 1, from which we can
conclude that

lim
n→∞ P

( n∑
j=1

min{X1,j , . . . , Xn,j } ≤ 1

λ

)
= 1.

Note that in the above theorem we do not make any assumptions on the convergence of∑n
j=1 min{X1,j , . . . , Xn,j }. What this theorem tells us is that if the service time has an

exponential RV as a stochastic upper bound, the probability of the maximal replication makespan
being less than some constant approaches 1 as n goes to ∞.

Recall that, for NWU service times, a new service time is stochastically smaller than the
remaining service time after some service has been completed. Also, from [4], if the service time
distribution is NWU, maximal replication is optimal, i.e. the expected makespan is minimized
when l = n. We also have the following result.

Theorem 7. Let {Xn; n = 1, 2, . . .} be i.i.d. NWU RVs. Then

lim
n→∞ P(M(n,n) ≤ E[X1]) = 1.

Proof. Let H be the cumulative hazard rate function of X. Recall that X is NWU if and
only if H is subadditive, i.e.

H(nx) ≤ nH(x) ⇐⇒ F̄ (nx) ≥ F̄ n(x) ⇐⇒ 1 − F̄ n(x) ≥ F(nx).

Observe that the left-hand side of the last inequality is the distribution function of min{X1, . . . ,

Xn} and that the right-hand side is the distribution function of X/n. So we have min{X1, . . . ,

Xn} ≤st X/n and, consequently,
∑n
j=1 min{X1,j , . . . , Xn,j } ≤st

∑n
j=1Xj/n. The right-hand

side of the inequality converges to E[X] with probability 1 by the small law of large numbers
and the result follows.

A more refined result for the asymptotic distribution of the maximal replication makespan
can be found using the central limit theorem for triangular arrays of RVs, i.e. if {Zni; n =
1, 2, . . . ; i = 1, . . . , n} is a triangular array satisfying E[Zni] = 0, var(Zni) = σ 2

n , and
limn σ

2
n → σ 2 > 0, then n−1/2 ∑n

i=1 Zni
d−→ N(0, σ 2), where ‘

d−→’ denotes convergence in
distribution. Let the Xji , i, j = 1, . . . , n, be i.i.d. RVs representing the service time and
consider the RV

Xnj := min{Xj1 , . . . , Xjn}
bn

for j = 1, . . . , n and some given sequence {bn}. Then {Xnj ; n = 1, 2, . . . ; j = 1, . . . , n}
forms a triangular array. For the central limit theorem to hold, it is sufficient to have

var(Xnj ) = var(min{Xj1 , . . . , Xjn})
b2
n

→ σ 2,
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where σ 2 > 0 is a constant. Then

n∑
j=1

Xnj − nE[Xnj ] → N(0, σ 2),

or if we let αn := E[min{Xj1 , . . . , Xjn}],

1

bn

n∑
j=1

min{Xj1 , . . . , Xjn} − n

bn
αn → N(0, σ 2).

So, for largen, the maximal replication makespan is approximately distributed asN(nαn, b2
nσ

2).
Note that the sequence {bn} is determined by how fast the variance of min{Xj1 , . . . , Xjn}
approaches 0 (provided that Xji is bounded from below).

For example, when Xi,j is uniform(0,1)-distributed,

E[min{Xj1 , . . . , Xjn}] = 1

n+ 1
,

var(min{Xj1 , . . . , Xjn}) = 2

(n+ 2)(n+ 1)
−

(
1

n+ 1

)2

= n

(n+ 2)(n+ 1)2
,

so αn = 1/(n + 1), bn = 1/n, and σ 2 = 1. Note that, for uniform service times, minimal
replication is preferred over maximal replication because, while there is no difference in the
expected makespan, the variance of maximal replication is larger than that of minimal replication
by a factor of n.

3.8. The impact of intertemporal dependence of service times

Now, we consider the case where there is positive dependence among successive service
times for each server. A scenario where successive service times are positively dependent is
when service times depend on how ‘busy’ the grid server is or when service times for our jobs
can be modeled as waiting times in the underlying queue of work at the local server.

We compare the l-replication makespan for two cases where one (X) has a stronger temporal
positive dependence among successive service times on each server than the other (Y ). For the
two cases, let X

j
k and Y

j
k denote l-dimensional random vectors of service times on server k of

group j , where k = 1, . . . , l and j = 1, . . . , m, so that X
j
k = (X1jk, X2jk, . . . , Xljk)

� and
Y
j
k = (Y1jk, Y2jk, . . . , Yljk)

�. For any (fixed) group j , let us assume that X
j
k ≥sm Y

j
k for all

servers k = 1, . . . , l and that the X
j
k as well as the Y

j
k are independent across k so that servers

are independent of each other but jobs on the same server have positively dependent service
times. See Figure 5 for an illustration. Then we are comparing

M(l,n) = max
1≤j≤m

l∑
i=1

min
1≤k≤l Xijk (2)

with

M ′
(l,n) = max

1≤j≤m

l∑
i=1

min
1≤k≤l Yijk. (3)
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Figure 5: HereXiJk is the service time of a replica of job i of (fixed) group J assigned to server k. There
is positive dependence in the temporal (vertical) direction but independence across servers.

First we show that temporal dependence of service times is preserved after taking the
minimum across servers, i.e. if we hold j = J fixed,(

min
1≤k≤mX1Jk, . . . , min

1≤k≤mXlJk
)

≥sm

(
min

1≤k≤mY1Jk, . . . , min
1≤k≤mYlJk

)
holds when XJ

k ≥sm Y Jk . To establish this relation, we need Corollary 9.A.10 of [10], which
we restate for convenience.

Theorem 8. ([10, Corollary 9.A.10].) Let X = (X1, . . . , Xn)
� and Y = (Y1, . . . , Yn)

� be
two random vectors such that X ≥sm Y , and let Z be an m-dimensional random vector which
is independent of X and Y . Then

(h1(X1,Z), . . . , hn(Xn,Z)) ≥sm (h1(Y1,Z), . . . , hn(Yn,Z))

whenever hi(x, z), i = 1, . . . , n, are all increasing or all decreasing in x for every z.

We use Theorem 8 to show the following generalization of Theorem 9.A.12 of [10].

Theorem 9. Let Xk and Yk for k = 1, . . . , L be N -dimensional random vectors such that Xk

and Yk are independent over k. Let fi : R
L → R, i = 1, . . . , N , be a continuous increasing

function. If Xk ≥sm Yk for all k then

(f1(X11, . . . , X1L), . . . , fN(XN1, . . . , XNL))

≥sm (f1(Y11, . . . , Y1L), . . . , fN(YN1, . . . , YNL)),

where Xk = (X1k, X2k, . . . , XNk)
�, k = 1, . . . , L.

Proof. Let Z(0) = (X2,X3, . . . ,XL). Since X1,Y1, and Z(0) are independent and
X1 ≥sm Y1, by Theorem 8 we have

(f1(X11,Z
(0)), . . . , fN(XN1,Z

(0))) ≥sm (f1(Y11,Z
(0)), . . . , fN(YN1,Z

(0))).

By letting fi depend only on the first argument and row i of Z(0), we have

(f1(X11, X12, . . . , X1L), . . . , fN(XN1, XN2, . . . , XNL))

≥sm (f1(Y11, X12, . . . , X1L), . . . , fN(YN1, XN2, . . . , XNL)).
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Now, letting X2 take the role of X1 and letting Z(1) = (Y1,X3, . . . ,XL), and applying Theo-
rem 8 once more, we have

(f1(Y11, X12, . . . , X1L), . . . , fN(YN1, XN2, . . . , XNL))

≥sm (f1(Y11, Y12, X13, . . . , X1L), . . . , fN(YN1, YN2, YN3, . . . , XNL)).

Repeating this procedure, we arrive at

(f1(X11, . . . , X1L), . . . , fN(XN1, . . . , XNL))

≥sm (f1(Y11, . . . , Y1L), . . . , fN(YN1, . . . , YNL)).

Taking fi(x) = min1≤k≤l (xk) for all i, we have(
min

1≤k≤l X1jk, . . . , min
1≤k≤l Xljk

)
≤sm

(
min

1≤k≤l Y1jk, . . . , min
1≤k≤l Yljk

)
(4)

when j is fixed. From (2) and (3), we can see that the next step in comparingM(l,n) andM ′
(l,n) is

to sum the terms in (4). Now, since φ(x) = ∑
i xi is a linear function with positive coefficients,

it is an increasing supermodular function and we can apply Theorem 9.A.16 of [10] to relate
the supermodular ordering of individual terms to the increasing convex ordering of the sums of
those terms.

Theorem 10. ([10, Theorem 9.A.16].) If X ≤sm Y then φ(X) ≤icx φ(Y ) for any increasing
supermodular function φ : R

n → R.

So, from (4),
l∑
i=1

min
1≤k≤l Xijk ≤icx

l∑
i=1

min
1≤k≤l Yijk.

Finally, since max{x} is increasing convex, we have, from (2) and (3),

E[M(l,n)] ≤ E[M ′
(l,n)].

Recall that if X is WPA, and XI has the same marginals as X but are independent, X ≥sm XI

(see Section 2). Using this relation between WPA and the supermodular order, we obtain the
following result which can be used to compare the expected makespan of the positive temporal
dependence case with the corresponding makespan assuming temporal independence.

Theorem 11. Let X
j
k , k = 1, . . . , l and j = 1, . . . , m, be weakly positively associated, and

let Y
j
k be a vector of independent RVs that have the same marginals as X

j
k for all j and k.

Then,

E

[
max

1≤j≤m

l∑
i=1

min
1≤k≤l Xijk

]
≥ E

[
max

1≤j≤m

l∑
i=1

min
1≤k≤l Yijk

]
.

We have identified many cases in which minimal replication or maximal replication is optimal
when service times are temporally independent. The following corollary extends these results
to the case in which there is positive dependence for jobs on the same server.

Corollary 7. Under the same assumptions as in Theorem 11, if minimal replication or maximal
replication is optimal for service times Y

j
k , k = 1, . . . , l and j = 1, . . . , m, then they are also

optimal for X
j
k .
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Proof. The expected makespan for minimal replication,

E
[

max
1≤j≤nX1j1

]
,

and maximal replication,

E

[ n∑
i=1

min
1≤k≤nXi1k

]
= nE

[
min

1≤k≤nX11k

]
,

do not depend on the index i and, therefore, they do not depend on any dependence across i.
By Theorem 11, the expected makespan when there is WPA of service times within a server is
always longer than when they are independent. So if minimal or maximal replication is optimal
for the independent case, it must also be optimal for the WPA case.

So, for example, if our conjecture that either minimal or maximal replication is optimal for
independent Bernoulli service times is true, it is also true when service times are WPA.

4. Performance analysis with an arrival stream of jobs

In the previous section we made the assumption that there are a finite number of jobs waiting
to be processed. Now we allow jobs to arrive according to some arrival process and we select the
number of servers among the n that will be grouped together so that each group is responsible
for processing a single unique job at a time. See Figure 6. If we decide on a group of size l, the
amount of time required to complete a particular job will be the minimum among the service
times of its l replications, which we define as the effective service time of a job. Let Y denote
the effective service time. Then

Y = min
k∈{1,2,...,l}Xk,

where the Xk are i.i.d. service times at individual servers. We investigate the behavior of the
system as a function of l, the degree of replication.

1 2 l ...... 1 2 l... 1 2 l...

λ

1 2 m

Figure 6: A G/G/m queue under l-replication. A group of l processors form a ‘team’ to simultaneously
process replicas of a single job.
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With l as the group size, m = n/l is the number of groups, where we assume that l divides
n for simplicity of discussion. Then the queueing system under this job assignment policy is
effectively a G/G/m queue with generic effective service time Y .

Letµ(l) = 1/E[mink∈{1,2,...,l}Xk] be the effective service rate of a single group as a function
of l.

The service capacity of a system of parallel servers is usually represented as the sum of the
capacities of the individual parallel servers. In our case,

µ(l)
n

l
= mµ(l)

is the service rate of the overall system. When there is a stream of jobs arriving at the system at
a certain rate, say λ, the overall congestion of the system can be represented as the system load

ρ(l) = λ

mµ(l)
= λ

n(µ(l)/ l)
.

The minimization of ρ(l) or, equivalently, the maximization of service capacity nµ(l)/ l will
be our main objective. We consider this objective because it impacts on many performance
measures of a queueing system. Most notably, as ρ approaches 1, the delay probability
approaches 1 and the expected time a job spends in the system approaches ∞. In this sense we
can maximize the stability region of the system by minimizing ρ.

Since ρ(l) is proportional to l/µ(l), we will often argue the optimality of the system load
through l/µ(l).

Note that this objective is not sensitive to any temporal dependence of service times within
a server.

In the following subsections we study ρ(l) for our queueing model. In Subsection 4.7 we
will consider the more difficult but more appropriate objective of minimizing the mean response
time in steady state.

4.1. The system load (ρ) as a function of l

We may express the system load as

ρ(l) = λ

mµ(l)
= λl

nµ(l)
= λ

n

∫ ∞

0
l{F̄ (x)}l dx.

Recall that NWU is equivalent to having a subadditive cumulative hazard rate, which implies
that F̄ (lx) ≥ F̄ l(x). Under this condition, we have∫ ∞

0
l{F̄ (x)}l dx ≤

∫ ∞

0
lF̄ (lx) dx = E[X],

where X is the RV denoting the service time with cumulative distribution function F . Thus,
we have the following upper bound of the system load when F is NWU:

ρ(l) ≤ λ

n
E[X].

Similarly, when F is NBU, we have the following lower bound:

ρ(l) ≥ λ

n
E[X].
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Note that λE[X]/n is equal to ρ(1), the system load, for minimal replication. So we conclude
that, for NBU service times, minimal replication is optimal and, for NWU service times,
minimal replication is the worst.

We now show that the optimality of maximal replication for minimizing ρ(l) implies its
optimality for our makespan objective, minimizing E[M(l,n)].
Theorem 12. If maximal replication is optimal for the queueing system with objective ρ(l), it
is also optimal for the makespan objective E[M(l,n)] when there are n jobs to do.

Proof. The following relations hold for all 1 ≤ l ≤ n:

M(l,n) = max
1≤i≤m

l∑
j=1

min
1≤k≤l Xijk ≥st

l∑
j=1

min
1≤k≤l X1jk,

E[M(l,n)] ≥ l E
[

min
1≤k≤l X11k

]
= l

µ(l)
.

Since we assume that l/µ(l) is minimized at l = n,

E[M(n,n)] = n

µ(n)
≤ l

µ(l)
≤ E[M(l,n)] for all l.

By the fact that
n

µ(n)
= E[M(n,n)]

we conclude that E[M(n,n)] ≤ E[M(l,n)] for all l.

Note that the inequality

E[M(l,n)] ≥ l

µ(l)

is what provides the relation between the system load and the expected makespan. Establishing
a similar optimality result for the converse of the above theorem would involve imposing a
lower bound on E[M(l,n)], which leads to a dead end since we would not be able to compare
the lower bound with l/µ(l).

4.2. Impact of the service time variability on the system load

Lemma 5. IfX′ ≥cx X then E[X′
(1,n)] ≤ E[X(1,n)], whereX′

(1,n) andX(1,n) are the first-order
statistics from i.i.d. samples of size n distributed as X′ and X, respectively.

Proof. The relation X′ ≥cx X is equivalent to X′ ≤cv X. Since the function min{x},
x ∈ R

n, is concave in x, we have E[min{X′}] ≤ E[min{X}].
Since µ(n) = 1/E[X(1,n)] is the system service rate when maximal replication is used,

we can see that the system service rate is ordered according to the convex ordering of service
time distributions. This together with the fact that E[X′] = E[X] when X′ ≥cx X implies the
following corollary.

Corollary 8. If maximal replication yields a smaller system load than minimal replication for
service time X, the same is true for X′ ≥cx X.
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4.3. Conditions for monotonic ρ(l)

Let us first consider the simple case of comparing the value of µ(2)/2 to µ(1)(= µ). We
would like to find conditions where the service rate is at least doubled by using two servers to
do a job. We want

E

[
X

2

]
≥ E[min{X1, X2}],

where X,X1, and X2 are i.i.d. A sufficient condition for this is

X

2
≥st min{X1, X2},

which is equivalent to
F̄ (2x) ≥ F̄ 2(x)

for all x in the support of F .

Lemma 6. For n = 1, 2, . . ., if X ≥st 2 min{X1, X2} then

2n−1 min{X1, . . . , X2n−1} ≥st 2n min{X1, . . . , X2n}
and if X ≤st 2 min{X1, X2} then

2n−1 min{X1, . . . , X2n−1} ≤st 2n min{X1, . . . , X2n−1},
where X,X1, X2, . . . are i.i.d.

Proof. The proof is by induction. We are given that the initial condition holds. Assume that
2n−1 min{X1, . . . , X2n−1} ≥st 2n min{X1, . . . , X2n} holds. Then,

min

{
X1

2
, . . . ,

X2n

2

}
≥st min{min{X11, X12}, . . . ,min{X2n,1, X2n,2}}
=st min{X1, . . . , X2n+1},

2n min{X1, . . . , X2n} ≥st 2n+1 min{X1, . . . , X2n+1}.
What the lemma implies is that ifX ≥st 2 min{X1, X2} orX ≤st 2 min{X1, X2} then l/µ(l)

and, thus, ρ(l) is monotonically decreasing or, respectively, increasing in l when n and l are
powers of 2.

Corollary 9. If the service time distribution is NWU or NBU then maximal replication or,
respectively, minimal replication yields the smallest system load, ρ.

It can be easily seen that the NWU condition implies that X ≥st 2 min{X1, X2}. Recall
that an RV is NWU if P(X > x) ≤ P(X − t > x | X > t) for all t, x ≥ 0, and by
taking t = x we have X ≥st 2 min{X1, X2}. Also, X ≥st 2 min{X1, X2} is equivalent
to H(2x) ≤ 2H(x) for all x, where H is the cumulative hazard rate function. However,
X ≥st 2 min{X1, X2} does not imply NWU; the following serves as a counterexample. Define

H(x) =
⎧⎨
⎩

√
x, 0 ≤ x ≤ 20,

2nG

(
x

2n

)
, 2n ≤ x ≤ 2n+1 for n = 0, 1, . . . ,

where G(x) = (x − 1)2 + 1. Note that, for this H , 1
2H(x) ≤ H(x/2) holds everywhere. But

H(1) = 1, H(3) < 3, and H(4) = 4, so H(1) + H(3) < H(4) and H is not subadditive
everywhere. Thus, 1

2H(x) ≤ H(x/2) is a necessary but not a sufficient condition forX to have
an NWU distribution.
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4.4. Bernoulli service times

For a Bernoulli(p) service time X that takes the value 0 or 1, there is no stochastic order
relation betweenX/2 and min{X1, X2}, and we cannot use Lemma 6 to claim monotonicity of
ρ(l). However, in this case, it is straightforward to find an expression for µ(l):

E
[

min
1≤i≤l Xi

]
= pl, µ(l) = p−l .

Since µ(l) is an increasing exponential function, it can be seen that l/µ(l) increases until
l = −1/ logp and decreases thereafter. See Figure 7(a). This implies that either minimal
replication or maximal replication, depending on n and p, yields the lowest system load. That
is, in contrast to the earlier conjecture for the makespan for a finite number of jobs, the unimodal
property is verified for the system load objective.

Lemma 7. For service times distributed Bernoulli(p), if p ≤ n−1/(n−1) then maximal replica-
tion yields a lower system load than minimal replication for a system with n(> 1) servers, and,
therefore, maximal replication is optimal. Otherwise, minimal replication is optimal.

Proof. The system loads for maximal and minimal replications are respectively

ρ(n) = λ

µ(n)
= λpn and ρ(1) = λ

nµ(1)
= λ

p

n
.

Taking the ratio of maximal replication to minimal replication, we have npn−1. We compare
this ratio to 1. A condition for maximal replication being better than minimal replication is

npn−1 ≤ 1 ⇐⇒ p ≤ n−1/(n−1).

Corollary 10. For service times distributed Bernoulli(p), if p ≤ 1/e then maximal replication
minimizes the system load for all n > 1.

µ

n nl*

(a) Two-point distributed service time (b) Pareto-distributed service time

(l)µ (l)

Figure 7: The form of µ(l) for different service time distributions. The dotted tangent line indicates
where l/µ(l)(∝ ρ(l)) is largest or smallest.
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Proof. Using the inequality

log n

n− 1
< 1 for n > 1,

the result is immediate.

Corollary 11. For service times distributed Bernoulli(p), ifp ≤ n−1/(n−1) then maximal repli-
cation is optimal for the makespan objective, E[M(l,n)].

Proof. This follows immediately from the results of Theorem 12 and Lemma 7.

We can also infer from Corollaries 10 and 11 that, when p ≤ 1/e, maximal replication
minimizes the expected makespan for alln. These conclusions are stronger than that of Lemma 2
and Corollary 4 since we now have optimality of maximal replication rather than a comparison
to minimal replication.

4.5. General two-point distributed service times

Since a general two-point distribution is essentially a scaled and translated Bernoulli distri-
bution, the stochastic order properties are equivalent to those of Bernoulli RVs. Therefore, the
system load will not in general be monotone in l. Let us consider an RV Y = a + bX, where
a, b > 0 and X ∼ Bernoulli(p). For this case,

1

µ(l)
= a + bpl.

By taking the derivative of l/µ(l),

d

dl

l

µ(l)
= a + bpl(1 + l logp),

we can see that, for l near 0, the sign is positive and, for a large enough l, the sign is negative,
meaning that l/µ(l) starts increasing and beyond a certain threshold, it decreases. This is when
we assume that l can take values ranging from 0 to ∞. But the valid ls are integers in the range
1 ≤ l ≤ n. In this case we can see that, depending on the values of a, b, and p, it is possible
for l/µ(l) to be strictly increasing.

4.6. Pareto service time distributions

What initially motivated us to consider replication was the high variability of service times
in grid computing. So heavy-tailed distributions such as the Pareto distribution are perfect
candidates for analysis. Recall that the Pareto distribution with location parameter c > 0 and
shape parameter k > 0 has the cumulative distribution function

F(x) = 1 −
(
c

x

)k
, x ≥ c.

Depending on the parameter k, the mean and variance can be either finite or infinite:

µ < ∞ and σ 2 < ∞ when k > 2,

µ < ∞ and σ 2 = ∞ when 1 < k ≤ 2,

µ = ∞ and σ 2 = ∞ when 0 < k ≤ 1.
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An interesting property of the Pareto distribution is that the minimum of two Pareto RVs is also
a Pareto RV. So if the service time follows Pareto(c, k) then X(1,l) follows Pareto(c, lk). Thus,
even if the original service time distribution has an infinite mean and/or infinite variance, by
increasing l (i.e. replicating l times), it is possible to reduce the mean and variance to a finite
number. Since the distribution of X(1,l) is explicitly known, ρ(l) can be found easily:

ρ(l) = λ

n

l

µ(l)
,

1

µ(l)
= E[X(1,l)] =

⎧⎪⎨
⎪⎩

lkc

lk − 1
, l > 1/k,

∞, 0 < l ≤ 1/k,

and l/µ(l) achieves its minimum value at l∗ = 2/k. See Figure 7(b) for the graph of the
function µ(l). Hence, if n ≤ 2/k, maximal replication is optimal. Note that although the
Pareto distribution is highly variable, it is not NWU (when maximal replication is optimal)
because its support is bounded away from 0.

4.7. The mean response time

Although the server utilization is one dimension of the performance of a system which,
interestingly, we can control using different degrees of replication, a more important perfor-
mance measure is the mean response time, defined as the average time a job spends in the
system. However, this measure is difficult to obtain analytically. When jobs arrive according
to a renewal process, a very simple approximation of the mean response is

E[W(GI/G/m)] + E
[

min
1≤i≤l Yi

]
� c2

a + c2
s (l)

2
E[W(M/M/m)] + E

[
min

1≤i≤l Yi
]

= c2
a + c2

s (l)

2

1

mµ(l)− λ
P(W(M/M/m) > 0)+ E

[
min

1≤i≤l Yi
]

= c2
a + c2

s (l)

2

1

λ

ρ(l)

1 − ρ(l)
P(W(M/M/m) > 0)+ E

[
min

1≤i≤l Yi
]
,

(5)

whereW(·) denotes the time spent waiting in the queue and Yi ∼ G is the service time. As can
be seen here, the term c2

s (l) depends on l through the first and second moments of the first-order
statistic from an i.i.d. sample of size l which is generally difficult to characterize. Also, the
delay probability depends on l through factorials and the number of terms in a summation.

Observe that, for exponential distributions, F̄ (2x) = F̄ 2(x), and, hence, there is no differ-
ence in the system load ρ(l) for different values of l. Thus, in the exponential case, the problem
reduces to the one fast server versus many slow servers case where the one fast server is known
to have a smaller response time and we can conclude that maximal replication is optimal for
minimizing the mean response time. Indeed, from [4], maximal replication minimizes the mean
response time for NWU service times.

For Pareto(c, k) service times, recall that the system load is minimized at l∗ = 2/k. But
the effective service time of a group of l servers is distributed Pareto(c, lk), and the variance is
infinite when lk = 2. So we can expect the choice of l that minimizes the system load ρ(l) to
yield a very long response time. We provide an example for comparing the system load to the
response time approximated by (5) for Pareto service times. See Table 2. Observe that, when
we do not replicate enough, the large variability negatively affects the performance, and as we
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Table 2: Approximate response times and system loads for Pareto(3,0.5) service times with n = 100
and Poisson arrivals with rate λ = 2 for different degrees of replication, l, where ρ(l) < 1. The squared

coefficient of variation of the effective service time of a group of l servers is denoted by c2
s (l).

l Mean response time System load ρ(l) c2
s (l)

1 ∞ ∞ ∞
2 ∞ ∞ ∞
4 ∞ 0.000 727 ∞
5 0.001 679 0.500 000 0.800 000

10 0.245 289 0.750 000 0.066 667
20 ∞ 1.333 333 0.012 500
25 ∞ 1.630 435 0.007 619
50 ∞ 3.125 000 0.001 739

100 ∞ 6.122 449 0.000 417

replicate too much, the effective service time does not decrease fast enough to compensate for
the additional overhead of processing more jobs in sequence.
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