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Abstract

We develop a simplified analytical approach for pricing discretely-sampled variance
swaps with the realized variance, defined in terms of the squared log return of the
underlying price. The closed-form formula obtained for Heston’s two-factor stochastic
volatility model is in a much simpler form than those proposed in literature. Most
interestingly, we discuss the validity of our solution as well as some other previous
solutions in different forms in the parameter space. We demonstrate that market
practitioners need to be cautious, making sure that their model parameters extracted
from market data are in the right parameter subspace, when any of these analytical
pricing formulae is adopted to calculate the fair delivery price of a discretely-sampled
variance swap.

2010 Mathematics subject classification: 91G20.

Keywords and phrases: variance swaps, Heston model, closed-form exact solution,
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1. Introduction

Variance swaps are financial derivatives that are considered as forward contracts on
annualized realized variance. In today’s financial markets, variance swaps on stock
indices are highly liquid and widely used by investors as an easy way to trade future
realized variance against the current implied variance. Moreover, over-the-counter
variance swaps can be linked to other types of underlying assets such as commodities
or currencies. Hence, they can be very useful to hedge volatility risk exposure or to
take positions on future realized volatility of the underlying assets.

Tremendous growth in trading variance swaps has been witnessed in recent years
(http://cfe.cboe.com/education/finaleuromoneyvarpaper.pdf). As a result of increasing
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trading activities of variance swaps, many researchers have proposed various types of
valuation approaches for pricing variance swaps with the realized variance defined in
terms of either continuous sampling or discrete sampling. This paper focuses on a
simplified analytical approach proposed by Rujivan and Zhu [19] to price discretely-
sampled variance swaps with the realized variance defined in terms of the squared log
return of the underlying price based on the Heston’s two-factor stochastic volatility
model [13].

In the literature on pricing variance swaps, the most influential pioneer works
are those of Carr and Madan [7] and Demeterfi et al. [9], who have shown how to
theoretically replicate a variance swap by a portfolio of standard options. Without
specifying the function of volatility process, their models and analytical formulae are
indeed very attractive. However, as pointed out by Carr and Corso [6], the replication
strategy has a drawback that the sampling time of a variance swap needs to be assumed
continuous rather than discrete. Such an assumption implies that the results obtained
from a continuous model can only be viewed as an approximation for the real cases
in financial practice, in which all contracts are written with the realized variance
being evaluated on a set of discrete sampling points. Another drawback is that this
strategy also requires options with a continuum of exercise prices, which is not actually
available in the marketplace.

As reviewed by Zhu and Lian [25], there are two types of valuation approaches:
numerical methods and analytical methods. The work presented in this paper belongs
to the latter category which can be divided into two subcategories: the first of
these shares a common assumption that the realized variance is approximated by a
continuously-sampled one, which has greatly increased the mathematical tractability;
while those in the second subcategory try to directly address the “discretely-sampled”
nature of variance swaps. Since a comprehensive review of papers in the first
subcategory has been given by Zhu and Lian [25], and the most recent one is presented
by Swishchuk and Li [22], who studied valuation of variance swaps under stochastic
volatility with delay and jumps and derived an analytic closed-form formula for pricing
variance swaps under the assumption of continuous sampling, we shall mainly focus
on a brief review of the literature in the second subcategory.

As pointed out by Zhu and Lian [25], developing analytical closed-form solutions
in the second subcategory is generally much more difficult than is the case with
the continuous sampling assumption. Broadie and Jain [4] presented a closed-form
solution for volatility swaps as well as variance swaps with discrete sampling. They
also examined the effects of jumps and stochastic volatility on the price of volatility
and variance swaps by comparing calculated prices under various models such as the
Black–Scholes model [3], the Heston stochastic volatility model [13], the Merton jump
diffusion model [18], and the Bates [2] and Scott [20] stochastic volatility and jump
model. Zhu and Lian [25] also presented an approach to obtain a closed-form formula
for variance swaps with the realized variance being defined as the sum of the squared
percentage increments of the underlying price. Unlike Broadie and Jain’s approach [4],
Zhu and Lian’s approach [25] is based on Little and Pant’s approach [17], and they
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found a closed-form formula by solving the governing partial differential equation
(PDE) system. Moreover, their approach is more versatile in terms of dealing with
different forms of realized variance, such as the case with realized variance defined in
terms of the squared log return of the underlying price as demonstrated by Zhu and
Lian [26].

However, Zhu and Lian’s approach [25] is still too complicated. Rujivan and
Zhu [19] pointed out that there is actually a simplified approach, and they applied this
approach to the percentage return case, demonstrating that the exact same results can
be produced without using the generalized Fourier transform. Very recently, Zheng
and Kwok [24] proposed another analytical approach for pricing various types of
discretely-sampled generalized variance swaps, including the same realized variance
as used by Zhu and Lian [26]. In addition, they extended Zhu and Lian’s work [25] to
price variance swaps under the stochastic volatility models with simultaneous jumps
in the asset price and variance processes. However, Zheng and Kwok’s approach [24]
relies on the availability of the analytical expression of the joint moment generating
function of the underlying processes.

In this paper, we demonstrate that the analytical approach presented by Rujivan
and Zhu [19] can be extended to derive a closed-form formula for the fair price
of variance swaps with the realized variance defined in terms of squared log return
of the underlying price. There are two major contributions of this paper. First,
our closed-form formula is in a much simpler form than any of those presented
by Broadie and Jain [4], Zheng and Kwok [24], and Zhu and Lian [26]. For
example, our solution has completely avoided the requirement of the parameter
functions being twice differentiable as in the results of Zheng and Kwok [24] and
Zhu and Lian [26]. Second, we discuss the validity of our solution, as well as
some other previous solutions in different forms in the parameter space, and conclude
that all the solutions, although they may be of different forms, are only valid in a
subspace of the original parameter space of the Heston model. This discussion has
a practical implication in that market practitioners need to be cautious, making sure
that their model parameters extracted from market data are in the right parameter
subspace, when any of these analytical pricing formulae is adopted to calculate the
fair delivery price of a discretely-sampled variance swap. In addition to these two
major contributions, we demonstrate several applications of our closed-form formula
in terms of deriving and investigating properties of the fair delivery prices of variance
swaps. In particular, we provide a simple proof to show that our closed-form solution
for the fair delivery price of a variance swap converges to the fair delivery price of the
variance swap derived by using the continuous sampling realized variance.

The rest of the paper is structured as follows. In Section 2 we derive a simple closed-
form formula for pricing variance swaps by using Rujivan and Zhu’s approach [19].
An interesting discussion on the validity of all the analytical formulae shown in the
literature is provided in Section 3. In Section 4 we present a couple of numerical
examples demonstrating how easy it is to calculate numerical values using our formula.
A brief conclusion is given in Section 5.
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2. Our simple closed-form formula

In this section, for the sake of completeness, we shall briefly review the Heston
model [13] which we adopt to describe the dynamics of the underlying asset first. Then
we shall apply our previous approach [19] to derive a simple closed-form formula for
pricing variance swaps with discretely-sampled realized variance defined in terms of
the squared log return.

2.1. The Heston model In the Heston stochastic volatility model [13], the
dynamics of the underlying price S t defined on an original probability space (Ω,F , P)
is assumed to follow a diffusion process with a stochastic instantaneous variance vt,{

dS t = µS t dt +
√

vtS t dBS
t

dvt = κ(θ − vt) dt + σV
√

vt dBV
t

(2.1)

where µ is the expected return of the underlying asset, θ is the long-term mean of
variance, κ is a mean-reverting speed parameter of the variance, and σV is the so-
called volatility of volatility. The two Wiener processes1 dBS

t and dBV
t describe the

random noises in asset and variance, respectively.
According to the risk-neutral pricing theory proposed by Harrison and Kreps [11]

and Harrison and Pliska [12], we are able to change the original probability measure
P to a so-called risk-neutral probability measure, denoted by Q, and describe the
processes as {

dS t = rS t dt +
√

vtS t dB̃S
t

dvt = κ∗(θ∗ − vt) dt + σV
√

vt dB̃V
t

(2.2)

where κ∗ = κ + λ and θ∗ = κθ/(κ + λ) are the risk-neutral parameters. The new
parameter r is a risk-free interest rate and λ is the premium of volatility risk [13].
The two transformed Wiener processes2 dB̃S

t and dB̃V
t are assumed to be correlated

with a constant correlation coefficient ρ, that is, (dB̃S
t , dB̃V

t ) = ρdt. For the rest of this
paper, our analysis will be based on the probability space (Ω,F ,Q), and a filtration
(Ft)t≥0. The conditional expectation with respect to Ft is denoted by EQ

t = EQ[· | Ft].
In order to avoid dealing with degenerate cases in the parameter space, and to ensure

that the Heston model (2.2) is a proper stochastic volatility model with the variance
process reverting to a positive mean level, we make the following assumptions:

Assumption 2.1. All parameters r, κ∗, θ∗, σV and an initial instantaneous variance v0
are strictly positive.

In addition, the stochastic volatility process is the so-called square-root process.
Hence, to ensure that the variance is always positive, a further assumption, known as
the Feller condition, is needed (see [8, 13]).

Assumption 2.2. The parameters κ∗, θ∗, and σV satisfy the inequality 2κ∗θ∗ ≥ σ2
V .

1With respect to the original probability measure P.
2With respect to the risk-neutral probability measure Q.
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[5] Pricing discretely-sampled variance swaps under the Heston model 5

Due to Assumptions 2.1 and 2.2, we define the parameter space of the Heston model
(2.2) as follows:

Θ = {p = (r, κ∗, θ∗, σV , ρ) ∈ (R+)4 × [−1, 1] | 2κ∗θ∗ ≥ σ2
V }.

The parameter space Θ will be referred to in Sections 3 and 4. Furthermore, for any
given setD and a real-valued function f :D×Θ→ R, the value of f at (x, p) ∈ D ×Θ

is denoted by f (x, p), or simply f (x) when we do not consider the parameters.

2.2. Variance swaps Variance swaps are forward contracts on the future realized
variance of the returns of the specified underlying asset. The long position of a
variance swap agrees to pay the short position a fixed delivery price at expiry, and
receives the floating amounts of annualized realized variance. Therefore, variance
swaps can be useful for investors to hedge volatility risk exposure or to take positions
on future realized volatility.

For a given maturity, T > 0, the value of a variance swap can be written as
VT = (σ2

R − Kvar) × L, where σ2
R is the annualized realized variance over the contract

life [0, T ], Kvar is the annualized delivery price for the variance swap, and L is the
notional amount of the swap in dollars per annualized volatility point squared.

The method for measuring the realized variance is usually specified in the contract.
Important factors contributing to the calculation of the realized variance include the
underlying asset (or assets), the observation frequency of the price of the underlying
asset(s), the annualization factor, the contract lifetime, and the method of calculating
the variance. In the literature (see [17, 25, 26]), the methods of calculating realized
variance can be categorised into two different definitions: the log-return realized
variance defined by

σ2
R,d1(0,N,T ) =

AF
N

N∑
i=1

ln2
( S ti

S ti−1

)
× 1002 =

1
T

N∑
i=1

ln2
( S ti

S ti−1

)
× 1002, (2.3)

and the actual return-based realized variance defined by

σ2
R,d2(0,N,T ) =

AF
N

N∑
i=1

(S ti − S ti−1

S ti−1

)2
× 1002 =

1
T

N∑
i=1

(S ti − S ti−1

S ti−1

)2
× 1002, (2.4)

where S ti is the closing price of the underlying asset at the ith observation time ti,
and there are N observations in all. AF is the annualized factor converting this
expression to an annualized variance. If the sampling frequency is every trading day,
then AF = 252, assuming that there are 252 trading days in one year; if every week,
then AF = 52; if every month, then AF = 12; and so on. Typically, we set T = N/AF
and assume equally-spaced discrete observations so that the annualized factor is of a
simple expression AF = N/T = 1/∆t.

In the risk-neutral world, the value of a variance swap at time t is the expected
present value of the future payoff, Vt = EQ

t [e−r(T−t)(σ2
R − Kvar)L]. This should be zero

at the beginning of the contract since there is no cost for either party to enter into a
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swap contract. Therefore, the fair delivery price of a variance swap can be defined as
Kvar = EQ

0 [σ2
R], after setting the value of Vt = 0 initially. The valuation problem for a

variance swap is, therefore, reduced to calculating the expectation value of the future
realized variance in the risk-neutral world.

A simplified analytical approach for pricing variance swaps with the actual return-
based realized variance σ2

R,d2(0, N, T ) has been proposed by the authors [19]. In this
paper, the same approach will be applied to obtain a simple closed-form solution for
pricing variance swaps with the log-return realized variance σ2

R,d1(0,N, T ), presented
in the next section.

2.3. Our simplified analytical approach Following our approach in an earlier
paper [19], we begin by taking the expectation of σ2

R,d1 as follows:

EQ
0 [σ2

R,d1(0,N,T )] = EQ
0

[ 1
T

N∑
i=1

ln2
( S ti

S ti−1

)]
× 1002 =

1
T

N∑
i=1

EQ
0

[
ln2

( S ti

S ti−1

)]
× 1002.

(2.5)
Therefore, the problem of pricing variance swaps is reduced to calculating N
conditional expectations such as

EQ
0

[
ln2

( S ti

S ti−1

)]
(2.6)

for some fixed equal time period ∆t and N different tenors ti = i∆t with i = 0, 1, . . . ,N.
In the rest of this section, we will focus our main attention on calculating the
expectation in (2.6), where both ti and ti−1 are regarded as known constants.

Using the fact that F0 ⊂ Fti−1 and S ti−1 is Fti−1 -measurable, we apply the tower
property [5] to the conditional expectation as in (2.6), and this gives us a double
conditional expectation as follows:

EQ
0

[
ln2

( S ti

S ti−1

)]
= EQ

0

[
EQ

ti−1

[
ln2

( S ti

S ti−1

)]]
= EQ

0 [EQ
ti−1

[ln2(S ti )] − 2 ln(S ti−1 )EQ
ti−1

[ln(S ti )] + ln2(S ti−1 )]. (2.7)

The two conditional expectations with respect to Fti−1 on the right-hand side of (2.7),
that is EQ

ti−1
[ln(S ti )] and EQ

ti−1
[ln2(S ti )], are computed by using the following proposition.

Proposition 2.3. Suppose that S t follows the dynamics described in (2.2). Let Xt =

ln S t and ∆t = ti − t. Then

EQ
ti−1

[Xt] = EQ[Xt |(Xti−1 = x, vti−1 = v)] = x + A1(∆t) + A2(∆t)v, (2.8)

EQ
ti−1

[X2
t ] = EQ[X2

t |(Xti−1 = x, vti−1 = v)]

= x2 + 2A1(∆t)x + 2A2(∆t)xv + A3(∆t) + A4(∆t)v,+A2
2(∆t)v2 (2.9)

for all t ∈ [ti−1, ti] and (x, v) ∈ (−∞,∞) × (0,∞), where

A1(∆t) =
θ∗(1 − e−κ

∗∆t) + (2r − θ∗)κ∗∆t
2κ∗

, (2.10)
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[7] Pricing discretely-sampled variance swaps under the Heston model 7

A2(∆t) =
e−κ

∗∆t − 1
2κ∗

, (2.11)

A3(∆t) = α1∆t + α2(∆t)2 + α3(e−κ
∗∆t − 1) + α4(e−2κ∗∆t − 1) + α5∆te−κ

∗∆t, (2.12)

A4(∆t) = β1∆t + β2(e−κ
∗∆t − 1) + β3(e−2κ∗∆t − 1) + β4∆te−κ

∗∆t, (2.13)

for all ∆t ≥ 0 and the constants α1, . . . , α5 and β1, . . . , β4 are given by

α1
α2
α3
α4
α5
β1
β2
β3
β4


=



1
4 (κ∗)−2(θ∗(2(2r − θ∗)κ∗ + 4κ∗(κ∗ − ρσV ) + σ2

V ))
1
4 (2r − θ∗)2

1
2 (κ∗)−3(θ∗(2(κ∗)2 − κ∗(θ∗ + 4ρσV ) + σ2

V ))
1
8 (κ∗)−3(θ∗(2θ∗κ∗ + σ2

V ))
1
2 (κ∗)−2(θ∗((θ∗ − 2r − 2ρσV )κ∗ + σ2

V ))
1
2 (κ∗)−1(θ∗ − 2r)

(κ∗)−2(θ∗ + ρσV − κ
∗)

− 1
4 (κ∗)−3(2θ∗κ∗ + σ2

V )
1
2 (κ∗)−2((2r − θ∗ + 2ρσV )κ∗ − σ2

V )


.

The proof of this proposition is presented in Appendix A.

Remark 2.4. It should be noted from Appendix A that if S t follows a nonaffine model
such as the 3/2 stochastic volatility model [15], the calculations for the conditional
expectations EQ

ti−1
[Xt] and EQ

ti−1
[X2

t ] would be much more complicated than what we
have done to obtain (2.8) and (2.9), respectively. This has limited our simplified
analytical approach from being extended to nonaffine models, unless one can find
explicit forms of EQ

ti−1
[Xt] and EQ

ti−1
[X2

t ].

Remark 2.5. By using the method presented in Appendix A, however, we can derive
the closed-form formulae for EQ

ti−1
[Xt] and EQ

ti−1
[X2

t ] when S t follows the Heston
model with jumps as studied by Broadie and Jain [4] and Zheng and Kwok [24].
Furthermore, our simplified analytical approach can also be extended to derive closed-
form pricing formulae for generalized variance swaps as previously worked out by
Zheng and Kwok [24]. The results of these two extensions will be presented in a
forthcoming paper.

Also, note that from (2.8) and (2.9), EQ
ti−1

[X2
t ] can be expressed in a different form

as

EQ
ti−1

[X2
t ] = (EQ

ti−1
[Xt])2 + {A3(∆t) − A2

1(∆t)} + {A4(∆t) − 2A1(∆t)A2(∆t)}vti−1 .

Therefore, the conditional variance of Xt = ln S t with respect to Fti−1 can be expressed
as

Var[Xt |Fti−1 ] = {A3(∆t) − A2
1(∆t)} + {A4(∆t) − 2A1(∆t)A2(∆t)}vti−1 .

We now prove the next proposition using Proposition 2.3.
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8 S. Rujivan and S.-P. Zhu [8]

Proposition 2.6. The conditional expectation in (2.6) can be written in terms of a
quadratic form of the initial instantaneous variance v0 as

EQ
0

[
ln2

( S ti

S ti−1

)]
= g̃i(∆t, v0) = Ã0(∆t, ti−1) + Ã1(∆t, ti−1)v0 + Ã2(∆t, ti−1)v2

0 (2.14)

for all i = 1, 2, . . . ,N and v0 > 0, where we set ∆t = ti − ti−1 and

Ã0(∆t, ti−1)

= A3(∆t) − 2κ∗θ∗A2(ti−1)A4(∆t) +

(
κ∗θ∗ +

σ2
V

2

)
κ∗θ∗{2A2(ti−1)A2(∆t)}2, (2.15)

Ã1(∆t, ti−1) = e−κ
∗ti−1{A4(∆t) − 2(2κ∗θ∗ + σ2

V )A2(ti−1)A2
2(∆t)}, (2.16)

Ã2(∆t, ti−1) = e−2κ∗ti−1 A2
2(∆t). (2.17)

In addition,

EQ
0

[
ln2

(S t1

S t0

)]
= g̃1(∆t, v0) = A3(∆t) + A4(∆t)v0 + A2

2(∆t)v2
0.

The proof of this proposition is provided in Appendix B.
With the conditional expectation expressed in (2.5), we can directly adopt

Proposition 2.6 to obtain the pricing formula for log-return realized variance (2.3)
as

Kvar = EQ
0 [σ2

R,d1(0,N,T )] =
1002

T

N∑
i=1

g̃i(∆t, v0), (2.18)

which can also be written in terms of a quadratic form of the initial instantaneous
variance v0 as

Kvar(T,∆t, v0)

=
1002

T

{( N∑
i=1

Ã0(∆t, ti−1)
)

+

( N∑
i=1

Ã1(∆t, ti−1)
)
v0 +

( N∑
i=1

Ã2(∆t, ti−1)
)
v2

0

}
. (2.19)

It follows from (2.19) that the coefficient of v2
0 is strictly positive unless ∆t is zero.

This nice property implies that Kvar is convex with respect to v0 on (0,∞). Moreover,
Kvar is strictly increasing with respect to v0 on (0,∞) if the coefficient of v0 in (2.19) is
strictly positive or zero. While we shall leave a detailed discussion on these properties
to Section 3.1, one should naturally expect a higher fair delivery price for a variance
swap when the volatility of the underlying price is higher.

It should also be noted that our final formula (2.19) is in a much simpler form than
those derived by Zheng and Kwok [24] and Zhu and Lian [26]. They are not all in
exactly the same form, but it can be shown that the latter ones can be derived from the
former. However, the current formula is derived using a much simpler approach and it
is also in a much simpler form that can be exploited to explore some properties of the
solution, which are discussed in the next section.
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[9] Pricing discretely-sampled variance swaps under the Heston model 9

3. Validity of our closed-form formula

With the construction of the simple pricing formula, very interesting discussions,
in terms of the validity of the solution in the parameter space, the determination of
the required parameters, the verification of the newly derived formula against some
previously presented analytical formulae and against the formula derived based on the
continuous approximation, are presented in this section.

3.1. Validity of the solution in the parameter space In quantitative finance, when
stochastic processes are used to simulate the random nature of the underlying price of
a financial derivative, such as an option or a futures contract, all the model parameters
in the original probability measure which is used to define the stochastic processes
should be determined, in theory, from the market data of the underlying price alone. In
other words, there is no need to use the market data of the derivative contract involved
in the pricing exercise.

Under the risk-neutral pricing theory, however, derivatives such as futures and
options are priced under a risk-neutral probability measure. Therefore, all model
parameters in the original probability measure should be transformed to the risk-
neutral parameters as demonstrated in Section 2.1. When all state variables of
the adopted stochastic processes are observable, the risk-neutral parameters can be
determined by the parameters in the original probability measure without the need to
introduce the so-called risk premium parameters. For example, if the variance, vt in the
Heston model (2.1), were an observable quantity, this would imply that the premium
of volatility risk would vanish, that is λ = 0, and thus we would have κ∗ = κ and θ∗ = θ.
However, vt is actually an unobservable quantity. In this case, the premium of volatility
risk might not be zero and using the market data of the underlying alone would not be
sufficient to determine all the parameters involved in the pricing model as in the case of
simple geometric Brownian motion adopted in the Black–Scholes model [3]. In other
words, to completely determine the model parameters, market data of the derivative
contract involved are also needed. In this sense, the extracted parameters are also
contract-dependent, that is those parameters extracted for the purpose of pricing an
option contract may not be suitable for pricing a futures contract. We assume that the
risk-neutral parameters used for pricing variance swaps can be estimated by market
data of a selected derivative contract, and they are all available at the time a pricing
task needs to be carried out.

In view of this, the validity of the solution (2.19) in the parameter space needs
to be examined. The purpose of such an examination is to ensure that one of the
fundamental assumptions that the fair delivery price of a variance swap should be
of a finite and positive value for a given set of parameters determined from market
data, that is, 0 ≤ Kvar < ∞. The finiteness of Kvar can be readily established. This is
because, from (2.10)–(2.13), we can verify that the functions Ak(∆t; p), k = 1, 2, . . . , 4,
are finite for all ∆t > 0, and p = (r, κ∗, θ∗, σV , ρ) ∈ Θ. Thus, from (2.14), we have
g̃i(∆t, v0; p) = EQ

0 [ln2(S ti/S ti−1 )] <∞ for all i = 1, 2, . . . ,N, and conclude immediately
from (2.18) that Kvar < ∞. On the other hand, the strict positiveness of Kvar can only
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be ensured by a sufficient condition as shown in the following proposition, rather than
a necessary and sufficient condition.

Proposition 3.1. Let p = (r, κ∗, θ∗, σV , ρ) ∈ Θ be a parameter vector of the Heston
model (2.2). Set

∆t∗p = min({τ > 0 | A3(τ; p)A4(τ; p) = 0} ∪ {∞}). (3.1)

Then, the following assertions are true.

(1) ∆t∗p is either strictly positive or infinite depending on p.
(2) For any ∆t ∈ (0,∆t∗p) with T = N∆t for some positive integer N,

(2.1) 0 < Kvar(T,∆t, v0; p) <∞ for all v0 > 0 and
(2.2) Kvar(T,∆t, v0; p) is strictly increasing with respect to v0 on (0,∞).

The proof of this proposition is given in Appendix C.
Next, we discuss some implications of Proposition 3.1. For a given variance swap

contract, ∆t is fixed. Once one has decided to adopt a particular set of parameter
vectors p0 ∈ Θ, which have been determined by using an algorithm such as the
one proposed by Aı̈t-Sahalia and Kimmel [1] that is not discussed in this paper,
Proposition 3.1 requires that ∆t∗p0

be computed first1, using a traditional numerical
method such as Newton’s method, before one can comfortably use formula (2.19). If
the given ∆t is such that ∆t < ∆t∗p0

, then (2.19) can be used to price the variance swap
without any problems, because the fair delivery price Kvar(T,∆t, v0; p0) of the variance
swap is guaranteed to be finite and strictly positive for any initial instantaneous
variance, by virtue of Proposition 3.1. Of course, if the given ∆t ≥ ∆t∗p0

, one now
has to be careful with formula (2.19), because Proposition 3.1 cannot guarantee the
strict positiveness and finiteness of the calculated fair delivery price. In Section 4 we
shall show numerical examples of some computed ∆t∗p values for four different cases
with detailed discussions.

Furthermore, if T > 0 and ∆t < ∆t∗p0
are fixed, assertion 2.2 of Proposition 3.1

implies that Kvar(T,∆t, v0; p0) is a monotonically increasing function of v0 on (0,∞).
From a financial point of view, this result supports our argument in Section 2.3 that
market practitioners should naturally expect a higher fair delivery price for a variance
swap when the volatility of the underlying is higher. Therefore, the condition ∆t < ∆t∗p0

should be fulfilled in order to obtain a financially meaningful formula for Kvar.

In addition, assertion 2.2 of Proposition 3.1 implies that the minimum value of the
delivery price of the variance swap defined by

Kmin
var (T,∆t; p0) = inf

v0>0
Kvar(T,∆t, v0; p0)

1∆t∗p0
can be easily computed, as it is nothing but the smallest positive root of the product function

A3(∆t; p0)A4(∆t; p0).
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is strictly positive. The minimum value can be easily derived by taking the limit as v0
approaches zero in formula (2.19) as

Kmin
var (T,∆t; p0) = lim

v0→0+
Kvar(T,∆t, v0; p0) =

1002

T

N∑
i=1

Ã0(∆t, ti−1; p0) > 0 (3.2)

for T > 0 and ∆t < ∆t∗p0
.

It is interesting to note that the fair delivery price of a variance swap reaches a
strictly positive value Kmin

var when the spot variance of the underlying price approaches
zero. It is even more interesting to provide a financial explanation for this rather
peculiar feature of this type of futures contract on realized variance. Financially,
the realized spot variance v0 could never be zero. Even if it could reach zero, Kmin

var
is nonzero because the stochastic process (the Heston model in this case) we have
assumed will always bear a nonzero realized variance for the period between now
and any time in future. Therefore, unlike a futures contract written directly on an
observable underlying asset, such as stocks, the fair delivery price of a variance swap
starts immediately with a nonzero value given by Kmin

var . Of course, like a futures
contract written on stocks, we still expect the monotonicity of the fair delivery price
as a function of time. The main reason is that the discount factor in finance should not
change when the underlying changes from an observable quantity to a nonobservable
quantity.

Finally, it should be remarked that for the pricing formula presented in Rujivan and
Zhu [19] for the case of the realized variance being defined in terms of the squared
percentage return, that is σ2

R,d2(0, N, T ) as in (2.4), there is no condition imposed in
terms of the sampling frequency and the market-extracted model parameters. On the
other hand, there is a different condition imposed in Proposition 2.1 of Rujivan and
Zhu [19], the imposition of which forms a subspace of Θ, within which the solution
is guaranteed to be finite. The subspace of Θ in which the pricing formula is valid
for the payoff function of a contract provides evidence that parameters extracted from
market data are contract-dependent, when a stochastic volatility model is adopted to
price a derivative contract. Although Zheng and Kwok [24] did not explicitly mention
this particular issue, that is, some restrictions need to be imposed in the parameter
space, one can infer from their equation (2.6) that there is a subspace in Θ in which
their solution is valid in the sense of guaranteeing a nonnegative and finite fair delivery
price in some cases.

3.2. Comparison with other solutions There are three recently published
papers [4, 24, 26] in which the authors proposed different closed-form formulae for
pricing variance swap for the same payoff function as that presented in this paper.
However, their approaches to the solution are completely different from the one we
have presented here. Broadie and Jain [4] derived their formula by integrating the
underlying stochastic processes directly. Zhu and Lian [26] obtained a formula in a
different form from that of Broadie and Jain [4] by partially adopting Little and Pant’s
approach [17]. Unlike Little and Pant’s approach [17], in which a numerical solution
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approach is adopted to solve the governing PDEs, Zhu and Lian [26] analytically
solved the governing PDE by utilizing the generalized Fourier transform. Zheng
and Kwok [24], on the other hand, proposed an analytic approach for pricing various
types of discretely-sampled generalized variance swaps with a general payoff function
including the payoff function specifically discussed in this paper. However, Zheng and
Kwok’s approach [24] relies on the availability of the analytical expression of the joint
moment generating function of the underlying processes. Consequently, Zheng and
Kwok’s approach [24] produces a solution in closed form by solving a Riccati system
of ordinary differential equations (ODEs) as written in their equation (2.4). Of course,
a closed-form solution with the fair delivery prices written in terms of a quadratic form
of the initial instantaneous variance shown in (2.19) of this paper is the simplest. Other
solutions in different forms can also be simplified, which we discuss in this section.

It is interesting to verify whether the solutions presented in [4, 24, 26] match our
solution in some way, although they all appear in different forms. With the payoff

being exactly the same, we should be able to prove this as we verify the formula
presented here. We have used Mathematica to show that both Zhu and Lian’s [26]
and Zheng and Kwok’s [24] formulae reduce to our formula after some algebraic
manipulations1. On the other hand, Broadie and Jain’s formula [4] has coefficients∑N

i=1 Ã0(∆t, ti−1) and
∑N

i=1 Ã1(∆t, ti−1) different from ours and Zhu and Lian’s [26] and
Zheng and Kwok’s [24] formulae, while the coefficient

∑N
i=1 Ã2(∆t, ti−1) can be shown

to be identical to ours and the formulae presented in [24, 26].
There is a clear advantage of our formula written as a quadratic function of v0 as

shown in (2.19). Both Zhu and Lian’s [26] and Zheng and Kwok’s [24] solutions are
given in an “implicit” form in the sense that some differential operators remain in the
final formula. For example, in Zhu and Lian’s case [26], first-order and second-order
derivatives of some complex-valued functions need to be worked out, while Zheng
and Kwok’s case [24] involves the calculation of a second-order derivative of a real-
valued function. Of course, the calculation of these derivatives can easily be done
with the aid of a symbolic package, such as Maple or Mathematica, but it is still much
better to have a pricing formula that requires no further differentiations like the one
we presented here in (2.19). This distinguishing feature of our solution with reduced
computational time and effort makes our formula an exciting improvement on that
previously presented in the articles [4, 24, 26].

3.3. Validity of the continuous model According to the definition of the log-return
realized variance σ2

R,d1(0, N, T ) defined in (2.3), Jacod and Protter [14] proved that
when the sampling frequency increases to infinity, the discretely-sampled realized
variance converges to a continuously-sampled realized variance defined by

σ2
R,c(0,T ) =

1
T

∫ T

0
σ2

t dt × 1002

1Readers who are interested in the Mathematica code can contact the corresponding author.
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where σt =
√

vt is the so-called instantaneous volatility of the underlying. That is,

σ2
R,c(0,T ) = lim

N→∞
σ2

R,d1(0,N,T ).

Therefore, for the convenience of calculation, many researchers [21, 23] have
approximated σ2

R,d1(0,N,T ) with σ2
R,c(0,T ), when the sampling period is short enough

(for example, daily sampling). In other words,

Kvar

(
T,

T
N
, v0

)
= EQ

0 [σ2
R,d1(0,N,T )] ≈ EQ

0 [σ2
R,c(0,T )] as N →∞.

Furthermore, Swishchuk [21] has shown that once the realized variance is defined in
terms of an integral, the conditional expectation of this continuous integral can be
easily found in explicit form as

EQ
0 [σ2

R,c(0,T )] =

{(
1 −

1 − e−κ
∗T

κ∗T

)
θ∗ +

(1 − e−κ
∗T

κ∗T

)
v0

}
× 1002, (3.3)

which can be interpreted as a weighted average of the initial instantaneous variance v0
and the log-return mean of variance θ∗.

In Appendix D, we prove that our simple closed-form formula for Kvar in (2.19)
converges to the closed-form formula for EQ

0 [σ2
R,c(0, T )] as shown in (3.3), when the

sampling frequency approaches infinity.

Proposition 3.2. For any given p ∈ Θ and T > 0, the functions Ã j(∆t, t; p) for j =

0, 1, 2, defined in (2.15)–(2.17), have the following properties:

lim
N→∞

1
T

N∑
i=1

Ã0

(T
N
,

(i − 1)T
N

; p
)

= lim
∆t→0+

1
T

N∑
i=1

Ã0(∆t, (i − 1)∆t; p)

=

(
1 −

1 − e−κ
∗T

κ∗T

)
θ∗, (3.4)

lim
N→∞

1
T

N∑
i=1

Ã1

(T
N
,

(i − 1)T
N

; p
)

= lim
∆t→0+

1
T

N∑
i=1

Ã1(∆t, (i − 1)∆t; p)

=
1 − e−κ

∗T

κ∗T
, (3.5)

lim
N→∞

1
T

N∑
i=1

Ã2

(T
N
,

(i − 1)T
N

; p
)

= lim
∆t→0+

1
T

N∑
i=1

Ã2(∆t, (i − 1)∆t; p) = 0. (3.6)

Moreover,

lim
N→∞

Kvar

(
T,

T
N
, v0; p

)
= lim

∆t→0+
Kvar(T,∆t, v0; p)

=

{(
1 −

1 − e−κ
∗T

κ∗T

)
θ∗ +

(1 − e−κ
∗T

κ∗T

)
v0

}
× 1002 (3.7)

for all v0 > 0.
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Figure 1. Variation of A3(∆t; p1)A4(∆t; p1) against ∆t with ∆t∗p1
≈ 11.6249.

4. Numerical examples

In this section we provide some numerical examples to illustrate one of the main
contributions of this paper, that is Proposition 3.1 provides a sufficient condition to
ensure that the extracted parameters can lead to a financially meaningful delivery
price. In Examples 4.1 and 4.2, we show when the sampling period of a variance
swap is less than the computed ∆t∗p defined in (3.1), from a given set of parameters, the
calculated fair delivery price always satisfies assertions 2.1 and 2.2 of Proposition 3.1.
In particular, Example 4.2 shows that ∆t∗p being infinite implies that the further
requirement that only a subspace of Θ should be used for a finite Kvar is no longer
needed. In Example 4.3 we show that even when ∆t ≥ ∆t∗p, the calculated fair delivery
prices can still be finite and positive, but the property claimed in assertion 2.2 of
Proposition 3.1 is no longer there, showing that Proposition 3.1 is only a sufficient
condition. Finally, Example 4.4 demonstrates that when ∆t ≥ ∆t∗p, it is indeed possible
for Kvar to be negative, stressing that it is important to use Proposition 3.1 to ensure
that the calculated delivery price Kvar is financially meaningful, that is 0 < Kvar <∞.

Example 4.1. In this example we set the parameters used by Zhu and Lian [26]:
p1 = (r, κ∗, θ∗, σV , ρ) = (0.10, 11.35, 0.022, 0.618, −0.64) ∈ Θ with T = 1 year. The
variation of A3(∆t; p1)A4(∆t; p1) against ∆t is plotted in Figure 1. Also displayed
in Figure 1 is the smallest positive zero of A3(∆t; p1)A4(∆t; p1), that is ∆t∗p1

, which
was obtained by using Mathematica. The calculated ∆t∗p1

is approximately 11.6249.
According to assertion 2.1 of Proposition 3.1, for any contract with a sampling
frequency up to 1 year, that is ∆t = 1/252, 1/52, 1/12, 1, this guarantees that Kvar is
finite and strictly positive. As displayed in Figure 2, Kvar is a monotonically increasing
function of volatility and the value of Kmin

var is approximately 201.094, calculated by
using formula (3.2).

Example 4.2. With θ∗ increased by 10 times while the remaining parameters
used in Example 4.1 are kept unchanged, we set p2 = (r, κ∗, θ∗, σV , ρ) =
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Figure 2. Variation of Kvar(1, 1
252 , v0; p1) against v0.
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Figure 3. Variation of A3(∆t; p2)A4(∆t; p2) against ∆t.

(0.10,11.35,0.22,0.618,−0.64) ∈ Θ with T = 1 year. Plugging these values into (2.12)
and (2.13) yields

A3(∆t; p2) = −0.02068 + 0.00010e−22.7t + 0.02058e−11.35t + 0.22764t

+ 0.00819e−11.35tt + 0.00010t2, (4.1)
A4(∆t; p2) = 0.09038 − 0.00092e−22.7t − 0.08947e−11.35t + 0.00088t

− 0.03721e−11.35tt. (4.2)

From (4.1) and (4.2) one can easily show that A3(∆t; p2)A4(∆t; p2) is strictly positive
for all ∆t ∈ (0,∞) as displayed in Figure 3. This implies that ∆t∗p2

= ∞. Hence,
we immediately conclude that Kvar(T, ∆t, v0; p2) satisfies assertions 2.1 and 2.2 of
Proposition 3.1. In addition, we plot the variations of Kvar(T,∆t, v0; p2) against v0

with ∆t = 1/12, 1/52, 1/252, as displayed in Figure 4, where we can see that the fair
delivery price of the variance swap tends to be higher as the sampling size increases.

Example 4.3. Now, with another parameter r reset to r = 300 while the remaining
parameters in Example 4.1 are kept unchanged, we use a set of new parameters
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Figure 4. Variations of Kvar(1,∆t, v0; p2) against v0 with three different ∆t values.
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Figure 5. Variation of A3(∆t; p3)A4(∆t; p3) against ∆t with ∆t∗p3
≈ 0.00334.

p3 = (r, κ∗, θ∗, σV , ρ) = (300, 11.35, 0.022, 0.618, −0.64) ∈ Θ to show that there is a
possibility that ∆t∗p is too small. Of course, setting the risk-free interest rate r = 300
makes no sense in reality. However, our purpose in doing so is to demonstrate that there
is a possibility that meaningful (positive) strike prices can be obtained for a certain
combination of model parameters even though ∆t∗p is less than the daily sampling size,
that is ∆t = 1/252. For some reasonable parameter vectors p = (κ∗, θ∗, σV , ρ), ∆t∗p is
normally greater than or equal to the daily sampling size, which is why we took the
unrealistic value of r, that is to demonstrate numerically that Proposition 3.1 is only a
sufficient condition guaranteeing that 0 < Kvar <∞.

In this case, Figure 5 displays the variation of A3(∆t; p3)A4(∆t; p3) against ∆t ∈
(0, 0.0045). Using Mathematica, we obtain ∆t∗p3

≈ 0.00334, which is less than 1/252 ≈
0.00397, that is we have a case of ∆t∗p3

< ∆t if the realized variance is calculated
with daily sampling. Hence, Proposition 3.1 cannot guarantee Kvar(1,∆t, v0; p3) is
finite and strictly positive for ∆t ≥ ∆t∗p3

and v0 > 0. However, we shall show that
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Figure 6. Variations of Kvar(1,∆t, v0; p3) against v0 with three different ∆t values.

Kvar(1,∆t, v0; p3), for ∆t = 1/252, 1/52, 1/12, can still be finite and strictly positive
for all v0 > 0. Following (2.19), we have

Kvar(1, 1/252, v0; p3) = 3.57139 × 106 − 167.11v0 + 0.43696v2
0, (4.3)

Kvar(1, 1/52, v0; p3) = 1.73067 × 107 − 4198.56v0 + 2.10956v2
0, (4.4)

Kvar(1, 1/12, v0; p3) = 7.49920 × 107 − 21132.30v0 + 8.54962v2
0. (4.5)

Clearly, these Kvar values are finite for all v0 > 0. Applying the first and
second derivative tests with respect to v0 to (4.3)–(4.5), one can easily show that
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Figure 7. Variation of A3(∆t; p4)A4(∆t; p4) against ∆t.
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Figure 8. Variation of Kvar(10, 10
3 , v0; p4) against v0.

Kvar(1,∆t, v0; p3), for ∆t = 1/252, 1/52, 1/12, yields positive global minima at v0 ≈

191.22, 995.13, 1235.86, respectively, as displayed in Figure 6. Therefore, the fair
delivery prices are finite and strictly positive. However, as one can see from Figure 6,
the fair delivery prices of the variance swaps are not monotonically increasing
functions of volatility in this case.

Example 4.4. This example shows that there exists a parameter vector in Θ in which
the corresponding fair delivery price calculated with (2.19) reaches a negative value for
some values of T,N and v0. Let p4 = (r, κ∗, θ∗, σV , ρ) = (0.02, 1 × 10−10, 0.10, 1.414 ×
10−6,−0.50) ∈ Θ with T = 10 and N = 3. Plugging these values into (2.12) and (2.13)
yields

A3(∆t; p4) = 1.24986 × 1017 + 2.75 × 1017e(−1/5)×10−9∆t − 3.99986 × 1017e10−10∆t

− 2.49993 × 107∆t − 4.00007 × 107e−10−10∆t∆t + 0.0009(∆t)2,

A4(∆t; p4) = −4.49993 × 1018 − 5.5 × 1018e−(1/5)×10−9∆t + 9.99993 × 1018e−10−10∆t

+ 3 × 108∆t − 4.00007 × 108e−10−10∆t∆t.
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The variation of A3(∆t; p4)A4(∆t; p4) against ∆t is plotted in Figure 7. As displayed
in Figure 7, the product function oscillates around zero when ∆t approaches zero. This
implies that ∆t∗p4

is very small. For ∆t = 10/3 set in this example, clearly it is greater
than ∆t∗p4

. Following (2.19), we have

Kvar(10, 10
3 , v0; p4) = −1.024 × 10−4 − 3.072 × 106v0 + 8.333 × 103v2

0.

One can see from Figure 8 that Kvar(10, 10/3, v0; p4) < 0 for all v0 ∈ (0, v∗), where
v∗ ≈ 368.64. This demonstrates that when ∆t ≥ ∆t∗p, it is indeed possible for Kvar to be
negative.

5. Conclusions

In this paper, the simplified analytical approach proposed by the authors in the
previous work [19] is extended to the case of pricing variance swaps, based on the
Heston’s two-factor stochastic volatility model [13] with the realized variance defined
in terms of the squared log-return of the underlying price. Interestingly, we have
obtained a closed-form formula for the fair delivery price of variance swaps, and it
is in a much simpler form than those presented earlier in the literature. Another main
contribution of the paper is that we have demonstrated that there may exist restrictions
on model parameters, that is subspaces of the parameter space, that need to be imposed
in order for the derived formula to lead to a financially meaningful fair delivery price.
Of course, these restrictions are stronger than the Feller condition [8, 13] under which
the stochastic processes in the Heston model (2.2) yield positive values of variance.
We have provided an example of these restrictions in Proposition 3.1, which is shown
to be only a sufficient condition to caution market practitioners, when the derived
formula is used in their pricing exercises.
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Appendix A

Proof of Proposition 2.3. We first apply Itô’s lemma [16] to the transformation
Xt = ln S t. This gives

dXt = (r − 1
2 vt)dt +

√
vtdB̃S

t ,

dvt = κ∗(θ∗ − vt)dt + σV
√

vtdB̃V
t .
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Consider the two-dimensional Itô process (Xt, vt) and the two contingent claims
(futures)

U( j)
i (x, v, t) = EQ[X j

t |(Xti−1 = x, vti−1 = v)], for j = 1, 2,

with payoffs (terminal conditions) at expiry ti being Xti and X2
ti , respectively. Utilizing

the general asset valuation theory of Garman [10], U( j)
i satisfies the PDE

∂U( j)
i

∂t
+

1
2

v
∂2U( j)

i

∂x2 +
1
2
σ2

Vv
∂2U( j)

i

∂v2

+ ρσVv
∂2U( j)

i

∂x∂v
+

(
r −

1
2

v
)∂U( j)

i

∂x
+ κ∗(θ∗ − v)

∂U( j)
i

∂v
= 0 (A.1)

for all t ∈ [ti−1, ti) and (x, v) ∈ R × R+, subject to the terminal condition

U( j)
i (x, v, ti) = x j, for j = 1, 2, (A.2)

and for all (x, v) ∈ R × R+. Let τ = ti − t. Next, we solve the PDE (A.1) subject to the
terminal condition (A.2) for each j = 1, 2 separately.

Case j = 1. We assume that the solution can be expressed in the form

U(1)
i (x, v, t) = x + A1(ti − t) + A2(ti − t)v (A.3)

for all t ∈ [ti−1, ti) and (x, v) ∈ R × R+ where Ak(τ), k = 1, 2, are deterministic functions
defined for all τ ≥ 0 and to be determined later on. Calculating all partial derivatives
of U( j)

i in (A.1) by using the solution form (A.3) yields the relations

∂U(1)
i

∂t
= −

(dA1

dτ
+

dA2

dτ
v
)
,

∂U(1)
i

∂x
= 1,

∂U(1)
i

∂v
= A2,

∂2U(1)
i

∂x2 =
∂2U(1)

i

∂v2 =
∂2U(1)

i

∂x∂v
= 0.

(A.4)

Inserting (A.4) into (A.1) gives

−

(dA1

dτ
+

dA2

dτ
v
)

+

(
r −

1
2

v
)

+ κ∗(θ∗ − v)A2 = 0.

This yields a system of linear ODEs

d
dτ

(
A1
A2

)
=

(
0 κ∗θ∗

0 −κ∗

) (
A1
A2

)
+

(
r
−1/2

)
(A.5)

subject to the zero initial conditions obtained by using the terminal condition (A.2) as

Ak(0) = 0, for k = 1, 2. (A.6)

The solution of (A.5) subject to (A.6), that is A1 and A2, can be found as expressed in
(2.10) and (2.11), respectively.
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Case j = 2. In this case we assume that
U(2)

i (x, v, t) = x2 + A3(ti − t) + A4(ti − t)v + A5(ti − t)v2 + A6(ti − t)x + A7(ti − t)xv

for all t ∈ [ti−1, ti) and (x, v) ∈ R × R+, where Ak(τ), k = 3, 4, . . . , 7, are deterministic
functions defined for all τ ≥ 0, and to be determined later on. Following the same
procedure as in the previous case, we obtain

∂U(2)
i

∂t
= −

(dA3

dτ
+

dA4

dτ
v +

dA5

dτ
v2 +

dA6

dτ
x +

dA7

dτ
xv

)
, (A.7)

∂U(2)
i

∂x
= 2x + A6 + A7v,

∂U(2)
i

∂v
= A4 + 2A5v + A7x, (A.8)

∂2U(2)
i

∂x2 = 2,
∂2U(2)

i

∂v2 = 2A5,
∂2U(2)

i

∂x∂v
= A7. (A.9)

Substituting (A.7), (A.8), and (A.9) into the PDE (A.1) yields

−

(dA3

dτ
+

dA4

dτ
v +

dA5

dτ
v2 +

dA6

dτ
x +

dA7

dτ
xv

)
+ v + σ2

V A5v + ρσV A7v

+

(
r −

1
2

v
)
(2x + A6 + A7v) + κ∗(θ∗ − v)(A4 + 2A5v + A7x) = 0. (A.10)

Therefore, (A.1) can also be reduced to a system of linear ODEs

d
dτ


A3
A4
A5
A6
A7

 =


0 κ∗θ∗ 0 r 0
0 −κ∗ σ2

V + 2κ∗θ∗ −1/2 r + ρσV

0 0 −2κ∗ 0 −1/2
0 0 0 0 κ∗θ∗

0 0 0 0 −κ∗




A3
A4
A5
A6
A7

 +


0
1
0
2r
−1

 . (A.11)

Similarly, the zero initial conditions obtained by using the terminal condition (A.2) are
Ak(0) = 0, for k = 3, 4, . . . , 7. (A.12)

We solve (A.11) subject to (A.12) by using Mathematica to obtain A3 and A4 as
expressed in (2.12) and (2.13), respectively, where A5, A6, A7 satisfy the relations

A5(τ) = A2
2(τ),

A6(τ) = 2A1(τ),
A7(τ) = 2A2(τ),

for all τ ≥ 0. This completes the proof of Proposition 2.3. �

Appendix B
Proof of Proposition 2.6. Utilizing Proposition 2.3, the conditional expectations with
respect to Fti−1 on the right-hand side of (2.7) can be written as

EQ
ti−1

[ln2(S ti )] − 2 ln(S ti−1 )EQ
ti−1

[ln(S ti )] + ln2(S ti−1 )

= EQ
ti−1

[X2
ti ] − 2Xti−1 EQ

ti−1
[Xti ] + X2

ti−1

= X2
ti−1

+ A3(∆t) + A4(∆t)vti−1 + A2
2(∆t)v2

ti−1
+ 2A1(∆t)Xti−1

+ 2A2(∆t)Xti−1 vti−1 − 2Xti−1 (Xti−1 + A1(∆t) + A2(∆t)vti−1 ) + X2
ti−1
. (B.1)

https://doi.org/10.1017/S1446181114000236 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181114000236


22 S. Rujivan and S.-P. Zhu [22]

Since the terms Xti−1 ,X
2
ti−1

and Xti−1 vti−1 on the right-hand side of (B.1) can be cancelled,
it is simplified to

EQ
ti−1

[ln2(S ti )] − 2 ln(S ti−1 )EQ
ti−1

[ln(S ti )] + ln2(S ti−1 ) = A3(∆t) + A4(∆t)vti−1 + A2
2(∆t)v2

ti−1

(B.2)
where ∆t = ti − ti−1. Inserting the right-hand side of (B.2) into the right-hand side of
(2.7) gives

EQ
0

[
ln2

( S ti

S ti−1

)]
= EQ

0 [A3(∆t) + A4(∆t)vti−1 + A2
2(∆t)v2

ti−1
]. (B.3)

Notice that Ak(∆t) for k = 2, 3, 4 do not depend on vi−1. In fact, these functions are
deterministic functions depending on ∆t. Hence, using the linearity of conditional
expectations, the conditional expectation on the right-hand side of (B.3) can be written
as

EQ
0

[
ln2

( S ti

S ti−1

)]
= A3(∆t) + A4(∆t)EQ

0 [vti−1 ] + A2
2(∆t)EQ

0 [v2
ti−1

] (B.4)

for all i = 1, 2, . . . ,N. The two conditional expectations on the right-hand side of (B.4)
are, respectively, the first and second conditional moments of the square-root process,
dvt = κ∗(θ∗ − vt)dt + σV

√
vtdB̃V

t . The formulae for these two conditional moments
have been found in explicit form (see the proof of Broadie and Jain [4, Proposition 5])
as

EQ
0 [vti−1 ] = θ∗(1 − e−κ

∗ti−1 ) + e−κ
∗ti−1 v0,

EQ
0 [v2

ti−1
] =

θ∗σ2
V

2κ∗
(1 − e−κ

∗ti−1 )2 +
σ2

V

κ∗
(e−κ

∗ti−1 − e−2κ∗ti−1 )v0

+ (θ∗{1 − e−κ
∗ti−1 ) + e−κ

∗ti−1 v0}
2.

Next, we employ the relations

θ∗(1 − e−κ
∗ti−1 ) = −2κ∗θ∗A2(ti−1),

θ∗σ2
V

2κ∗
(1 − e−κ

∗ti−1 )2 = 2κ∗θ∗(σV A2(ti−1))2,

σ2
V

κ∗
(e−κ

∗ti−1 − e−2κ∗ti−1 ) = −2σ2
V A2(ti−1)e−κ

∗ti−1

to express the first and second conditional moments in terms of A2 as

EQ
0 [vti−1 ] = −2κ∗θ∗A2(ti−1) + e−κ

∗ti−1 v0, (B.5)

EQ
0 [v2

ti−1
] = 2κ∗θ∗(σV A2(ti−1))2 − 2σ2

V A2(ti−1)e−κ
∗ti−1 v0 + {−2κ∗θ∗A2(ti−1) + e−κ

∗ti−1 v0}
2.

(B.6)

By substituting (B.5) and (B.6) into (B.4) and collecting the coefficients of vk
0

for k = 0, 1, 2, we have succeeded in obtaining the coefficient Ãk of vk
0 for k = 0,

1, 2, as expressed in (2.15), (2.16) and (2.17), respectively, The last assertion of
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Proposition 2.6 is trivial due to the fact that Ãk(0, t) = 0, k = 0, 1, 2, for all t ≥ 0
and Ã0(∆t, 0) = A3(∆t), Ã1(∆t, 0) = A4(∆t), and Ã2(∆t, 0) = A2

2(∆t) for all ∆t ≥ 0. This
completes the proof of Proposition 2.6. �

Appendix C

Proof of Proposition 3.1. First, we show that ∆t∗p defined in (3.1) is either strictly
positive or infinite. From the system of linear ODEs (A.11) with the initial conditions
(A.12), we have (dA4/dτ)|τ=0 = 1 > 0. This implies that A4 is strictly increasing
on (0, ∆tA4

p ) for some ∆tA4
p > 0. Moreover, it is easy to show that (dA3/dτ)|τ=0 =

κ∗θ∗A4(0) + rA6(0) = 0 and (d2A3/dτ2)|τ=0 = κ∗θ∗{(dA4/dτ)|τ=0} + r{(dA6/dτ)|τ=0} =

κ∗θ∗ + 2r2 > 0. These results imply that A3 has a local minimum at τ = 0. Hence,
there exists ∆tA3

p > 0 such that A3(τ; p) > 0 for all τ ∈ (0,∆tA3
p ). Consequently, A3 and

A4 are strictly positive on (0,min(∆tA3
p ,∆tA4

p )). Clearly, a positive root of A3 or A4 may
or may not exist depending on p. Suppose that either A3 or A4 has a positive root. Since
∆t∗p is the smallest positive root of the product function A3(τ; p)A4(τ; p), it follows that
∆t∗p > min(∆tA3

p ,∆tA4
p ) > 0. On the other hand, if neither A3 nor A4 has a positive root,

we immediately conclude that ∆t∗p =∞.
Second, we consider Kvar(T,∆t, v0; p) expressed in (2.19). Since A3 and A4 are

strictly positive on (0,∆t∗p) and A2(t; p) < 0 for all t > 0, we have Ãk(∆t, t; p) > 0 for
all k = 0, 1, 2, ∆t ∈ (0,∆t∗p) and t ∈ [0, T ]. Moreover, for any given ∆t ∈ (0,∆t∗p) and
t ∈ [0, T ], Assumption 2.1 is a sufficient condition to ensure that Ãk(∆t, t; p) < ∞ for
all k = 0, 1, 2. Then we obtain assertion 2.1. Next, one can see that assertion 2.2 is a
consequence of assertion 2.1, since for any given ∆t ∈ (0,∆t∗p) and ti = i∆t ∈ [0,T ], i =

0, 1, . . . ,N,

∂Kvar

∂v0
=

1002

T

[{ N∑
i=1

Ã1(∆t, ti−1; p)
}

+ 2
{ N∑

i=1

Ã2(∆t, ti−1; p)
}
v0

]
> 0, for all v0 > 0.

The proof of Proposition 3.1 is thus complete. �

Appendix D

Proof of Proposition 3.2. We begin with some useful identities. Set ∆t = T/N and
ti−1 = (i − 1)∆t = (i − 1)T/N. From (2.15)–(2.17),

N∑
i=1

Ã0

(T
N
,

(i − 1)T
N

)
= NA3

(T
N

)
− 2κ∗θ∗A4

(T
N

) N∑
i=1

A2

( (i − 1)T
N

)
+

(
κ∗θ∗ +

σ2
V

2

)
κ∗θ∗

(
2A2

(T
N

))2

×

N∑
i=1

A2
2

( (i − 1)T
N

)
, (D.1)
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N∑
i=1

Ã1

(T
N
,

(i − 1)T
N

)
= A4

(T
N

) N∑
i=1

e−κ
∗(i−1)T/N − 2(2κ∗θ∗ + σ2

V )A2
2

(T
N

) N∑
i=1

e−κ
∗(i−1)T/N A2

( (i − 1)T
N

)
,

(D.2)
N∑

i=1

Ã2

(T
N
,

(i − 1)T
N

)
= A2

2

(T
N

) N∑
i=1

e−2κ∗((i−1)T/N). (D.3)

Using the identity
N∑

i=1

e−x(i−1)T/N =
e−xT (exT − 1)

1 − e−xT/N

for x > 0, we can derive the identities
N∑

i=1

e−κ
∗(i−1)T/N =

e−κ
∗T (eκ

∗T − 1)
1 − e−κ∗T/N

, (D.4)

N∑
i=1

e−2κ∗(i−1)T/N =
e−2κ∗T (e2κ∗T − 1)

1 − e−2κ∗T/N , (D.5)

N∑
i=1

A2

( (i − 1)T
N

)
=

N∑
i=1

(e−κ
∗(i−1)T/N − 1

2κ∗

)
=

eκ
∗(1−N)T/N + (N − 1)eκ

∗T/N − N
2κ∗(1 − eκ∗T/N)

, (D.6)

N∑
i=1

A2
2

( (i − 1)T
N

)
=

2e(N+1)κ∗T/N + 2e(N+2)κ∗T/N + (N − 1)e2(N+1)κ∗T/N −Ne2κ∗T/N − 2eκ
∗(2N+1)T/N − e2κ∗T/N

4(κ∗)2e2κ∗T (e2κ∗T/N − 1)
,

(D.7)
N∑

i=1

e−κ
∗(i−1)T/N A2((i − 1)T/N) =

(eκ
∗T − 1)eκ

∗T (1/N−2)(eκ
∗T/N − eκ

∗T )
2κ∗(e2κ∗T/N − 1)

. (D.8)

�

Proof of property (3.4). Inserting (D.6) and (D.7) into (D.1) gives

N∑
i=1

Ã0

(T
N
,

(i − 1)T
N

)
= F0(N) × {D0(N) + D1(N)N + D2(N)N2} (D.9)

where

F0(N) =
1

8(κ∗)3N(eκ∗T/N − 1)(eκ∗T/N + 1)
,

D0(N) = 2κ∗Te−κ
∗T (1 + eκ

∗T/N){c̃1(eκ
∗T/N − 1) + c̃2}, (D.10)
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D1(N) = θ∗e−2κ∗T (eκ
∗T/N − 1)

× {c̃3(eκ
∗T/N − 1) − σ2

Veκ
∗T/N + c̃4e(1+N)κ∗T/N + c̃5e(2+1/N)κ∗T + c̃6}, (D.11)

D2(N) = 2θ∗σV (4κ∗ρ − σV )e−κ
∗T/N(eκ

∗T/N − 1)2(eκ
∗T/N + 1) (D.12)

and

c̃1
c̃2
c̃3
c̃4
c̃5
c̃6


=



4r2(κ∗)2Teκ
∗T − 4rκ∗θ∗(1 + eκ

∗T (κ∗T − 1)) + κ∗(θ∗)2(2 + eκ
∗T (κ∗T − 2))

−2θ∗σV (2κ∗ρ − σV )(eκ
∗T − 1)

2κ∗θ∗(e2κ∗T − 1)
4(2(κ∗)2 − 2κ∗ρσV + σ2

V )
8(κ∗)2(κ∗T − 1) − 8κρσV

∗(κ∗T − 1) + (2κ∗T − 3)σ2
V

σ2
V + c̃4eκ

∗T + (c̃5 − 2σ2
V )e2κ∗T


.

Next, we use L’Hôpital’s rule to calculate

lim
N→∞

F0(N) =
1

16(κ∗)4T
. (D.13)

From (D.10) we have

lim
N→∞

D0(N) = −8κ∗θ∗σV (2κ∗ρ − σV )(eκ
∗T − 1)e−κ

∗T T, (D.14)

and from (D.11) and (D.12) we can show that

lim
N→∞

D j(N) = 0, for j = 1, 2. (D.15)

From (D.15), using L’Hôpital’s rule, we get

lim
N→∞

D1(N)N = 4κ∗θ∗e−κ
∗T T [4(κ∗)3eκ

∗T T − 2(eκ
∗T − 1)σ2

V

+ κ∗σV {4ρ(eκ
∗T − 1) + σVeκ

∗T T } − 4(κ∗)2{eκ
∗T (ρσVT + 1) − 1}] (D.16)

and
lim

N→∞
D2(N)N2 = 4(κ∗)2θ∗σV (4κ∗ρ − σV )T 2. (D.17)

From (D.9), using the limits (D.13), (D.14), (D.16) and (D.17), we obtain property
(3.4). �

Proof of property (3.5). Inserting (D.4) and (D.8) into (D.2) gives

N∑
i=1

Ã1

(T
N
,

(i − 1)T
N

)
= F1(N) × (D3(N) + D4(N)N) (D.18)

where

F1(N) = −
e−2κ∗T (eκ

∗T − 1)
4N(κ∗)3(e2κ∗T/N − 1)

, (D.19)

D3(N) = 2κ∗Teκ
∗T (eκ

∗T/N + 1){−2rκ∗ + κ∗(2r − θ∗)eκ
∗T/N + κ∗θ∗ − 2κ∗ρσV + σ2

V },
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D4(N) = (eκ
∗T/N − 1){c̃7(eκ

∗T/N − 1) + σ2
Veκ

∗T/N + c̃8e(1+N)κ∗T/N + c̃9} (D.20)

and c̃7
c̃8
c̃9

 =

 2κ∗θ∗(1 + eκ
∗T )

−{4(κ∗)2 − 4κ∗ρσV + σ2
V }

−σ2
V + {−4(κ∗)2 + 4κ∗ρσV − 3σ2

V }e
κ∗T

 . (D.21)

Applying L’Hôpital’s rule to (D.19) yields

lim
N→∞

F1(N) =
(1 − eκ

∗T )
8(κ∗)4e2κ∗T T

. (D.22)

In addition,
lim

N→∞
D3(N) = −4κ∗σV (2κ∗ρ − σV )eκ

∗T T. (D.23)

Bearing in mind that
lim

N→∞
D4(N) = 0,

we have
lim

N→∞
D4(N)N = −4κ∗(2(κ∗)2 − 2κ∗ρσV + σ2

V )eκ
∗T T. (D.24)

From (D.18), utilizing the limits (D.22), (D.23) and (D.24), we immediately obtain
property (3.5). �

Proof of property (3.6). Inserting (D.5) into (D.3) gives

N∑
i=1

Ã2

(T
N
,

(i − 1)T
N

)
=

(e2κ∗T − 1)(eκ
∗T/N − 1)

4(κ∗)2e2κ∗T (eκ∗T/N + 1)
. (D.25)

From (D.25),

lim
N→∞

N∑
i=1

Ã2

(T
N
,

(i − 1)T
N

)
= lim

N→∞

(e2κ∗T − 1)(eκ
∗T/N − 1)

4(κ∗)2e2κ∗T (eκ∗T/N + 1)
= 0,

and this proves property (3.6). �

Proof of property (3.7). Using (2.19) and properties (3.4)–(3.6), we obtain (3.7).
The proof of Proposition 3.2 is now complete. �
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