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Abstract

We prove that exact functors between the categories of perfect complexes supported on
projective schemes are of Fourier–Mukai type if the functor satisfies a condition weaker
than being fully faithful. We also get generalizations of the results in the literature in
the case without support conditions. Some applications are discussed and, along the
way, we prove that the category of perfect supported complexes has a strongly unique
enhancement.

1. Introduction

One of the most intriguing open questions in the theory of derived categories is whether all exact
functors between the categories of perfect complexes (or between the bounded derived categories
of coherent sheaves) on projective schemes are of Fourier–Mukai type. It might be worth recalling
that, if X1 and X2 are projective schemes, an exact functor F : Perf (X1) → Perf (X2) between
the corresponding categories of perfect complexes is a Fourier–Mukai functor (or of Fourier–
Mukai type) if there exist E ∈ Db(X1 ×X2) and an isomorphism of exact functors F ∼= ΦE . Here
ΦE : Perf (X1) → Perf (X2) is the exact functor defined by

ΦE := R(p2)∗(E
L
⊗ p∗1(−)),

where pi : X1 ×X2 → Xi is the natural projection. The complex E is called a kernel of F.
While, in general, the kernel is certainly not unique (up to isomorphism) due to [CS12], the

question of the existence of such kernels is wide open. Indeed, despite the fact that a conjecture
in [BLL04] would suggest a positive answer to it, for the time being only partial results in this
direction are available. Let us recall some of them. In [Orl97] (together with [BV03]) the case
of exact fully faithful functors between the bounded derived categories of coherent sheaves on
smooth projective varieties is completely solved by Orlov. Various generalizations of his result
to quotient stacks and twisted categories were given in [Kaw04] by Kawamata and in [CS07],
respectively. In particular, the main result of [CS07] shows that all exact functors F : Db(X1) →

Db(X2) such that
HomDb(X2)(F(A),F(B)[k]) = 0, (1.1)

for any A,B ∈ Coh(X1) and any integer k < 0, are Fourier–Mukai functors and their kernels are
unique, up to isomorphism.

The inspiration for our results in this paper comes from the new approach to the
representability problem in [LO10], where the authors show that all exact fully faithful functors
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F : Perf (X1) → Perf (X2) between the categories of perfect complexes on the projective schemes
X1 and X2 are of Fourier–Mukai type. To show this, Lunts and Orlov prove that such fully faithful
functors admit dg lifts. At that point, they can invoke the representability result in [Toë07].
Indeed, Toën proved that, in the dg setting, all morphisms in the localization of the category
of dg categories by quasi-equivalences are of Fourier–Mukai type (in an appropriate dg sense).
Notice that the strategy in [LO10] allows the authors to improve the results in [Bal09].

To make clear the categorical setting we will work with, let X1 be a quasi-projective scheme
containing a projective subscheme Z1 such that the structure sheaf OiZ1 of the ith infinitesimal
neighbourhood of Z1 in X1 is in Perf (X1), for every i > 0. This last condition is satisfied,
for instance, when either Z1 = X1 or X1 is smooth. Moreover, let X2 be a separated scheme of
finite type over the base field k with a closed subscheme Z2. One can then consider the categories
PerfZi(Xi) of perfect complexes on Xi with cohomology sheaves supported on Zi. The definition
of Fourier–Mukai functor makes perfect sense also in this context (see Definition 2.5).

A rewriting of (1.1) in the supported setting which weakens the full-faithfulness condition
in [LO10, Orl97] requires a bit of care. Indeed, assuming X1, X2, Z1 and Z2 to be as above,
one can consider exact functors F : PerfZ1(X1) → PerfZ2(X2) such that the following condition
holds.

Property (∗).

(1) Hom(F(A),F(B)[k]) = 0, for any A,B ∈ CohZ1(X1) ∩PerfZ1(X1) and any integer k < 0;

(2) for all A ∈ PerfZ1(X1) with trivial cohomologies of positive degrees, there is N ∈ Z such
that

Hom(F(A),F(O|i|Z1
(jH1))) = 0,

for any i < N and any j � i, where H1 is an ample (Cartier) divisor on X1.

At first sight this condition may look a bit involved, but if Z1 = X1 is smooth with
dim(X1) > 0, then part (2) of (∗) is redundant and thus (∗) turns out to be equivalent to (1.1)
(see Proposition 3.13). In general, full functors always satisfy (∗), if we assume further that the
maximal zero-dimensional torsion subsheaf T0(OZ1) of OZ1 is trivial. Actually, due to [COS13],
a non-trivial full functor is automatically faithful if Z1 is connected. We will discuss in § 3.4 the
existence of non-full functors with property (∗).

We are now ready to state our first main result.

Theorem 1.1. Let X1 be a quasi-projective scheme containing a projective subscheme Z1 such
that OiZ1 ∈ Perf (X1), for all i > 0, and let X2 be a separated scheme of finite type over the
base field k with a closed subscheme Z2. Let

F : PerfZ1(X1) −→ PerfZ2(X2)

be an exact functor.
If F satisfies (∗), then there exist E ∈ Db

Z1×Z2
(Qcoh(X1 × X2)) and an isomorphism of

functors F ∼= Φs
E . Moreover, if Xi is smooth quasi-projective, for i = 1, 2, and k is perfect, then

E is unique up to isomorphism.

This result summarizes the content of Proposition 4.10, Lemma 5.3 and Proposition 5.6. The
proof is contained in §§ 4 and 5 and uses the approach via dg categories proposed in [LO10].
Clearly, assuming Xi = Zi for i = 1, 2, our result extends the one in [LO10] about singular
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projective schemes (see Corollary 4.11). Notice that the symbol Φs
E stands for the ‘supported’

Fourier–Mukai functor with kernel E defined precisely in (2.2).
Our second main result concerns the uniqueness of the enhancement for the category of

perfect supported complexes mentioned above and is proved in § 4.2.

Theorem 1.2. Let X be a quasi-projective scheme containing a projective subscheme Z such
that OiZ ∈ Perf (X), for all i > 0, and T0(OZ) = 0. Then PerfZ(X) has a strongly unique
enhancement.

The notion of enhancement and its strong uniqueness is discussed in § 4.1. For the moment
we can roughly think of an enhancement of PerfZ(X) as a (pretriangulated) dg category whose
homotopy category is equivalent to PerfZ(X). The enhancement is strongly unique if two such
are (quasi-)equivalent at the dg category level and such an equivalence satisfies some additional
condition. It is worth noticing that the particular case X = Z is one of the main results in [LO10]
(see Corollary 4.9).

Motivations
Due to the technical nature of Theorems 1.1 and 1.2, some geometric motivations are certainly
in order here. From our point of view the reason for studying exact functors between categories
with support conditions is twofold. On the one hand, the conjecture in [BLL04] concerning the
fact that all ‘geometric’ functors are of Fourier–Mukai type appears extremely difficult to prove
in complete generality. Thus it makes sense to test its validity by weakening the assumptions on
the geometric nature of the triangulated categories involved and on the exact functors between
them. In this sense, this paper is in the same spirit as [CS07, LO10].

On the other hand, one would like to study easy-to-handle d-Calabi–Yau categories,
i.e. triangulated categories whose Serre functor is isomorphic to the shift by the positive
integer d. Challenging examples are certainly provided by the derived categories of smooth
projective Calabi–Yau threefolds. Indeed, the homological version of the mirror symmetry
conjecture [Kon95] for those threefolds involves these categories with implications for the
manifolds parametrizing stability conditions [Bri07] into which (up to the quotient by the group
of autoequivalences) the Kähler moduli spaces embed. One big open problem in this direction is
the lack of examples of stability conditions for Calabi–Yau threefolds.

The group of autoequivalences of the derived category, besides being an interesting algebraic
object in itself, acts on the stability manifold. Already for Calabi–Yau manifolds of dimension
2 (i.e. K3 surfaces), this group is very complicated and one of the main motivations of [Orl97]
is to stimulate its study. As for stability conditions, in higher dimensions the situation becomes
much more involved.

Therefore, following suggestions from the physics literature, one may start from the non-
compact or the so-called ‘open’ Calabi–Yau manifolds. We will be more precise, and discuss
some explicit examples where the ambient space X1 is smooth and Theorem 1.1 (or a variant of
it) applies.

Following [FY12, KYZ09], one can consider the triangulated category TS classically
generated by a d-spherical object S (here d is a positive integer) in an idempotent complete
triangulated category T. An object S is d-spherical if the graded algebra Ext∗(S, S) is isomorphic
to the cohomology of a d-sphere. We will study this example in § 4.4 when d = 1, as in this case
TS is nothing more than Db

p(C), where C is a smooth curve and p ∈ C is a k-rational point.
Thus we obtain the following result, which is a particular case of Proposition 4.15.

Proposition 1.3. Every exact autoequivalence of TS is of Fourier–Mukai type if S is a
1-spherical object.
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This completes the picture in [FY12] which provides a description of the subgroup of Fourier–
Mukai autoequivalences. We should remark here that the result above is not a direct consequence
of Theorem 1.1 as the maximal zero-dimensional torsion subsheaf of Op is obviously not trivial
and part (2) of (∗) does not hold true.

Interesting examples of 2-Calabi–Yau categories are provided by the local resolutions of
An-singularities on surfaces which were studied in [IU05, IUU10]. More precisely, one considers
Y = Spec(C[[x, y, z]]/(x2 + y2 + zn+1)) (the An-singularity), the minimal resolution f : X → Y
and Z := f−1(p), where p is the closed point in Y . Notice that in this case T0(OZ) = 0. The
category one wants to consider is then Db

Z(X) = PerfZ(X) and, using Theorem 1.1, we can give
a direct proof of the following result already contained in [IUU10].

Corollary 1.4. Every exact autoequivalence of Db
Z(X) is of Fourier–Mukai type.

Finally, to get examples of 3-Calabi–Yau categories one can take the total space tot(ωP2)
of the canonical bundle of P2. In this case, if Z denotes the zero section of the projection
tot(ωP2) → P2, the derived category PerfZ(tot(ωP2)) = Db

Z(tot(ωP2)) is a 3-Calabi–Yau category
and may be seen as an interesting example to test predictions about mirror symmetry and the
topology of the space of stability conditions according to Bridgeland’s definition (see [BM11]
for results in this direction). Here again T0(OZ) = 0 and so Theorem 1.1 yields the following
corollary.

Corollary 1.5. Every exact autoequivalence of Db
Z(tot(ωP2)) is of Fourier–Mukai type.

As an application of Proposition 4.15 and Theorem 1.2, the triangulated categories in the
three examples above have strongly unique enhancements.

Organization of the paper
In § 2 we provide the necessary preliminary material concerning derived categories of supported
sheaves, and we introduce the notion of an almost ample set. Then we prove a criterion
(generalizing others present in the literature) for extending a morphism defined on a suitable
subset of the source category between exact functors satisfying a condition related to (∗). This
is done in § 3 using the notion of convolution. In § 4 we deal with the existence of Fourier–Mukai
kernels and the strong uniqueness of enhancements. In particular, we need to generalize and
to modify the argument in [LO10] to make it work in our setting. In the same section we also
discuss the case of 1-spherical objects. Section 5 deals with various questions about boundedness
and uniqueness of Fourier–Mukai kernels.

Notation
In this paper, k is a field. All schemes are assumed to be at least of finite type and separated
over k. All additive (in particular, triangulated) categories and all additive (in particular, exact)
functors will be assumed to be k-linear. If A is an abelian (or more generally an exact) category,
D(A) denotes the derived category of A and Db(A) its full subcategory of complexes with
bounded cohomology. For an object

A := {· · ·→ Aj
dj−→ Aj+1 dj+1

−−→ · · · d
i−1

−−→ Ai
di−→ Ai+1

→ · · · }
in D(A), we can consider the gentle truncations τ6iA, τ>iA, defined as

τ6iA := {· · ·→ Aj
dj−→ Aj+1 dj+1

−−→ · · · d
i−1

−−→ ker di → 0 → · · · }

τ>iA := {· · ·→ 0 → coker di−1
→ Ai+1 di+1

−−→ · · ·→ Aj
dj−→ · · · }.

Unless clearly stated, all functors are derived even if, for simplicity, we use the same symbol for
a functor and its derived version. Natural transformations (in particular, isomorphisms) between
exact functors are always assumed to be compatible with shifts.
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2. Preliminaries

The first part of this section provides a quick introduction to some basic and well-known facts
concerning the derived categories of supported sheaves. Then we define and discuss the notion
of an almost ample set.

2.1 Categories with support conditions
Let X be a scheme and let Z be a closed subscheme of X. We denote by DZ(Qcoh(X)) the
derived category of unbounded complexes of quasi-coherent sheaves on X with cohomologies
supported on Z. We will be particularly interested in the triangulated categories

Db
Z(Qcoh(X)) := DZ(Qcoh(X)) ∩Db(Qcoh(X))

Db
Z(X) := DZ(Qcoh(X)) ∩Db(X),

(2.1)

where Db(X) := Db
Coh(Qcoh(X)) is the full subcategory of Db(Qcoh(X)) consisting of

complexes with coherent cohomologies. Denote by Perf (X) ⊂ D(Qcoh(X)) the full subcategory
of perfect complexes on X. Notice that Perf (X) ⊆ Db(X) and, if X is quasi-projective, equality
holds if and only if X is regular. In the supported case we set

PerfZ(X) := DZ(Qcoh(X)) ∩Perf (X).

Thus, if X is smooth, PerfZ(X) = Db
Z(X).

Proposition 2.1 [Rou08, Theorems 5.3(i) and 6.8]. The category DZ(Qcoh(X)) is compactly
generated and the subcategory of compact objects DZ(Qcoh(X))c coincides with PerfZ(X).

Recall that an object A in a triangulated category T is compact if, given {Xi}i∈I ⊂ T such
that I is a set and

⊕
iXi exists in T, the canonical map⊕

i

Hom(A,Xi) −→ Hom(A,⊕iXi)

is an isomorphism. Moreover, T is compactly generated if there is a set S of objects in the full
subcategory Tc of compact objects of T such that, given E ∈ T with Hom(A,E[i]) = 0 for all
A ∈ S and all i ∈ Z, then E ∼= 0. For more details, the reader can consult [Rou08, § 3.1].

The category DZ(Qcoh(X)) is a full subcategory of D(Qcoh(X)), and let

ι : DZ(Qcoh(X)) ↪→ D(Qcoh(X))

be the inclusion. We use the same symbol to denote the inclusion functor for the other categories
in (2.1). According to [Lip01, § 3], the functor ι has a right adjoint

ι! : D(Qcoh(X)) → DZ(Qcoh(X)).

Notice that the existence of ι! could be also deduced from [Nee96], since ι clearly commutes with
arbitrary direct sums. As ι is fully faithful, we have ι! ◦ ι ∼= id.

Remark 2.2. Actually [Lip01] deals only with modules over a commutative noetherian ring. On
the other hand, as observed in the introduction of [Lip01], most of its results globalize to sheaves
over schemes (in particular, those used in this section).

Lemma 2.3. The functor ι! sends bounded complexes to bounded complexes and commutes with
direct sums.
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Proof. The fact that ι! sends bounded complexes to bounded complexes follows from [Lip01,
Corollary 3.1.4]. The commutativity with direct sums is due to [Lip01, Corollary 3.5.2]. 2

Now let X1 and X2 be schemes containing, respectively, two closed subschemes Z1 and Z2.
We will denote by ιi (respectively, ιi,j) the inclusion morphisms relative to the pair (Xi, Zi)
(respectively, (Xi ×Xj , Zi × Zj)), for i, j = 1, 2.

Lemma 2.4. Let f : X1 → X2 be a morphism of schemes such that f−1(Z2) = Z1. Then there
are isomorphisms of exact functors

f∗ ◦ ι1 ◦ ι!1 ∼= ι2 ◦ ι!2 ◦ f∗ : D(Qcoh(X1)) → D(Qcoh(X2))

f∗ ◦ ι2 ◦ ι!2 ∼= ι1 ◦ ι!1 ◦ f∗ : D(Qcoh(X2)) → D(Qcoh(X1)).

Moreover, given a pair (X,Z), for every F ∈ D(Qcoh(X)) there is an isomorphism of exact
functors

ι ◦ ι!(F ⊗−) ∼= F ⊗ ι ◦ ι!(−) : D(Qcoh(X)) → D(Qcoh(X)).

Proof. See [Lip01, Corollaries 3.4.3, 3.4.4 and 3.3.1]. 2

Definition 2.5. An exact functor

F : DZ1
(Qcoh(X1)) → DZ2

(Qcoh(X2))

is a Fourier–Mukai functor if there exist E ∈ DZ1×Z2
(Qcoh(X1 ×X2)) and an isomorphism of

exact functors
F ∼= Φs

E := ι!2 ◦ (p2)∗(ι1,2(E)⊗ p∗1 ◦ ι1(−)) (2.2)

where pi : X1 ×X2 → Xi is the projection.

Analogous definitions can be given for functors defined between bounded derived categories
of quasi-coherent, coherent or perfect complexes. The object E is called a Fourier–Mukai kernel.
We will use the standard notation ΦE when Zi = Xi or to denote Fourier–Mukai functors between
D(Qcoh(X1)) and D(Qcoh(X2)).

Observe that, as (p2)∗(ι1,2(E) ⊗ p∗1 ◦ ι1(−)) is supported on Z2, ι2 ◦ Φs
E
∼= Φι1,2(E) ◦ ι1. This

clearly implies that Φs
E
∼= ι!2 ◦Φι1,2(E) ◦ ι1, and more generally we can prove the following result.

Lemma 2.6. Under the above assumptions, for every Ẽ ∈ D(Qcoh(X1 × X2)) such that E ∼=
ι!1,2(Ẽ) there exists an isomorphism of exact functors

Φs
E
∼= ι!2 ◦ ΦẼ ◦ ι1 : DZ1

(Qcoh(X1)) → DZ2
(Qcoh(X2)).

Proof. Denoting by ῑ1 and ῑ2 the inclusion morphisms relative to the pairs (X1 ×X2, Z1 ×X2)
and (X1 ×X2, X1 × Z2) respectively, it is easy to see that ι1,2 ◦ ι!1,2 ∼= ῑ2 ◦ ῑ !

2 ◦ ῑ1 ◦ ῑ !
1. Therefore,

using Lemma 2.4 repeatedly, we obtain

Φs
E
∼= ι!2 ◦ (p2)∗(ι1,2 ◦ ι!1,2(Ẽ)⊗ p∗1 ◦ ι1(−)) ∼= ι!2 ◦ (p2)∗(ῑ2 ◦ ῑ !

2 ◦ ῑ1 ◦ ῑ !
1(Ẽ)⊗ p∗1 ◦ ι1(−))

∼= ι!2 ◦ (p2)∗ ◦ ῑ2 ◦ ῑ !
2(ῑ1 ◦ ῑ !

1(Ẽ)⊗ p∗1 ◦ ι1(−)) ∼= ι!2 ◦ ι2 ◦ ι!2 ◦ (p2)∗(ῑ1 ◦ ῑ !
1(Ẽ)⊗ p∗1 ◦ ι1(−)),

whence

Φs
E ◦ ι!1 ∼= ι!2 ◦ (p2)∗(ῑ1 ◦ ῑ !

1(Ẽ)⊗ p∗1 ◦ ι1 ◦ ι!1(−)) ∼= ι!2 ◦ (p2)∗(ῑ1 ◦ ῑ !
1(Ẽ)⊗ ῑ1 ◦ ῑ !

1 ◦ p∗1(−))
∼= ι!2 ◦ (p2)∗(Ẽ ⊗ ῑ1 ◦ ῑ !

1 ◦ p∗1(−)) ∼= ι!2 ◦ (p2)∗(Ẽ ⊗ p∗1 ◦ ι1 ◦ ι!1(−)) = ι!2 ◦ ΦẼ ◦ ι1 ◦ ι
!
1.

So we conclude that Φs
E
∼= Φs

E ◦ ι!1 ◦ ι1 ∼= ι!2 ◦ Φ
Ẽ
◦ ι1 ◦ ι!1 ◦ ι1 ∼= ι!2 ◦ Φ

Ẽ
◦ ι1. 2
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Consider the abelian categories QcohZ(X) and CohZ(X), respectively consisting of quasi-
coherent and coherent sheaves supported on Z. The following proposition will be implicitly used
at many points in this paper.

Proposition 2.7 [Bal08, Lemma 3.3, Corollary 3.4]. The natural functors D(QcohZ(X)) →

DZ(Qcoh(X)) and Db(CohZ(X)) → Db
Z(X) are equivalences.

Notice that the proof in [Bal08] works in our generality as well. Denoting by i : Z ↪→ X the
closed embedding, we will also need the following result.

Proposition 2.8 [Bal08, Lemma 3.6, Corollary 3.7]. (i) The functor i∗ is exact and the image of
i∗ generates CohZ(X) as an abelian category, i.e. the smallest abelian subcategory of CohZ(X)
closed under extensions and containing the essential image of i∗ is CohZ(X) itself. Similarly,
the smallest abelian subcategory closed under extensions and arbitrary direct sums containing
the image of i∗ in QcohZ(X) is QcohZ(X) itself.

(ii) The image of Db(Z) under i∗ classically generates Db
Z(X) and the image under i∗ of

D(Qcoh(Z)) classically completely generates DZ(Qcoh(X)).

Recall that, according to [Rou08], a subcategory S of a triangulated category T classically
generates T if the smallest thick triangulated subcategory of T containing S is T itself. On the
other hand, S classically completely generates T if T is the smallest thick subcategory that is
closed under direct sums and contains S.

2.2 Almost ample sets
This section attempts to provide a generalization of the notion of weakly ample sequence in
[IUU10, Appendix A.2] which, in turn, is a generalization of the usual definition of ample sequence
(see, for example, [Orl97]).

Definition 2.9. Given an abelian category A and a set I, a subset {Pi}i∈I ⊆ A is an almost
ample set if, for any A ∈ A, there exists i ∈ I such that:

(1) there is a natural number k and an epimorphism P⊕ki � A;

(2) HomA(A,Pi) = 0.

Remark 2.10. Every ample sequence and, more generally, every weakly ample sequence is an
almost ample set (with I = Z). It is also obvious by definition that every set containing an
almost ample set (respectively, a set of objects satisfying (1) in Definition 2.9) is almost ample
(respectively, satisfies (1) in Definition 2.9), too.

To provide examples of almost ample sets which are suited to the supported setting we are
working in, let X be a quasi-projective scheme and let Z be a projective subscheme of X. Assume
further that OiZ ∈ Perf (X), for all i > 0. Take H an ample divisor on X and define the subset
of CohZ(X):

Amp(Z,X,H) := {O|i|Z(jH))}(i,j)∈Z×Z. (2.3)

When necessary, we will think of Amp(Z,X,H) as the corresponding full subcategory of
CohZ(X).

Example 2.11. There are two interesting geometric situations for which OiZ ∈ Perf (X), for all
i > 0, and thus Amp(Z,X,H) is contained in PerfZ(X). Namely, one can take X to be a
quasi-projective scheme containing a projective subscheme Z such that either Z = X or X is
smooth.
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The following result will be essential for the rest of the paper. Using, for example, the notation

of [HL10, Definition 1.1.4], we denote by T0(OZ) the maximal subsheaf of OZ whose support has

dimension 0. We call T0(OZ) the maximal zero-dimensional torsion subsheaf of OZ for short.

Proposition 2.12. Assume that X, Z and H are as above. Then Amp(Z,X,H) satisfies (1)

in Definition 2.9, and provides a set of (compact) generators of the Grothendieck category

QcohZ(X). Moreover, if T0(OZ) = 0, then Amp(Z,X,H) is an almost ample set in CohZ(X).

More precisely, for any A ∈ CohZ(X), there is N ∈ Z such that any O|i|Z(jH) with i < N

and j � i satisfies (1) (and (2) if T0(OZ) = 0) in Definition 2.9.

Proof. Notice that under the assumption OiZ ∈ Perf (X) for all i > 0, the objects O|i|Z(jH) are

also compact for all i, j ∈ Z.

Let E be a sheaf in CohZ(X). To prove property (1), observe that by [Rou08, Lemma 7.40]

there is an integer N 6 0 such that E is a coherent O|i|Z-module for all i < N . As |i|Z is a

projective scheme, it follows that for i < N and j � i there is an epimorphism O|i|Z(jH)⊕k � E
(for some k ∈ N) in Coh(|i|Z), hence also in CohZ(X).

Assuming T0(OZ) = 0 (which, indeed, implies T0(O|i|Z) = 0), property (2) is easily verified

by taking i < N and j � i. In fact, for i < N and any j ∈ Z, we have

HomCohZ(X)(E ,O|i|Z(jH)) ∼= HomCoh(|i|Z)(E ,O|i|Z(jH)).

Under the assumption T0(O|i|Z) = 0, the same argument as in the proof of [LO10, Proposition 9.2]

yields that, for j sufficiently small, the latter vector space is trivial.

To prove that Amp(Z,X,H) is a set of generators for the category QcohZ(X), it is enough

to observe that, in view of (1) of Definition 2.9 and the fact that any quasi-coherent sheaf is the

direct limit of its coherent subsheaves, for any E ∈QcohZ(X) there is a surjection
⊕

j∈S Pj � E
where S is a set and Pj ∈ Amp(Z,X,H) for all j ∈ S (see [KS06, § 8.3]). 2

Example 2.13. If X is the resolution of an An-singularity and Z is the exceptional locus, a special

case of almost ample set for CohZ(X) is provided by the weak ample sequence C in [IUU10,

Appendix A], where C = {O|i|Z(iH) ∈ Amp(Z,X,H) : i ∈ Z}.

3. Extending natural transformations

In this section we deal with the second key ingredient in our proof, namely a criterion to extend

natural transformations (in particular, isomorphisms) between functors. We try to put this result

in a generality which goes beyond the scope of this paper but which may be useful in future

works (see, for example, [CS13, Proposition 5.15]).

3.1 Convolutions

In this section we collect some well-known facts about convolutions which will be used in the

paper. Most of the terminology in taken from [Kaw04, Orl97] (see also [CS07]).

A bounded complex in a triangulated category T is a sequence of objects and morphisms

in T,

Am
dm−→ Am−1

dm−1−−−→ · · · d1−→ A0, (3.1)
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such that dj ◦ dj+1 = 0 for 0 < j < m. A right convolution of (3.1) is an object A together with
a morphism d0 : A0 → A such that there exists a diagram in T,

Am
dm //

id !!
�

Am−1
dm−1 //

$$
�

· · · d2 // A1
d1 //

  
�

A0

d0 ��
Am

;;

Cm−1
[1]

oo

<<

· · ·
[1]

oo C1
[1]

oo

>>

A
[1]

oo

where the triangles with a � are commutative and the others are distinguished.
Let d0 : A0 → A be a right convolution of (3.1). If T′ is another triangulated category and

G : T → T′ is an exact functor, then G(d0) : G(A0) → G(A) is a right convolution of

G(Am)
G(dm)
−−−−→ G(Am−1)

G(dm−1)
−−−−−→ · · ·

G(d1)
−−−→ G(A0).

The following results will be used in the rest of this section. Notice that left convolutions in
the notation of [Kaw04] correspond to right convolutions in the present paper (according to the
notation in [CS07, Orl97]).

Lemma 3.1 [Kaw04, Lemmas 2.1 and 2.4]. Let (3.1) be a complex in T satisfying

HomT(Aa, Ab[r]) = 0 for any a > b and r < 0. (3.2)

Then (3.1) has a right convolution which is uniquely determined up to isomorphism (in general
non-canonical).

Lemma 3.2 [CS07, Lemma 3.3]. Let

Am
dm //

fm
��

Am−1
dm−1 //

fm−1

��

· · · d2 // A1
d1 //

f1

��

A0

f0

��
Bm

em // Bm−1
em−1 // · · · e2 // B1

e1 // B0

be a morphism of complexes both satisfying (3.2) and such that

HomT(Aa, Bb[r]) = 0 for any a > b and r < 0.

Assume that the corresponding right convolutions are of the form (d0, 0) : A0 → A ⊕ Ā and
(e0, 0) : B0 → B ⊕ B̄ and that HomT(Ap, B[r]) = 0 for r < 0 and any p. Then there exists a
unique morphism f : A → B such that f ◦ d0 = e0 ◦ f0. If, moreover, each fi is an isomorphism,
then f is an isomorphism as well.

Let T := Db(A) for some abelian category A and let E be a complex as in (3.1) and such that
every Ai is an object of A. Then a right convolution of E (which is unique up to isomorphism
by Lemma 3.1) is the natural morphism A0 → E•, where E• is the object of Db(A) naturally
associated to E (namely, Ei := A−i for −m 6 i 6 0 and otherwise Ei := 0, with differential
d−i : E

i
→ Ei+1 for −m 6 i < 0).

3.2 The criterion: extension to a subcategory
Looking carefully at the proof of [CS07, Proposition 3.7], one sees that the notion of ample
sequence can be replaced there by the one of almost ample set. In particular, if T is a triangulated
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category and A is an abelian category, we can deal with exact functors F : Db(A) → T satisfying
the following condition:

(�) HomT(F(A),F(B)[k]) = 0, for any A,B ∈ A and any k < 0.

Hence one can prove the following result.

Proposition 3.3. Let T be a triangulated category and let A be an abelian category of finite
homological dimension. Assume that {Pi}i∈I ⊆ A is an almost ample set and denote by C the
corresponding full subcategory. Let F1,F2 : Db(A) → T be exact functors and let f : F1|C

∼−→ F2|C
be an isomorphism of functors. Assume, moreover, the following:

(i) the functor F1 satisfies (�);
(ii) F1 has a left adjoint.

Then there exists an isomorphism of exact functors g : F1
∼−→ F2 extending f .

In the rest of this paper we would like to apply Proposition 3.3 but, unfortunately, in the
supported case a functor F : Db

Z1
(X1) → Db

Z2
(X2) may not have left or right adjoint. Thus we will

prove a more general result (Proposition 3.7, whose proof is much inspired by those of [Orl97,
Proposition 2.16] and [CS07, Proposition 3.7]), from which Proposition 3.3 will follow easily (see
the end of § 3.3). To this end, we first introduce the categorical setting which will be used in the
rest of § 3.

Indeed, to weaken condition (�), let E be a full exact subcategory of an abelian category A
satisfying the following conditions:

(E1) a morphism in E is an admissible epimorphism if and only if it is an epimorphism in A;

(E2) there is a set {Pi}i∈I ⊆ E which satisfies property (1) of Definition 2.9 as objects of A;

(E3) for all A ∈ Db(E) ∩A, there exists an integer N(A) such that HomDb(A)(A,B[i]) = 0, for

every i > N(A) and every B ∈ Db(E) ∩A.

Readers not familiar with the language of exact categories can have a look at [Kel96] (where
admissible epimorphisms are called deflations).

Remark 3.4. Under conditions (E1) and (E2), Db(E) can be identified with a full subcategory of
Db(A) by [Kel96, Theorem 12.1] and [Kel90, § 4.1] (or rather its dual version). Indeed, notice that,
by (1) of Definition 2.9, for each object A of A there is an object E in E with an epimorphism
E � A in A.

For E and A satisfying (E1) and (E2), we will consider exact functors F : Db(E) → T (for T
a triangulated category) such that the following condition holds.

Condition (M).

(1) Hom(F(A),F(B)[k]) = 0, for any A,B ∈ Db(E) ∩A and any integer k < 0;

(2) for all C ∈ Db(E) with trivial cohomologies of positive degrees, there is i ∈ I such that

Hom(F(C),F(Pi)) = 0

and i satisfies property (1) of Definition 2.9 for H0(C).

In order to state our first extension result, we need some more notation. Let C be the full
subcategory of A with objects {Pi}i∈I and set D0 to be the strictly full subcategory of Db(E)
whose objects are isomorphic to shifts of objects of A. Recall that a full subcategory is strictly
full if it is closed under isomorphisms.
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Proposition 3.5. Let T be a triangulated category and let E be a full exact subcategory of
an abelian category A satisfying (E1)–(E3). Let F1,F2 : Db(E) → T be exact functors with a
natural transformation f : F1|C → F2|C. Assume, moreover, the following:

(i) F1 and F2 both satisfy condition (1) of (M);

(ii) for any A,B ∈ Db(E) ∩A and any integer k < 0,

Hom(F1(A),F2(B)[k]) = 0.

Then there exists a unique natural transformation compatible with shifts f0 : F1|D0 → F2|D0

extending f .

Proof. For any i ∈ I, let fi := f(Pi) : F1(Pi) → F2(Pi). We also set F := Db(E) ∩A.
The first key step consists in showing that f extends uniquely to a natural transformation

F1|F → F2|F. For this purpose, one starts with A ∈ F and takes an (infinite) resolution

· · ·→ P
⊕kj
ij

dj−→ P
⊕kj−1

ij−1

dj−1−−−→ · · · d1−→ P⊕k0
i0

d0−→ A → 0, (3.3)

where ij ∈ I and kj ∈ N for every j ∈ N. To prove the existence of such a resolution, one argues
as follows. By (1) of Definition 2.9, there exist Pi0 , k0 and d0 as in (3.3). As K0 := ker d0 is again
an object of A, we can apply the same argument to it, getting an epimorphism d1 : P⊕k1

i1
→ K0.

Then one proceeds by induction.
Let N(A) be as in (E3), fix m > N(A) and consider the bounded complex

Rm := {P⊕kmim

dm−→ P
⊕km−1

im−1

dm−1−−−→ · · · d1−→ P⊕k0
i0
}.

We can think of Rm as an object in Db(E) which is then a (unique up to isomorphism) convolution
of Rm itself. Moreover, if we set Km := ker dm ∈A, the object Rm in Db(E) sits in a distinguished
triangle

Km[m] −→ Rm −→ A −→ Km[m+ 1]

in Db(E), and so Km ∈ F. Observe that, due to the choice of m, we have

HomDb(A)(A,Km[m+ 1]) ∼= HomDb(A)(A,Km[m]) ∼= 0,

implying Rm ∼= Km[m]⊕A. Hence, we conclude that a (unique up to isomorphism) convolution
of Rm is (d0, 0) : P⊕k0

i0
→ A⊕Km[m].

Hence for q ∈ {1, 2} the complex

Fq(Rm) := {Fq(P⊕kmim
)

Fq(dm)
−−−−→ Fq(P

⊕km−1

im−1
)

Fq(dm−1)
−−−−−−→ · · ·

Fq(d1)
−−−−→ Fq(P

⊕k0
i0

)}

admits a convolution (Fq(d0), 0) : Fq(P
⊕k0
i0

) → Fq(A ⊕ Km[m]). Lemma 3.1 and condition (i)
ensure that such a convolution is unique up to isomorphism. Moreover, by (ii),

HomT(F1(Pij ),F2(Pik)[r]) ∼= HomT(F1(Pil),F2(A)[r]) ∼= 0

for any ij , ik, il ∈ {i0, . . . , im} and r < 0. Hence we can apply Lemma 3.2, getting a unique
morphism fA : F1(A) → F2(A) making the following diagram commutative.

F1(P⊕kmim
)

F1(dm) //

f⊕km
im
��

F1(P
⊕km−1

im−1
)

F1(dm−1) //

f
⊕km−1
im−1��

· · ·
F1(d1) // F1(P⊕k0

i0
)

F1(d0) //

f
⊕k0
i0
��

F1(A)

fA

��
F2(P⊕kmim

)
F2(dm) // F2(P

⊕km−1

im−1
)

F2(dm−1) // · · ·
F2(d1) // F2(P⊕k0

i0
)

F2(d0) // F2(A)
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By Lemma 3.2, the definition of fA does not depend on the choice of m. In other words, if we

choose a different m′ > N(A) and truncate (3.3) in position m′, the bounded complexes Fq(Rm′)

give rise to the same morphism fA.

To show that the definition of fA does not depend on the choice of the resolution (3.3),

consider another resolution of A,

· · ·→ P
⊕k′j
i′j

d′j−→ P
⊕k′j−1

i′j−1

d′j−1−−−→ · · ·
d′1−→ P

⊕k′0
i′0

d′0−→ A → 0, (3.4)

and denote by f ′A : F1(A) → F2(A) the induced morphism. In order to see that fA = f ′A, we start

by proving that there exist a third resolution,

· · ·→ P
⊕k′′j
i′′j

d′′j−→ P
⊕k′′j−1

i′′j−1

d′′j−1−−−→ · · ·
d′′1−→ P

⊕k′′0
i′′0

d′′0−→ A → 0, (3.5)

and morphisms sj : P
⊕k′′j
i′′j

→ P
⊕kj
ij

and tj : P
⊕k′′j
i′′j

→ P
⊕k′j
i′j

, for any j > 0, fitting into the following

commutative diagram.

· · ·
d′j+1 // P

⊕k′j
i′j

d′j // P
⊕k′j−1

i′j−1

d′j−1 // · · ·
d′1 // P

⊕k′0
i′0

d′0

��
· · ·

d′′j+1 // P
⊕k′′j
i′′j

tj

OO

sj

��

d′′j // P
⊕k′′j−1

i′′j−1

tj−1

OO

sj−1

��

d′′j−1 // · · ·
d′′1 // P

⊕k′′0
i′′0

s0

��

t0

OO

d′′0 // A

· · ·
dj+1

// P
⊕kj
ij dj

// P
⊕kj−1

ij−1 dj−1

// · · ·
d1

// P⊕k0
i0

d0

@@ (3.6)

In fact, we can actually argue as follows. Let F ′′0 := P
⊕k′0
i′0
×AP⊕k0

i0
. By (1) of Definition 2.9, there

exists an epimorphism d′′0 : P
⊕k′′0
i′′0
� F ′′0 � A with maps s0 and t0 sitting, by definition, in the

commutative diagram

P
⊕k′0
i′0

d′0

��
P
⊕k′′0
i′′0

s0

��

t0

OO

d′′0 // A

P⊕k0
i0

d0

??

Let us now explain how we deal with the inductive step. Assume we have constructed the

following commutative diagram.
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· · ·
d′j+1 // P

⊕k′j
i′j

d′j // P
⊕k′j−1

i′j−1

d′j−1 // · · ·
d′1 // P

⊕k′0
i′0

d′0

��
P
⊕k′′j−1

i′′j−1

tj−1

OO

sj−1

��

d′′j−1 // · · ·
d′′1 // P

⊕k′′0
i′′0

s0

��

t0

OO

d′′0 // A

· · ·
dj+1

// P
⊕kj
ij dj

// P
⊕kj−1

ij−1 dj−1

// · · ·
d1

// P⊕k0
i0

d0

@@

We can define P
⊕k′′j
i′′j

, d′′j , sj and tj as follows. Set K ′j−1 := ker d′j−1, K ′′j−1 := ker d′′j−1 and Kj−1 :=

ker dj−1. By definition, we have dj−1(sj−1(K ′′j−1)) = d′j−1(tj−1(K ′′j−1)) = 0 and thus sj−1 and tj−1

induce two morphisms r′j−1 : K ′′j−1 → K ′j−1 and rj−1 : K ′′j−1 → Kj−1. Consider the fibre products

F ′j−1 := P
⊕k′j
i′j
×K′j−1

K ′′j−1, Fj−1 := P
⊕kj
ij
×Kj−1 K

′′
j−1

along the maps d′j , r
′
j−1 and dj , rj−1, respectively. Since d′j and dj are epimorphisms onto K ′j−1

and Kj−1 respectively, we get epimorphisms F ′j−1 � K ′′j−1 and Fj−1 � K ′′j−1. Take the fibre
product F ′′j−1 := F ′j−1 ×K′′j−1

Fj−1 which then comes with an epimorphism onto K ′′j−1. By (1) of

Definition 2.9, we get an epimorphism d′′j : P
⊕k′′j
i′′j
� F ′′j−1 � K ′′j−1 with maps sj and tj making

(3.6) commutative.
Denoting by f ′′A : F1(A) → F2(A) the morphism constructed using (3.5), we get a diagram

F1(P
⊕k′′0
i′′0

)
F1(d′′0 )

//

F1(s0)

%%

f
⊕k′′0
i′′0

��

F1(A)

id

||

f ′′A

��

F1(P⊕k0
i0

)
F1(d0) //

f
⊕k0
i0 ��

F1(A)

fA

��
F2(P⊕k0

i0
)

F2(d0)
// F2(A)

F

F2(P
⊕k′′0
i′′0

)
F2(d′′0 )

//

F2(s0)

99

F2(A)

id

bb

where all squares and trapezoids but F are commutative. Due to hypothesis (ii) and Lemma 3.2
there exists a unique morphism F1(A) → F2(A) making the following diagram commutative.

F1(P
⊕k′′0
i′′0

)

F2(s0)◦f⊕k′′0
i′′0 ��

F1(d′′0 )
// F1(A)

��
F2(P⊕k0

i0
)

F2(d0)
// F2(A)

Since F2(s0)◦f⊕k
′′
0

i′′0
= f⊕k0

i0
◦F1(s0) by the naturality of f on C, both fA and f ′′A have this property

and then they coincide. Similarly, one can prove that f ′′A = f ′A.
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Therefore fA = f ′A, and so f̃(A) := fA : F1(A) → F2(A) is well defined for every A ∈ F =
Db(E) ∩A. It is also easy to see that f̃ : F1|F → F2|F is a natural transformation. Indeed, let
u : A → B be a morphism of F. Consider a resolution of B,

· · ·→ P
⊕hj
lj

ej−→ P
⊕hj−1

lj−1

ej−1−−→ · · · e1−→ P⊕h0
l0

e0−→ B → 0,

where lj ∈ I and hj ∈ N for every j ∈ N. We can find a resolution of A,

· · ·→ P
⊕kj
ij

dj−→ P
⊕kj−1

ij−1

dj−1−−−→ · · · d1−→ P⊕k0
i0

d0−→ A → 0,

and morphisms gj : P
⊕kj
ij

→ P
⊕hj
lj

defining a morphism of complexes compatible with u. Indeed,

set E0 := A ×B P⊕h0
l0

to be the fibre product along the morphisms u and e0. By (1) of

Definition 2.9, we get an epimorphism P⊕k0
i0

→ E0 providing, by composition, the desired

morphisms d0 and g0 : P⊕k0
i0

→ P⊕h0
l0

. Then we proceed by induction as in (3.6).
We can now consider the diagram

F1(P⊕k0
i0

)
F1(d0) //

f
⊕k0
i0

%%

F1(g0)

��

F1(A)

fA

{{

F1(u)

��

F2(P⊕k0
i0

)
F2(d0) //

F2(g0)
��

F2(A)

F2(u)

��
F2(P⊕h0

l0
)

F2(e0)
// F2(B)

F

F1(P⊕h0
l0

)
F1(e0)

//
f
⊕h0
l0

99

F1(B)

fB

cc

where all squares and trapezoids butF are commutative. Using the same argument as above, we
can take m > N(A), N(B) and truncate the resolutions of A and B at step m. Then, applying
(ii) and Lemma 3.2, we see that there is a unique morphism F1(A) → F2(B) completing the
following diagram to a commutative square.

F1(P⊕k0
i0

)

F2(g0)◦f⊕k0
i0 ��

F1(d0) // F1(A)

��
F2(P⊕h0

l0
)

F2(e0)
// F2(B)

Since F2(g0) ◦ f⊕k0
i0

= f⊕h0
l0
◦ F1(g0), both F2(u) ◦ fA and fB ◦ F1(u) have this property. It follows

that F2(u) ◦ f̃(A) = f̃(B) ◦ F1(u), thus proving that f̃ : F1|F → F2|F is a natural transformation.
It is clear by construction that f̃ |C = f and that f̃ is unique with this property.

Since the objects of D0 are precisely (up to isomorphism) shifts of objects of F, we just
need to define f0(A[k]) for A ∈ F and k ∈ Z. Of course, we must set f0(A[k]) := f̃(A)[k], and
we just have to show that f0(B[k]) ◦ F1(u) = F2(u) ◦ f0(A) for all objects A,B ∈ F and every
u ∈ Hom(A,B[k]). Notice that, for simplicity, we are not making explicit the natural isomorphism
Fi(A[k]) ∼= Fi(A)[k], for i = 1, 2.

Now, there is nothing to prove if k < 0 (because then u = 0) or k = 0 (because we have
already seen that f̃ is a natural transformation), so we assume that k > 0. Actually we can
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reduce to the case k = 1, thanks to the fact that one can always factor u as u = uk ◦ · · · ◦ u1,
where (for j = 1, . . . , k) uj ∈ Hom(Cj−1[j − 1], Cj [j]) and C0 = A, . . . , Ck = B are objects of
F (see Step 4 in the proof of [LO10, Proposition B.1]). Now, completing u to a distinguished

triangle B → C
v−→ A

u−→ B[1], C is again an object of F. Then by axiom (TR3) there exists a
morphism h : F1(A) → F2(A) such that the diagram

F1(B) //

f̃(B)
��

F1(C)
F1(v) //

f̃(C)
��

F1(A)

h
��

F1(u) // F1(B[1])

f0(B[1])

��
F2(B) // F2(C)

F2(v) // F2(A)
F2(u) // F2(B[1])

commutes. Since Hom(F1(B[1]),F2(A)) = 0 by hypothesis, h is the unique morphism such that
h ◦ F1(v) = F2(v) ◦ f̃(C). Hence h = f̃(A) = f0(A), and we conclude that f0(B[1]) ◦ F1(u) =
F2(u) ◦ f0(A). 2

Let us specialize to the case of isomorphisms.

Corollary 3.6. With the same hypotheses on E, A and T, let F1,F2 : Db(E) → T be

exact functors and let f : F1|C
∼−→ F2|C be an isomorphism of functors. Assume that F1

satisfies condition (1) of (M). Then there exists a unique isomorphism compatible with shifts

f0 : F1|D0

∼−→ F2|D0 extending f .

Proof. Since f is an isomorphism, we can use Lemma 3.1 in the above argument to show that
there is an isomorphism F1(A) ∼= F2(A), for all A ∈ Db(E)∩A. Thus (ii) in Proposition 3.5 follows
from (1) in (M). Therefore, by the above proposition, there is a unique natural transformation
compatible with shifts f0 : F1 → F2 extending f . Uniqueness, applied also to f−1, f ◦ f−1 and
f−1 ◦ f , immediately implies that f0 is an isomorphism. 2

3.3 The criterion: extension to the whole derived category

In order to extend the natural transformation f of Proposition 3.5 to Db(E), the exact functors
have to satisfy one more assumption.

Proposition 3.7. Let T be a triangulated category and let E be a full exact subcategory of
an abelian category A satisfying (E1)–(E3). Let F1,F2 : Db(E) → T be exact functors with a
natural transformation f : F1|C → F2|C. Assume, moreover, the following:

(i) F1 and F2 both satisfy condition (1) of (M);

(ii) for any A,B ∈ Db(E) ∩A and any integer k < 0,

Hom(F1(A),F2(B)[k]) = 0;

(iii) for all C ∈ Db(E) with trivial cohomologies of positive degrees, there is i ∈ I such that

Hom(F1(C),F2(Pi)) = 0

and i satisfies condition (1) of Definition 2.9 for H0(C).

Then there exists a unique natural transformation of exact functors g : F1 → F2 extending f .

Proof. For n ∈ N, denote by Dn the (strictly) full subcategory of Db(E) with objects the
complexes A with the following property: there exists a ∈ Z such that Hp(A) = 0 for p < a or
p > a+ n. We will prove by induction on n that f extends uniquely to a natural transformation
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compatible with shifts fn : F1|Dn → F2|Dn . Once we do this, it is obvious that for every object
A of Db(E) we can define g(A) := fn(A) if A ∈ Dn, and that g is then the unique required
extension of f .

The case n = 0 having already been proved in Proposition 3.5, we come to the inductive step
from n− 1 to n > 0. For every object A ∈ Dn we need to define fn(A) : F1(A) → F2(A). To this

end, we can assume that Hp(A) = 0 for p < −n or p > 0. If A = {· · ·→ A0 d0

−→ A1
→ · · · }, let

s : P⊕ki � ker d0

(for some i ∈ I and k ∈ N) be an epimorphism such that Hom(F1(A),F2(Pi)) = 0. Notice
that s can be found as follows: after choosing an epimorphism P⊕lj � ker d0 (with j ∈ I and

l ∈ N), take i ∈ I satisfying condition (iii) for A ⊕ P⊕lj (so that, in particular, there is an

epimorphism P⊕ki � P⊕lj ), and define s to be the composition P⊕ki � P⊕lj � ker d0. Denoting

by t : P⊕ki → A the composition of s with the natural morphism ker d0
→ A, it is then clear that

H0(t) : P⊕ki → H0(A) is an epimorphism. It follows that we have a distinguished triangle,

C[−1] → P⊕ki
t−→ A

t1−→ C, (3.7)

with C ∈ Dn−1. Hence, by the inductive hypothesis and using axiom (TR3), we obtain a
commutative diagram whose rows are distinguished triangles,

F1(C)[−1] //

fn−1(C)[−1]

��

F1(P⊕ki )
F1(t) //

fn−1(P⊕k
i )

��

F1(A)

fA
��

F1(t1) // F1(C)

fn−1(C)

��
F2(C)[−1] // F2(P⊕ki )

F2(t) // F2(A)
F2(t1) // F2(C)

for some fA : F1(A) → F2(A). Observe that, since Hom(F1(A),F2(P⊕ki )) = 0 by assumption, fA
is the unique morphism such that the square on the right commutes.

In order to prove that fA does not depend on the choice of s, assume that s′ : P⊕k
′

i′ � ker d0

is another epimorphism such that Hom(F1(A),F2(Pi′)) = 0, thus inducing another morphism

f ′A : F1(A) → F2(A). We claim that we can find a third epimorphism s′′ : P⊕k
′′

i′′ � ker d0 such that
Hom(F1(A),F2(Pi′′)) = 0 (inducing f ′′A : F1(A) → F2(A)) and fitting into a commutative diagram

P⊕k
′′

i′′

w′

��

w //

s′′

''

P⊕ki

s

��
P⊕k

′

i′ s′
// ker d0

This can be easily seen if one takes i′′ ∈ I satisfying condition (iii) for A ⊕ P⊕lj , where j ∈ I

and l ∈ N are such that there exists an epimorphism P⊕lj � P⊕ki ×ker d0 P⊕k
′

i′ (then s′′ is an

epimorphism because the natural map P⊕ki ×ker d0 P⊕k
′

i′ � ker d0 is an epimorphism). Observing

that the morphisms t′ : P⊕k
′

i′ → A and t′′ : P⊕k
′′

i′′ → A (induced, respectively, by s′ and s′′)
obviously satisfy t ◦ w = t′′ = t′ ◦ w′, by axiom (TR3) there is a commutative diagram whose
rows are distinguished triangles

P⊕k
′′

i′′
t′′ //

w
��

A
t′′1 //

id

��

C ′′ //

v

��

P⊕k
′′

i′′ [1]

w[1]
��

P⊕ki
t // A

t1 // C // P⊕ki [1]
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for some v : C ′′ → C. As the diagram

F1(A)

f ′′A
��

F1(t′′1 )
// F1(C ′′)

fn−1(C′′)
��

F1(v) // F1(C)

fn−1(C)

��
F2(A)

F2(t′′1 )
// F2(C ′′)

F2(v) // F2(C)

commutes (the square on the left by definition of f ′′A, the square on the right because fn−1 is a
natural transformation by induction) and since v ◦ t′′1 = t1, we obtain

fn−1(C) ◦ F1(t1) = fn−1(C) ◦ F1(v) ◦ F1(t′′1) = F2(v) ◦ F2(t′′1) ◦ f ′′A = F2(t1) ◦ f ′′A.

On the other hand, fA is the only morphism with the property that fn−1(C)◦F1(t1) = F2(t1)◦fA.
It follows that fA = f ′′A and similarly f ′A = f ′′A, thereby proving that fA = f ′A. Therefore we can
set fn(A) := fA, and more generally fn(A[k]) := fA[k] for every integer k, thus defining fn on
every object of Dn.

To conclude the inductive step it is enough to show that fn is a natural transformation,
because then it is clear by definition that fn is compatible with shifts, that fn|C = fn−1|C = f
(actually also fn|Dn−1 = fn−1) and that fn is unique with these properties. So we have to prove
that

fn(B) ◦ F1(u) = F2(u) ◦ fn(A) (3.8)

for every morphism u : A → B of Dn. If (3.8) holds for a morphism u of Dn, we say that fn is
compatible with u.

Recall that in Db(E) we can write u = w1 ◦ w−1
2 , where w1 and w2 are (represented by)

morphisms of complexes and w2 is a quasi-isomorphism (hence w1 and w2 are again in Dn).
Thus fn is compatible with u if it is compatible both with w−1

2 (or, equivalently, with w2) and
with w1. In other words, there is no harm in assuming directly that u is a morphism of complexes,

denoted by A = {· · · → A0 d0

−→ A1
→ · · · } and B = {· · · → B0 e0−→ B1

→ · · · }. We can also
assume that, as before, Hp(A) = 0 for p < −n or p > 0. Moreover, we denote by c the greatest
integer such that Hc(B) 6= 0 (of course, if B ∼= 0 there is nothing to prove). Now our aim is
to show that the problem of verifying (3.8) can be reduced to a similar problem with another
‘simpler’ morphism in place of u. To this end we distinguish two cases according to the value of c.

Case 1: c < 0. Choose j ∈ I satisfying (1) of Definition 2.9 for K := ker d0 ×ker e0 B
−1, let

P⊕lj � K be an epimorphism, and take i ∈ I satisfying condition (iii) for A ⊕ P⊕lj . Then,

reasoning as before, we get an epimorphism s : P⊕ki � ker d0 (notice that K → ker d0 is an
epimorphism because B−1

→ ker e0 = im e−1 is an epimorphism, as c < 0) which can be used to
define fA. Moreover, denoting by t : P⊕ki → A the morphism (of complexes) induced by s, it is
clear that u ◦ t is given by a morphism w : P⊕ki → ker e0 ⊆ B0 which factors through the natural
morphism K → ker e0. In particular, there exists w′ : P⊕ki → B−1 such that w = e−1 ◦ w′. This
proves that u◦ t is homotopic to 0, whence it is 0 in Db(E). From this and from the distinguished
triangle (3.7) it follows that u = v ◦ t1 for some v : C → B (with C ∈Dn−1). As fn is compatible
with t1 by definition of fA = fn(A), in order to check (3.8) it is therefore enough to show that
fn is compatible with v. Notice that, if A ∈ Dm for some 0 < m 6 n, then C ∈ Dm−1. On the
other hand, if A ∈ D0 (hence A is isomorphic to an object of F), then C ∈ D0 and C[−1] is
isomorphic to an object of F. So in this last case, passing from u to v[−1], c increases by 1.

Case 2: c > 0. Choose an epimorphism P⊕lj � ker ec (with j ∈ I and l ∈ N) and take i ∈ I
satisfying condition (iii) for A[c] ⊕ B[c] ⊕ P⊕lj . Then, as usual, we can find an epimorphism
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s′ : P⊕ki � ker ec which can be used to define fB[c]. Denoting by t′ : P⊕ki [−c] → B the morphism
induced by s′, and extending it to a distinguished triangle

C ′[−1] → P⊕ki [−c] t′−→ B
t′1−→ C ′

(with C ′ ∈ Dn−1), we claim that (3.8) follows once one proves that fn is compatible with
v′ := t′1 ◦ u : A → C ′. To see this, observe that in the diagram

F1(A)

fn(A)

��

F1(u) // F1(B)

fn(B)

��

F1(t′1)
// F1(C ′)

fn(C′)
��

F2(A)
F2(u) // F2(B)

F2(t′1)
// F2(C ′)

the square on the right commutes by definition of fB[c][−c] = fn(B), whence (assuming
compatibility of fn with v′)

F2(t′1) ◦ (fn(B) ◦ F1(u)− F2(u) ◦ fn(A)) = fn(C ′) ◦ F1(v′)− F2(v′) ◦ fn(A) = 0.

It follows that fn(B)◦F1(u)−F2(u)◦ fn(A) factors through F2(t′), and then it must be 0 (which
means that (3.8) holds) because Hom(F1(A),F2(P⊕ki [−c])) = 0 by the choice of i. Observe that,
as above, if B ∈ Dm for some 0 < m 6 n, then C ′ ∈ Dm−1, whereas, if B ∈ D0, then C ′ ∈ D0

and, passing from u to v′, c decreases by 1.

To finish the proof, note that, applying the above procedure, one obtains a morphism having
the source in Dn−1 and the same target (in Case 1) or the same source and the target in Dn−1 (in
Case 2). So it is enough to show that, repeating the procedure a sufficient number of times, one
necessarily encounters both cases (because then one is reduced to checking compatibility of fn
with a morphism of Dn−1, where it holds by induction). Indeed, if one always encounters Case 1
(the argument is completely similar for Case 2), then in a finite number (at most n) of steps the
source becomes an object of D0. Applying another finite number of steps, one eventually gets
c = 0, namely Case 2. 2

In the paper we will need the following special case of the above result.

Corollary 3.8. With the same hypotheses on E, A and T, let F1,F2 : Db(E) → T be exact
functors and let f : F1|C

∼−→ F2|C be an isomorphism. Assume, moreover, that F1 satisfies (M).
Then there exists a unique isomorphism of exact functors g : F1

∼−→ F2 extending f .

Proof. As f is an isomorphism, we can apply Corollary 3.6 so that F1(A) ∼= F2(A), for all
A ∈ Db(E) ∩A. Hence hypotheses (i) and (ii) in Proposition 3.7 follow from (M). Analogously,
for (iii) we use the fact that F1(Pi) ∼= F2(Pi) by assumption. Thus Proposition 3.7 applies
and we get a unique natural transformation of exact functors g : F1 → F2 extending f . The
fact that g is an isomorphism is again a formal consequence of uniqueness, as in the proof of
Corollary 3.6. 2

In the case E = A, we will give a sufficient condition under which (M) is automatically
satisfied. We leave it to the reader to formulate a similar statement which ensures that the
hypotheses of Proposition 3.7 are satisfied.

Lemma 3.9. Let F : Db(A) → T be an exact functor admitting a left adjoint and satisfying (�).
Assume, moreover, that {Pi}i∈I is an almost ample set in A. Then F satisfies (M) as well.
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Proof. Observing that part (1) of (M) coincides with (�) because E = A, it remains to prove part
(2) of (M). Denoting by F∗ : T → Db(A) the left adjoint of F, we claim that Hp(F∗ ◦ F(A)) = 0
for any A ∈ A and for any p > 0. Indeed, otherwise there would exist A ∈ A and m > 0 with a
non-zero morphism F∗ ◦F(A) → Hm(F∗ ◦F(A))[−m] (it is enough to let m be the largest integer
such that Hm(F∗ ◦ F(A)) 6= 0). But then

0 6= Hom(F∗ ◦ F(A), Hm(F∗ ◦ F(A))[−m]) ∼= Hom(F(A),F(Hm(F∗ ◦ F(A)))[−m])

by adjunction, contradicting (�).
The above implies more generally that Hp(F∗ ◦ F(C)) = 0, for any C ∈ Db(A) having trivial

cohomologies of positive degrees and any p > 0. To see this, we can proceed by induction on
the smallest integer n such that C is an object of Dn (the full subcategory of Db(E) = Db(A)
defined at the beginning of the proof of Proposition 3.7). Indeed, we can assume without loss of
generality that H0(C) is the greatest non-trivial cohomology of C. Then C is isomorphic to an
object of A if n = 0, so the statement has already been proved in this case. If n > 0 we have a
distinguished triangle

C ′ → C → H0(C) → C ′[1]

with C ′ having non-trivial cohomologies only of negative degrees and C ′ ∈ Dn−1. By induction,
for p > 0, we have Hp(F∗ ◦ F(C ′)) = Hp(F∗ ◦ F(H0(C))) = 0. Thus Hp(F∗ ◦ F(C)) = 0.

Then for such an object C and for any i ∈ I, we have

Hom(F(C),F(Pi)) ∼= Hom(F∗ ◦ F(C), Pi) ∼= Hom(H0(F∗ ◦ F(C)), Pi).

For the last isomorphism above, take the distinguished triangle

C ′′ → F∗ ◦ F(C) → H0(F∗ ◦ F(C)) → C ′′[1],

where again C ′′ has cohomologies of degrees smaller than zero. Hence

Hom(C ′′, Pi) ∼= Hom(C ′′[1], Pi) ∼= 0.

Therefore part (2) of (M) is satisfied if one takes i ∈ I as in Definition 2.9 for H0(F∗ ◦F(C))⊕
H0(C). 2

Combining the above result with Corollary 3.8 immediately gives a proof of Proposition 3.3.

3.4 The geometric case and some examples
In this section we want to clarify which abelian category A and exact subcategory E have to be
taken in order to use the results in § 3.3 to prove Theorems 1.1 and 1.2.

Therefore let X be a quasi-projective scheme and let Z be a projective subscheme of X.
Assume further that OiZ ∈ Perf (X) for all i > 0. Set

A := CohZ(X), E := PerfZ(X) ∩CohZ(X).

Proposition 3.10. Under the above assumptions, E is a full exact subcategory of A, (E1)–(E3)
are satisfied and PerfZ(X) = Db(E) ⊆ Db(A).

Proof. The subcategory E is closed under extensions, hence E is a full exact subcategory of A (see
[Kel96, § 4]). Condition (E1) follows from the fact that, if f is an admissible epimorphism in E,
then ker f ∈ E. As OiZ ∈ Perf (X) for all i > 0, (E2) holds true taking {Pi}i∈I = Amp(Z,X,H)
defined in (2.3) (with H an ample divisor on X).
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Obviously Db(E) is a full subcategory of PerfZ(X). To show that they are actually equal, one
has to apply an induction argument similar to that in the first part of the proof of Proposition 3.7.
To give a hint, let Dn be the (strictly) full subcategory of PerfZ(X) with objects the complexes
A with the following property: there exists a ∈ Z such that Hp(A) = 0 for p < a or p > a + n.
Given A ∈ PerfZ(X), there exists n > 0 such that A ∈ Dn, and one can prove that A ∈ Db(E)
by induction on n. Indeed, if n = 0, there is nothing to prove. Otherwise we can assume without
loss of generality that Hp(A) = 0 for p < −n or p > 0. Then A sits in a distinguished triangle

C[−1] → P⊕ki → A→ C,

where Pi ∈ Amp(Z,X,H), k ∈ N and C ∈ Dn−1.
As for (E3), one can prove more generally that for every A ∈ Db(E) = PerfZ(X) there exists

an integer N(A) such that HomDb(A)(A,B[i]) = 0, for every i > N(A) and every B ∈ A. Indeed,
this follows from the isomorphism

HomDb(A)(A,B[i]) ∼= HomDb(X)(OX ,A∨ ⊗ B[i]),

which holds because A is perfect. More precisely, the cohomologies of A∨ ⊗ B being bounded
with bound depending only on A, the vanishing of HomDb(X)(OX ,A∨ ⊗ B[i]), for i > N(A),
can be deduced by induction on the cohomologies of A∨ ⊗ B using the Grothendieck vanishing
theorem (see, for example, [Har77, III, Theorem 2.7]). 2

Remark 3.11. In view of Proposition 2.12, it is easy to see that, if X, Z, E and A are as
above, then condition (∗) in the introduction implies (M). Indeed, in this case (1) in (∗) and (M)
coincide. As for (2), consider C ∈ Db(E) with trivial cohomologies of positive degrees. Then,
by Proposition 2.12, there is an integer N1 such that for all i < N1 and j � i, part (1) of
Definition 2.9 holds true for H0(C) and Pk := O|i|Z(jH) ∈ Amp(Z,X,H), where k = (i, j). By
(2) in (∗), we can take another integer N2 such that, for i′ < N2 and j′ � i′,

Hom(F(C),F(Pk′)) = 0,

where k′ = (i′, j′). Considering min{N1, N2}, this shows that (2) of (M) holds as well. Therefore,
in the proof of Theorems 1.1 and 1.2 we can freely use the results in § 3.3.

It may be useful to keep in mind some examples of exact functors satisfying (∗).

Example 3.12. In this example we assume that X1 is a quasi-projective scheme with a projective
subscheme Z1 such that OiZ1 ∈ Perf (X1), for all i > 0, and T0(OZ1) = 0.

(i) Using (2) in Definition 2.9 (which holds thanks to Proposition 2.12), it is very easy to
verify that full functors F : PerfZ1(X1) → PerfZ2(X2) satisfy (∗) for any scheme X2 containing
a closed subscheme Z2.

(ii) For the same reason, a trivial example of a functor with the property (∗) but which is
not full is id⊕ id : PerfZ1(X1) → PerfZ1(X1).

(iii) Following the same argument as in [CS07, § 4], in the supported setting one may take
exact functors Db

Z1
(X1) → Db

Z2
(X2) induced by exact full functors CohZ1(X1) → CohZ2(X2),

where X1 and X2 are smooth quasi-projective varieties. These functors obviously satisfy (∗).

We conclude this section with the following easy result making clear that in the smooth case
without support conditions, (�) is equivalent to (∗) in the introduction.
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Proposition 3.13. Let X1 be a smooth projective scheme such that dim(X1) > 0 and let X2

be a scheme containing a closed subscheme Z2. Then an exact functor F : Db(X1) → Db
Z2

(X2)
satisfies (∗) if and only if it satisfies (�).

Proof. Clearly it is enough to show that (�) implies (2) in (∗). Since Z1 = X1, O|i|Z1
(jH1) =

OX1(jH1), for all i, j ∈ Z, and when j varies they give rise to an almost ample set. Hence it is
enough to show that for any A ∈ Db(X1) with trivial cohomologies of positive degrees, there is
N ∈ Z such that Hom(F(A),F(OX1(iH1))) = 0 for any i < N . Observing that F has a left adjoint
F∗ by [BV03] (see also [CS07, Remark 2.1]), the same argument as in the proof of Lemma 3.9
ensures that F∗ ◦ F(A) has trivial cohomologies of positive degrees.

Assume, without loss of generality, that H0(F∗ ◦ F(A)) is the last non-trivial cohomology.
Then we have a distinguished triangle

A′ → F∗ ◦ F(A) → H0(F∗ ◦ F(A)) → A′[1]

where A′ has non-trivial cohomologies only of negative degrees. Hence Hom(A′,B) = 0, for all
B ∈ Coh(X1).

By the last statement in Proposition 2.12 (and (2) of Definition 2.9), there is an integer N
such that, for all i < N we have Hom(H0(F∗ ◦ F(A)),OX1(iN1)) = 0. By the above remark and
adjunction, we then have

0 = Hom(F∗ ◦ F(A),OX1(iN1)) ∼= Hom(F(A),F(OX1(iN1))),

for all i < N . This is precisely (2) in (∗). 2

Example 3.14. In view of Proposition 3.13 and [CS07, Proposition 5.1], a non-trivial class of
exact functors satisfying (∗) is provided by the functors Db(X1) → Db(X2) induced by exact
functors Coh(X1) → Coh(X2). Here we assume that X1 and X2 are smooth projective varieties
and that dim(X1) > 0.

As a consequence of Proposition 3.13, Theorem 1.1 generalizes the main result of [CS07]
when the twists from the Brauer groups are trivial.

4. Enhancements and existence of Fourier–Mukai kernels

In this section we show how to construct Fourier–Mukai kernels for functors satisfying the
condition (∗) defined in the introduction. This extends several results already present in the
literature. Moreover, we show that, in the supported setting, the Fourier–Mukai kernels have
to be quasi-coherent rather than coherent. We also need to recall some basic facts about dg
categories. As an application of this machinery and of the results in the previous sections, we
get the proof of Theorem 1.2. Here and for the rest of the paper, we fix a universe such that all
dg categories are small dg categories with respect to this universe (see [LO10, Appendix A]).

4.1 Dg categories
In this section we give a quick introduction to some basic definitions and results about dg
categories and dg functors. For a survey on the subject, see [Kel06].

Recall that a dg category is a k-linear category A such that, for all A,B ∈ Ob(A), the
morphism spaces Hom(A,B) are Z-graded k-modules with a differential d : Hom(A,B) →

Hom(A,B) of degree 1 and the composition maps are morphisms of complexes. Notice that
the identity of each object is a closed morphism of degree 0.
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Example 4.1. (i) Any k-linear category has a (trivial) structure of dg category, with morphism
spaces concentrated in degree 0.

(ii) For a dg category A, one defines the opposite dg category A◦ with Ob(A◦) = Ob(A)
while HomA◦(A,B) := HomA(B,A).

(iii) Following [Dri04], given a dg category A and a full dg subcategory B of A, one can form
the quotient A/B which is again a dg category.

(iv) Given an abelian category A, one can consider the dg category Cdg(A) of complexes of
objects in A, its full dg subcategory Acdg(A) of acyclic complexes and the dg quotient Ddg(A) :=
Cdg(A)/Acdg(A). When A = QcohZ(X), for X a scheme containing a closed subscheme Z, we

denote the dg categories Cdg(A), Acdg(A) and Ddg(A) respectively by Cdg
Z (X), Acdg

Z (X) and

Ddg
Z (X).

Given a dg category A we denote by H0(A) its homotopy category. The objects of H0(A)
are the same as those of A, while the morphisms from A to B are obtained by taking the zeroth
cohomology H0(HomA(A,B)) of the complex HomA(A,B). If A is pretriangulated (see [Kel06]
for the definition), then H0(A) has a natural structure of triangulated category.

Example 4.2. Given an abelian category A, the dg categories Cdg(A), Acdg(A) and Ddg(A) are
pretriangulated and, as explained, for example, in [Kel06, § 4.4], there is an exact equivalence
between the derived category D(A) and the homotopy category H0(Ddg(A)). In particular, when

X is a scheme containing a closed subscheme Z, the dg category Ddg
Z (X) is pretriangulated and

H0(Ddg
Z (X)) ∼= DZ(Qcoh(X)) (here one uses the fact that DZ(Qcoh(X)) is naturally equivalent

to D(QcohZ(X)) by Proposition 2.7).

A dg functor F : A → B between two dg categories is the datum of a map Ob(A) → Ob(B)
and of morphisms of complexes of k-modules HomA(A,B) → HomB(F(A),F(B)), for A,B ∈
Ob(A), which are compatible with the compositions and the units.

A dg functor F : A → B induces a functor H0(F) : H0(A) → H0(B), which is exact (between
triangulated categories) if A and B are pretriangulated.

A dg functor F : A → B is a quasi-equivalence, if the maps Hom(A,B) → Hom(F(A),F(B))
are quasi-isomorphisms, for every A,B ∈ A, and H0(F) is an equivalence. One can consider
the localization Hqe of the category of dg categories over k with respect to quasi-equivalences
[Toë07]. Given a dg functor F, we will denote with the same symbol its image in Hqe. In
particular, if F is a quasi-equivalence, we denote by F−1 the morphism in Hqe which is the
inverse of F.

For a small dg category A, one can consider the pretriangulated dg category Mod-A of
right dgA-modules. A right dg A-module is a dg functor M : A◦ →Mod-k, whereMod-k is the
dg category of dg k-modules. The full dg subcategory of acyclic right dg modules is denoted by
Ac(A), andH0(Ac(A)) is a full triangulated subcategory of the homotopy categoryH0(Mod-A).
Hence the derived category of the dg category A is the Verdier quotient

D(A) := H0(Mod-A)/H0(Ac(A)).

A right dg A-module is representable if it is contained in the image of the Yoneda dg functor

Y : A →Mod-A A 7→ HomA(−, A) =: YA.

A right dg A-module is free if it is isomorphic to a direct sum of dg modules of the form YA[m],
where A ∈ A and m ∈ Z. A right dg A-module M is semi-free if it has a filtration

0 = M0 ⊆ M1 ⊆ · · · = M
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such that Mi/Mi−1 is free, for all i. We denote by SF(A) the full dg subcategory of semi-free
dg modules, while SFfg(A) ⊆ SF(A) is the full dg subcategory of finitely generated semi-free dg
modules. Namely, there is n such that Mn = M and each Mi/Mi−1 is a finite direct sum of dg
modules of the form YA[m]. The dg modules which are homotopy equivalent to direct summands
of finitely generated semi-free dg modules are called perfect and they form a full dg subcategory
Perf dg(A).

Following [Kel06, Toë07], given two dg categories A and B, we denote by rep(A,B) the
full subcategory of the derived category D(A◦ ⊗k B) of A-B-bimodules C such that the functor
(−) ⊗A C : D(A) → D(B) sends the representable A-modules to objects which are isomorphic
to representable B-modules. An object in rep(A,B) is called a quasi-functor. By [Toë07],
morphisms in Hqe are in natural bijection with isomorphism classes of quasi-functors. Thus,
with a slight abuse of notation, we sometimes call quasi-functor a morphism in Hqe. Notice that
a quasi-functor M ∈ rep(A,B) induces a functor H0(M) : H0(A) → H0(B), well defined up to
isomorphism.

For F : A → B a dg functor, there exist dg functors

F∗ : Mod-A →Mod-B, F∗ : Mod-B →Mod-A,

also respectively denoted by IndF and ResF. While F∗ is simply induced by composition with F,
the reader can see [Dri04, § 14] for the definition and properties of F∗. In particular, F∗ is left
adjoint to F∗ and commutes with the Yoneda embeddings, up to dg isomorphism. Moreover, F∗

preserves semi-free dg modules and F∗ : SF(A) → SF(B) is a quasi-equivalence if F : A → B is
such.

Given two pretriangulated dg categories A and B and an exact functor F : H0(A) → H0(B),
a dg lift of F is a quasi-functor G ∈ rep(A,B) such that H0(G) ∼= F.

An enhancement of a triangulated category T is a pair (A, α), where A is a pretriangulated
dg category and α : H0(A) → T is an exact equivalence. The enhancement (A, α) of T is
unique if for any enhancement (B, β) of T there exists a quasi-functor γ : A → B such that
H0(γ) : H0(A) → H0(B) is an exact equivalence. We say that the enhancement is strongly
unique if, moreover, γ can be chosen so that α ∼= β ◦H0(γ). Often, in an abuse of notation, we
will say that a pretriangulated dg category A is an enhancement of a triangulated category T
when there is an exact equivalence H0(A) ∼= T.

Example 4.3. If A is a dg category, SF(A) and Perf dg(A) are enhancements, respectively, of
D(A) and D(A)c.

Example 4.4. Let A be a pretriangulated dg category and B a full pretriangulated dg subcategory
of A. By [Dri04], there exists a natural exact equivalence between the Verdier quotient
H0(A)/H0(B) and H0(A/B). Hence A/B is an enhancement of H0(A)/H0(B).

Example 4.5. By Example 4.2, Ddg(A) (for A an abelian category) is an enhancement of D(A).

Moreover, if X is a scheme containing a closed subscheme Z, Ddg
Z (X) is an enhancement of

DZ(Qcoh(X)). Let Perf dg
Z (X) be the full dg subcategory of Ddg

Z (X) consisting of compact objects

in H0(Ddg
Z (X)). Notice that Perf dg

Z (X) is an enhancement of PerfZ(X) and, as we mentioned

above, we will identify H0(Perf dg
Z (X)) with PerfZ(X), to make the notation simpler.

4.2 Enhancements and the proof of Theorem 1.2
Let X be a quasi-projective scheme containing a projective subscheme Z and let H be an
ample divisor on X. Assume that OiZ ∈ Perf (X) for all i > 0 (hence the full subcategory
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Amp(Z,X,H) defined in (2.3) is contained in PerfZ(X)). Consider the dg category A :=
CohZ(X) ∩ PerfZ(X) concentrated in degree zero and notice that, due to Remark 2.10 and
Proposition 2.12, the objects in A satisfy (1) in Definition 2.9. In an abuse of notation, we
will write Y for the functor A → D(A) which is the composition of H0(Y) : A = H0(A) →

H0(Mod-A) and of the quotient functor H0(Mod-A) → D(A). As a matter of notation, if T
is a triangulated category with arbitrary direct sums and L is a localizing subcategory of T, we
denote by π : T → T/L the quotient functor. Recall that a full triangulated subcategory S of a
triangulated category T is localizing if it is closed under arbitrary direct sums.

Lemma 4.6. There exists an exact equivalence ϕ : DZ(Qcoh(X)) → D(A)/L, for some localizing
subcategory L ⊆ D(A), such that we have an isomorphism of functors π ◦ Y ∼= ϕ|A. Moreover,
DZ(Qcoh(X)) has a unique enhancement.

Proof. By Proposition 2.12, the category Amp(Z,X,H) ⊆ A is a set of compact generators for
the Grothendieck category QcohZ(X). Then take the abelian category Mod-A of modules over
A, i.e. k-linear contravariant functors from A to the category of k-modules. As explained in [CS],
there is a Serre subcategory N of Mod-A such that QcohZ(X) ∼= Mod-A/N. By [LO10, Lemma
7.2], we then have an equivalence

D(QcohZ(X)) ∼= D(Mod-A)/DN(Mod-A), (4.1)

where DN(Mod-A) is the full subcategory of D(Mod-A) consisting of complexes with
cohomologies in N. As observed at the beginning of [LO10, § 7], there exists a natural equivalence
ψ : D(Mod-A) → D(A). Hence we set L to be the full subcategory of D(A) corresponding to
DN(Mod-A) under ψ.

We define ϕ to be the composition of (4.1) with the equivalences D(Mod-A)/DN

(Mod-A) ∼= D(A)/L (induced by ψ) and DZ(Qcoh(X)) ∼= D(QcohZ(X)) (see Proposition 2.7).
The fact that there is an isomorphism of functors π ◦ Y ∼= ϕ|A is observed in [CS], where
the above construction is analysed further. Notice that the Yoneda embedding Y : A → D(A)
coincides with the classical Yoneda embedding A → Mod-A, composed with the natural inclusion
Mod-A ↪→ D(Mod-A) and with ψ.

The second part of the statement is a straightforward consequence of [LO10, Theorem 7.5].
2

As a consequence, we have an equivalence

α : PerfZ(X) → (D(A)/L)c (4.2)

induced by ϕ (i.e. we set α := ϕ|PerfZ(X)). This is because ϕ, being an equivalence, sends compact
objects to compact objects. By Lemma 4.6, we have an isomorphism of functors α−1◦π◦Y ∼= idA

(where α−1 denotes a quasi-inverse of α).
Let L′ be the lift of the localizing subcategory L toMod-A. Let D be the full dg subcategory

of SF(A)/(SF(A) ∩ L′) (which, by Examples 4.3 and 4.4, is an enhancement of D(A)/L)
consisting of the compact objects in H0(SF(A)/(SF(A)∩L′)). Obviously, D is an enhancement
of (D(A)/L)c in a natural way. In view of this, we will identify H0(D) with (D(A)/L)c.

Lemma 4.7. If (B, β) is an enhancement of PerfZ(X), there exists a quasi-functor δ : D → B
such that H0(δ) is an exact equivalence and there is an isomorphism of functors A → H0(B)

H0(δ) ◦ π ◦ Y ∼−→ (α ◦ β)−1 ◦ π ◦ Y. (4.3)
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Proof. Due to [CS], the category L is compactly generated in D(A) ∼= D(Mod-A) and Lc =
L∩D(A)c. Hence we can apply [LO10, Theorem 6.4] to the exact equivalence (α◦β)−1, providing
the quasi-functor δ : D → B in the statement. Indeed, H0(δ) is fully faithful (by (1) in [LO10,
Theorem 6.4]), satisfies (4.3) (by (2) in [LO10, Theorem 6.4]) and is essentially surjective (by
(3) in [LO10, Theorem 6.4] and the fact that (α ◦ β)−1 is an equivalence). 2

We now want to prove Theorem 1.2 and so we assume further that T0(OZ) = 0. Let us
reproduce the statement here for the convenience of the reader.

Theorem 4.8. Let X be a quasi-projective scheme containing a projective subscheme Z such
that OiZ ∈ Perf (X), for all i > 0, and T0(OZ) = 0. Then PerfZ(X) has a strongly unique
enhancement.

Proof. Let (B, β) be an enhancement of PerfZ(X). By Lemma 4.7, there exists a quasi-functor
δ : D → B such that H0(δ) is an exact equivalence satisfying (4.3).

By Proposition 3.10, there is a natural exact equivalence ε : Db(E) → PerfZ(X), for the
exact category E = PerfZ(X) ∩CohZ(X). Setting $ := α ◦ ε, we have $−1 ◦ π ◦ Y ∼= idA.

Put F1 := H0(δ) ◦$ and F2 := (α ◦ β)−1 ◦$. Then (4.3) becomes

F1|A
∼−→ F2|A. (4.4)

By Corollary 3.8, it extends to a unique isomorphism F1
∼= F2. Notice that this is the point

where we use the fact that T0(OZ) = 0 as, under this assumption, A is an almost ample set
(by Proposition 2.12 and Remark 2.10) and, using this, every full functor certainly satisfies (M)
(see Remark 3.11 and Example 3.12). Therefore there exists an isomorphism between H0(δ) and
(α ◦ β)−1.

This proves that the enhancement of PerfZ(X) is strongly unique. Indeed, suppose that
(B1, β1) and (B2, β2) are enhancements of (D(A)/L)c. By the above discussion, there are quasi-
equivalences δi : D → Bi and unique isomorphisms H0(δi) ∼= β−1

i ◦ α−1. To conclude, if we set
δ̃ := δ2 ◦ δ−1

1 : B1 → B2, we have β2 ◦H0(δ̃) ∼= β1. 2

In view of Example 2.11, it is straightforward to deduce the following special instance of
Theorem 1.2.

Corollary 4.9. Let X be a quasi-projective scheme containing a projective subscheme Z such
that T0(OZ) = 0 and either X is smooth or X = Z. Then PerfZ(X) has a strongly unique
enhancement.

If X = Z, then this is nothing more than one of the main results in [LO10, Theorem 9.9].

4.3 The Fourier–Mukai kernels
The aim of this subsection is to prove the following result, which is the first part of Theorem 1.1.

Proposition 4.10. Let X1 be a quasi-projective scheme containing a projective subscheme Z1

such that OiZ1 ∈ Perf (X1), for all i > 0. Assume that X2 is a scheme containing a closed
subscheme Z2. Then, for any exact functor F : PerfZ1(X1) → PerfZ2(X2) satisfying (∗) there
exist E ∈ DZ1×Z2

(Qcoh(X1 ×X2)) and an isomorphism of exact functors F ∼= Φs
E .

To construct the Fourier–Mukai kernel realizing F as a Fourier–Mukai functor we will make
use of some ideas from [LO10, §§ 4, 6 and 9]. Space does not permit us to reproduce the arguments
in [LO10] in full detail. Thus, for the convenience of the reader, we outline here the main steps
in the proof of Proposition 4.10.
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The first passage consists in the construction of a quasi-functor Fdg
1 which will turn out to

be a dg lift of F. This is done in § 4.3.1 following [LO10, § 4]. Then we will show, in § 4.3.2, the

existence of the above mentioned isomorphism. The first main ingredient at this point is that

the dg enhancement of the category of perfect complexes with support conditions is constructed

out of a set satisfying (1) of Definition 2.9. The second ingredient consists in showing that F and

F1 := H0(Fdg
1 ) are isomorphic on such a set. For this we need to apply some tricks from [LO10,

§ 6]. Hence, using the fact that the functor F satisfies (∗), the results in § 3 apply, proving that

F ∼= F1. Finally, we prove in § 4.3.3 that F1 is of Fourier–Mukai type. This essentially follows, as

in [LO10, § 9], from an application of [Toë07].

We will discuss the relevant points where one can avoid the fully faithful assumption on F
which is present in [LO10]. In any case, it is important to observe that the steps in the following

proof where such an assumption may be relevant are where we make use of [LO10, § 6]. On the

other hand, only two results from that part of [LO10] are used here: Lemmas 6.1 and 6.2. While

the former is quite innocuous, one needs to observe that (∗) (together with [CS]) is enough to

apply the latter.

4.3.1 The dg lift. We keep the same notation as in § 4.2, with X1 and Z1 playing the same

roles as X and Z there. Set F′ := F◦α−1, where α is defined in (4.2). Since the essential image of

π ◦Y is contained in (D(A)/L)c, we can define the full dg subcategory B := {F′(π(YA)) : A ∈A}
of Perf dg

Z2
(X2) (see Example 4.5).

Let C be the full dg subcategory of Perf dg
Z2

(X2) such that H0(C) is classically generated

by the objects in B. By definition the functor F′ : (D(A)/L)c → PerfZ2(X2) factors through

H0(C), giving rise to the functor

A
π◦Y−−→ (D(A)/L)c

F′−→ H0(C) ↪→ PerfZ2(X2)

which, in turn, factors through a functor G1 : A → H0(B), which can be viewed as a dg functor

in a trivial way.

Consider the dg category τ60B with the same objects as B but such that Homτ60B(E ,F) =

τ60HomB(E ,F) (here τ60 is the gentle truncation). Let p : τ60B → H0(B) and l : τ60B → B be

the natural dg functors. Due to Lemma 4.6 and part (1) of (∗), p is a quasi-equivalence. Thus,

we get the quasi-functor

G2 : SF(A) −→ SF(H0(B)) → SF(τ60B) −→ SF(B),

where G2 = l∗ ◦ (p∗)−1 ◦ G∗1 and (p∗)−1 is the inverse in Hqe of p∗.

Since L =H0(L′) is compactly generated by [CS], the argument in [LO10, Lemma 6.2] applies

and the quasi-functor G2 factors through the dg quotient SF(A)/(SF(A) ∩ L′). Hence we get a

quasi-functor

G3 : SF(A)/(SF(A) ∩ L′) −→ SF(B).

It is important to stress here that, in the proof of [LO10, Lemma 6.2], the assumption that F
is fully faithful is not needed and (∗) suffices to conclude. This is because the proof relies on

[LO10, Proposition 3.4], where part (1) of (∗) is enough.

The quasi-functor G3 restricts to a quasi-functor G3 : D → Perf dg(B). Indeed, it is

enough to observe that by definition H0(G3)(π(YA)) ∈ H0(Perf dg(B)), for all A ∈ A. Now,

[LO10, Proposition 1.16] applies and gives a quasi-equivalence ψ : C → Perf dg(B). Take the
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quasi-functor

G4 : D
G3−→ Perf dg(B)

ψ−1

−−→ C ↪→ Perf dg
Z2

(X2), (4.5)

where, as usual, ψ−1 is the inverse in Hqe of the quasi-equivalence ψ.
We apply Lemma 4.7 to the enhancement Perf dg

Z1
(X1) of PerfZ1(X1), getting a quasi-functor

δ : D → Perf dg
Z1

(X1), whence

Fdg
1 := G4 ◦ δ−1 : Perf dg

Z1
(X1) −→ Perf dg

Z2
(X2).

4.3.2 The isomorphism. Consider the exact functor

H0(G4) : (D(A)/L)c(= H0(D)) −→ PerfZ2(X2).

As a consequence of [LO10, Lemma 6.1] (see also [LO10, Proposition 3.4]) and of the definition
in (4.5), we get an isomorphism

θ : F′ ◦ π ◦ Y ∼−→ H0(G4) ◦ π ◦ Y,

as functors from A to PerfZ2(X2). Again, it is important to observe that we do not need to
have F (and thus F′) fully faithful to apply [LO10, Lemma 6.1], the isomorphism above being a
simple consequence of the definition of G4.

From the isomorphisms (4.3) and α−1 ◦π ◦Y ∼= idA (see Lemma 4.6), θ gives an isomorphism

F|A
∼−→ F1|A,

where F1 := H0(Fdg
1 ). Applying Corollary 3.8, we get an isomorphism of exact functors

F
∼−→ F1. (4.6)

4.3.3 The kernel. By [LO10, Proposition 1.17] (which can be applied here in view of

Proposition 2.1), we get a quasi-equivalence ϕi : SF(Perf dg
Zi

(Xi))
∼−→ Ddg

Zi
(Xi). Hence, composing

the extension of Fdg
1 to semi-free modules with ϕi, we get a quasi-functor

Fdg
2 : Ddg

Z1
(X1)

ϕ−1
1−−→ SF(Perf dg

Z1
(X1)) → SF(Perf dg

Z2
(X2))

ϕ2−→ Ddg
Z2

(X2)

whose H0 commutes with direct sums (because it has a right adjoint, according to [LO10, § 1]).
Observe that

F1
∼= H0(Fdg

2 )|PerfZ1
(X1). (4.7)

The easier case Xi = Zi, for i = 1, 2, generalizing [LO10, Corollary 9.13] (see, in particular,
parts (2) and (3) there) can be treated as follows.

Corollary 4.11. Let X1 be a projective variety and let X2 be a scheme. For any exact functor
F : Perf (X1) → Perf (X2) satisfying (∗), there exist E ∈ Db(X1 × X2) and an isomorphism of
exact functors F ∼= ΦE .

Proof. By [Toë07, Theorem 8.9] there is E ∈ D(Qcoh(X1 × X2)) such that ΦE
∼= H0(Fdg

2 ).

As F1
∼= H0(Fdg

1 ) ∼= H0(Fdg
2 )|Perf (X1), the isomorphism (4.6) gives F ∼= ΦE . The fact that E is

bounded coherent is obtained by the same argument as in the proof of [LO10, Corollary 9.13],
part (4). We do not explain this here as this is a special instance of Lemma 5.4. 2

Returning to the general setting, we can make the following observation.
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Remark 4.12. Assume that X is a quasi-projective scheme containing a projective subscheme Z
such that OiZ ∈ Perf (X), for all i > 0. The exact functors ι : DZ(Qcoh(X)) −→ D(Qcoh(X))
and ι! : D(Qcoh(X)) → DZ(Qcoh(X)), defined in § 2.1, have natural dg lifts (denoted using the

same symbols) ι : Ddg
Z (X) −→ Ddg(X) and ι! : Ddg(X) → Ddg

Z (X).
To show this one can use [KL12, § 4]. More precisely, the presence of the right adjoint ι!

yields a semi-orthogonal decomposition of D(Qcoh(X)), where DZ(Qcoh(X)) is a non-trivial
piece. By [KL12, Proposition 4.10], such a decomposition can be written at the dg level as a

gluing with one piece given by Ddg
Z (X), up to quasi-equivalence. Hence [KL12, Lemma 4.4],

combined with the uniqueness of the enhancements of D(Qcoh(X)) (see [LO10, Corollary 2.11])
and of DZ(Qcoh(X)) (see Lemma 4.6), provides the dg lifts for the functors ι and ι!. By the
construction, it is clear that the dg lifts of ι and ι! are not, in general, dg functors but just
quasi-functors.

In light of the above remark, consider the quasi-functor Fdg
3 making the following diagram

commutative.

Ddg(X1)
Fdg

3 //

ι!1
��

Ddg(X2)

Ddg
Z1

(X1)
Fdg

2 // Ddg
Z2

(X2)

ι2

OO
(4.8)

Clearly H0(Fdg
3 ) commutes with direct sums, as the same is true for ι!1 (by Lemma 2.3), H0(Fdg

2 )
and ι2. Notice also that if Z1 = X1, then ι!1

∼= id.

By [Toë07, Theorem 8.9], there exist Ẽ ∈ D(Qcoh(X1 ×X2)) and an isomorphism of exact
functors

ΦẼ
∼= H0(Fdg

3 ) : D(Qcoh(X1))
ι!1−→ DZ1

(Qcoh(X1))
H0(Fdg

2 )
−−−−−→ DZ2

(Qcoh(X2))
ι2−→ D(Qcoh(X2)).

It follows that, setting E := ι!1,2(Ẽ) ∈ DZ1×Z2
(Qcoh(X1 ×X2)), we have

H0(Fdg
2 ) ∼= ι!2 ◦ ι2 ◦H0(Fdg

2 ) ◦ ι!1 ◦ ι1 ∼= ι!2 ◦ ΦẼ ◦ ι1
∼= Φs

E

by Lemma 2.6.

Remark 4.13. The observant reader may notice that Toën’s result [Toë07, Theorem 8.9] was
originally proved by using different enhancements for D(Qcoh(X1)) and D(Qcoh(X2)). That
the same statement holds true for Ddg(X1) and Ddg(X2) is observed in [Kel06, Theorem 4.9].

Putting this together with the isomorphisms (4.6) and (4.7), we have proved Proposition 4.10.
By Example 2.11, the following consequence of Proposition 4.10 is immediate.

Corollary 4.14. Let X1 be a quasi-projective scheme containing a projective subscheme Z1

such that either X1 is smooth or X1 = Z1. Assume that X2 is a scheme containing a closed
subscheme Z2. Then, for any exact functor F : PerfZ1(X1) → PerfZ2(X2) satisfying (∗) there
exist E ∈ DZ1×Z2

(Qcoh(X1 ×X2)) and an isomorphism of exact functors F ∼= Φs
E .

4.4 The category generated by a spherical object
Let us start with a detour about the derived category of a smooth quasi-projective curve with
support condition on a closed point for which we can prove variants of Theorems 1.1 and 1.2.
Notice that in this case it is not true that the maximal zero-dimensional torsion subsheaf of
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OZ is trivial. In particular, it is easy to see that the construction in § 2.2 does not provide an
almost ample set. Thus we need a particular treatment that, unfortunately, works only for points
embedded in curves.

Proposition 4.15. Let p be a closed point in a smooth quasi-projective curve C.

(i) Let X be a scheme with a closed subscheme Z and let

F : Db
p(C) −→ PerfZ(X)

be an exact functor such that

HomPerfZ(X)(F(A),F(B)[k]) = 0, (4.9)

for all A,B ∈ Cohp(C) and all k < 0. Then there exist E ∈ Db
{p}×Z(Qcoh(C × X)) and an

isomorphism of exact functors F ∼= Φs
E .

(ii) The triangulated category Db
p(C) has a strongly unique enhancement.

Proof. By Proposition 2.12 the subcategory C of Cohp(C), whose objects are {Onp : n > 0},
satisfies property (1) in Definition 2.9. In particular, looking carefully at the construction in § 4.3,
this together with (4.9) is enough to provide an E ∈ Db

{p}×Z2
(Qcoh(C×X)) and an isomorphism

θ : F|C
∼−→ Φs

E |C.

To be precise, the fact that E is a bounded complex is a consequence of Lemma 5.3 below.
Set D0 to be the (strictly) full subcategory of Db

p(X) whose objects are isomorphic to shifts of
objects of Cohp(X). By Corollary 3.6, the isomorphism θ extends (uniquely) to an isomorphism
compatible with shifts

θ0 : F|D0

∼−→ Φs
E |D0 .

Since C is a smooth curve, any object F ∈ Db
p(C) can be written (in an essentially unique way)

as a finite direct sum of objects of D0. Thus θ0 extends (uniquely) to the desired isomorphism
F
∼−→ Φs

E , proving (i).
As for (ii), the same line of reasoning as in the proof of Theorem 1.2 in § 4.2 works, with

the only difference that the extension of the isomorphism (4.4) takes place due to Corollary 3.6
instead of Corollary 3.8. Then we argue as in the last part of the proof of (i), i.e. using the fact
that any object in Db

p(C) can be (uniquely) written as a finite direct sum of objects of D0. 2

Obviously, if C is a smooth quasi-projective curve, the Serre functor of Db
p(C) is the shift by

one and so Db
p(C) is a 1-Calabi–Yau category. Moreover, it is easy to verify that the skyscraper

sheaf Op ∈ Cohp(C) is a 1-spherical object when p is a k-rational point. Recall that, as we
mentioned in the introduction, an object S in a triangulated category T is d-spherical (where d
is a positive integer) if HomT(S, S[i]) is trivial if i 6= 0, d, while it is isomorphic to k otherwise.

Remark 4.16. Let T be an idempotent complete algebraic triangulated category (see [Kel06]
for its definition) and let S ∈ T be a d-spherical object. In this case, up to equivalence, the full
triangulated subcategory TS of T classically generated by S depends neither on the triangulated
category T nor on the d-spherical object S (see [KYZ09, Theorem 2.1]).

To prove Proposition 1.3, take S to be a 1-spherical object in an an idempotent complete
algebraic triangulated category T. If C = A1 and p is the origin, we observed before that Op is
a 1-spherical object and hence, by Remark 4.16, there exists an exact equivalence TS

∼= Db
p(C).

Now it is enough to apply Proposition 4.15.
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5. Uniqueness of Fourier–Mukai kernels

For functors satisfying (∗) and with X1 and X2 smooth, the uniqueness of Fourier–Mukai kernels
is proved via a direct computation in § 5.2. As a preliminary step, we study some basic properties
of Fourier–Mukai functors in the supported setting. In particular, in Lemma 5.3 we show that
the Fourier–Mukai kernels have bounded cohomology. We also make clear that, in general, one
cannot expect the kernel to have coherent cohomology.

5.1 Basic properties
Let X1 and X2 be schemes containing closed subschemes Z1 and Z2. As explained in the
following example, we cannot expect that in general the Fourier–Mukai kernel E of a functor
ΦE : PerfZ1(X1) → PerfZ2(X2) has (bounded and) coherent cohomology when Zi 6= Xi.

Example 5.1. Suppose that there exists E ∈ Db
Z1×Z1

(X1 ×X1) such that

Φs
E
∼= id: PerfZ1(X1) → PerfZ1(X1).

By [Rou08, Lemma 7.40], there exist n > 0 and En ∈ Db(nZ1 × nZ1) such that ι1,1(E) ∼= (in ×
in)∗(En), where in : nZ1 → X1 is the embedding. For any Fn ∈ Db(nZ1), we have

(in)∗(Fn) ∼= Φι1,1(E)((in)∗(Fn)) ∼= (in)∗ ◦ ΦEn(i∗n ◦ (in)∗(Fn)). (5.1)

Now take X1 = Pk, Z1 = Pk−1 and Fn := OnZ1(m), for m ∈ Z. An easy calculation shows
that i∗n ◦ (in)∗(Fn) ∼= OnZ1(m) ⊕OnZ1(m − n)[1]. Hence, to have (5.1) verified, we should have
either ΦEn(OnZ1(m)) = 0 or ΦEn(OnZ1(m−n)) = 0. But the following isomorphisms should hold
at the same time:

ΦEn(OnZ1(m))⊕ ΦEn(OnZ1(m− n))[1] ∼= OnZ1(m),

ΦEn(OnZ1(m+ n))⊕ ΦEn(OnZ1(m))[1] ∼= OnZ1(m+ n).

If ΦEn(OnZ1(m− n)) = 0, then from the second isomorphism we would have that OnZ1(m)[1] is
a direct summand of OnZ1(m+ n), which is absurd. Thus ΦEn(OnZ1(m)) = 0. As this holds for
all m ∈ Z, we get a contradiction.

On the other hand, it is easy to find a kernel of the identity functor. Indeed, denoting by
∆: X1 → X1 ×X1 the diagonal embedding, setting O∆ := ∆∗(OX1), and defining

I := ι!1,1(O∆) ∈ Db
Z1×Z1

(Qcoh(X1 ×X1)) (5.2)

(notice that I has bounded cohomologies by Lemma 2.3), we have the following result.

Lemma 5.2. There exists an isomorphism of exact functors

id ∼= Φs
I : Db

Z1
(Qcoh(X1)) → Db

Z1
(Qcoh(X1)).

Proof. Indeed, Φs
I
∼= ι!1 ◦ΦO∆

◦ ι1 by Lemma 2.6. This is enough to conclude, since ΦO∆

∼= id. 2

The following result proves, in particular, that in Theorem 1.1 the kernel E is actually in
Db
Z1×Z2

(Qcoh(X1 ×X2)).

Lemma 5.3. If E ∈ DZ1×Z2
(Qcoh(X1 ×X2)) is such that Φs

E(PerfZ1(X1)) ⊆ PerfZ2(X2), then

E ∈ Db
Z1×Z2

(Qcoh(X1 ×X2)). Moreover, if X1 = Z1, then E ∈ Db
X1×Z2

(X1 ×X2).
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Proof. By [Rou08, Theorem 6.8], for i = 1, 2, the category DZi
(Qcoh(Xi)) has a compact

generator Gi ∈ PerfZi(Xi) (see [BV03] for the case without support conditions). Moreover,

by the explicit description of the compact generator in the proof of [Rou08, Theorem 6.8], one

sees that G1 � G2 is a compact generator of DZ1×Z2
(Qcoh(X1 × X2)) (for the non-supported

case, see, for example, [BV03, Lemma 3.4.1] and [LP11, Theorem 3.7]).

By [Rou08, Proposition 6.9], the kernel E has bounded cohomology if and only if there exists

an interval [a, b] ⊂ R such that Hom(G1 �G2, E [k]) = 0, for any k 6∈ [a, b]. But now

Hom(G1 �G2, E [k]) ∼= Hom(ι1(G1)� ι2(G2), ι1,2(E)[k]) ∼= Hom(G2,Φ
s
E(G

∨
1 )[k])

which is non-trivial only for finitely many k ∈ Z.

Suppose that Z1 = X1. Then E ∈ Db
X1×Z2

(X1×X2) if and only if Ẽ := ι1,2(E) ∈ Db(X1×X2).

Since ι2 ◦Φs
E
∼= Φ

Ẽ
◦ ι1 ∼= Φ

Ẽ
, the functor Φ

Ẽ
sends perfect complexes to perfect complexes. Hence

we can assume, without loss of generality, that Zi = Xi, for i = 1, 2. Then it follows from [LO10,

Corollary 9.13 (4)], where the assumption that the functor is fully faithful is not used (see also

[CS12, Lemma 4.1]), that Ẽ ∈ Db(X1 ×X2). 2

We recall that a functor

F : Db
Z1

(Qcoh(X1)) −→ Db
Z2

(Qcoh(X2))

is bounded if there is an interval [a, b] ⊂ R such that, for any A ∈ QcohZ1
(X1), we have that if

H i(F(A)) 6= 0, then i ∈ [a, b]. We will need the following lemma.

Lemma 5.4. Assume that the base field k is perfect. Then every exact functor F : Db
Z1

(X1) →

Db
Z2

(Qcoh(X2)) or G : Db
Z1

(Qcoh(X1)) → Db
Z2

(Qcoh(X2)), commuting with arbitrary direct

sums, is bounded.

Proof. To deal with the first part, observe that, by Proposition 2.8, the category CohZ1(X1)

is generated, as an abelian category, by the image of the natural fully faithful functor

i∗ : Coh(Z1) ↪→ CohZ1(X1). This means that it is enough to show the boundedness of the

functor

F′ := F ◦ i∗ : Db(Z1) −→ Db
Z2

(Qcoh(X2)).

Now this is a straightforward consequence of [Rou08, Theorem 7.39] (here we need k to be

perfect). Indeed, by this result, there exist a positive integer d and a compact object G in

D(Qcoh(Z1)) such that any object of Db(Z1) is generated by G in at most d steps by taking

cones, shifts, direct summands and finite direct sums. Hence F′ is certainly bounded.

The second part, concerning exact functors between the bounded derived categories of quasi-

coherent sheaves, is proved using the same argument. Indeed, one applies Proposition 2.8 again

and is reduced to studying the boundedness of the exact functor

G′ : Db(Qcoh(Z1)) −→ Db
Z2

(Qcoh(X2)).

By [Rou08, Theorem 7.39], there exists a positive integer d such that any object of Db(Qcoh(Z1))

is generated by G in at most d steps by taking cones, shifts, direct summands, finite direct sums

and arbitrary multiples of the same object (see [Rou08, § 3.1.1]). As G′ commutes with arbitrary

direct sums, this is enough to conclude. 2
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5.2 The uniqueness of the Fourier–Mukai kernels
Assume that the base field k is perfect and that X1 and X2 are smooth quasi-projective schemes
containing projective subschemes Z1 and Z2. Consider E ∈ Db

Z1×Z2
(Qcoh(X1×X2)) and observe

that, obviously, E ∼= ι!1,2(Ẽ), where Ẽ := ι1,2(E) ∈ Db(Qcoh(X1 ×X2)). We get a Fourier–Mukai
functor

ΨE := ΦO∆�Ẽ
: D(Qcoh(X1 ×X1)) −→ D(Qcoh(X1 ×X2)). (5.3)

Let Ĩ := ι1,1(I) ∈ Db(Qcoh(X1 × X1)), where I is the complex defined in (5.2) (such that
Φs
I
∼= id by Lemma 5.2). We first prove the following result.

Lemma 5.5. We have ΨE(Ĩ) ∼= Ẽ and ΨE(F � G) ∼= F � Φ
Ẽ
(G) for every F ,G ∈ D(Qcoh(X1)).

Proof. A standard computation shows that, for every D ∈ D(Qcoh(X1 ×X1)),

ΨE(D) ∼= D ? Ẽ := (p1,3)∗(p
∗
1,2(D)⊗ p∗2,3(Ẽ)),

where pi,j denote the obvious projections from X1 × X1 × X2. The second assertion in the
statement is then clear. As for the first one, by Lemma 2.4 we have

Ĩ = ι1,1 ◦ ι!1,1 ◦∆∗(OX1) ∼= ∆∗ ◦ ι1 ◦ ι!1(OX1).

Moreover, it is easy to see that ∆∗(F) ? Ẽ ∼= p∗1(F) ⊗ Ẽ for every F ∈ D(Qcoh(X1)). It follows
that, using the same notation as in the proof of Lemma 2.6,

ΨE(Ĩ) ∼= p∗1 ◦ ι1 ◦ ι!1(OX1)⊗ Ẽ ∼= ῑ1 ◦ ῑ !
1(OX1×X2)⊗ Ẽ ∼= ῑ1 ◦ ῑ !

1(Ẽ) ∼= Ẽ ,

again by Lemma 2.4. 2

We can use this to prove the following result which is precisely the uniqueness statement in
Theorem 1.1.

Proposition 5.6. Let X1, X2, Z1 and Z2 be as above and let F : Db
Z1

(X1) → Db
Z2

(X2) be an

exact functor satisfying (∗). Assume that there are E1, E2 ∈ Db
Z1×Z2

(Qcoh(X1 ×X2)) such that

F ∼= Φs
E1
∼= Φs

E2 .

Then E1
∼= E2.

Proof. Since Ĩ is bounded, there exists a complex

L• := {· · ·→ Lj → Lj+1
→ · · ·→ Ln → 0} ∈ D(Qcoh(X1 ×X1)),

bounded above, such that L• ∼= Ĩ and, for any j ∈ Z, the sheaf Lj is of the form Pj�Mj , where Pj
and Mj are (possibly infinite) direct sums of sheaves in Amp(Z1, X1, H1) (use Proposition 2.12).

Using again the fact that Ĩ is a bounded complex, for m > 0 sufficiently large, the stupid
truncation in position −m,

M• := {0 → L−m → · · ·→ Ln → 0},

of L• is such that M• ∼= Ĩ ⊕ K[m], for some K ∈ Qcoh(X1 ×X1). Applying the functor ΨEi in
(5.3) to M• term by term, we get a complex of complexes

ΨEi(L−m) −→ · · · −→ ΨEi(Ln).
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Due to Lemma 5.5, a sufficiently large choice of m, the assumption (∗) and Lemma 3.1, this

complex has a unique (up to isomorphism) right convolution

Ai := Ẽi ⊕Ki[m],

with Ki = ΨEi(K) ∈ Db(Qcoh(X1 ×X2)).

Applying Lemma 3.2 under the hypothesis (∗), we get A1
∼= A2. By Lemma 5.4 (here we use

the fact that k is perfect), the functor ΨEi is bounded and so, for m large enough,

Hom(Ẽ1,K2[m]) ∼= Hom(K1[m], Ẽ2) ∼= 0.

Hence ι1,2(E1) = Ẽ1
∼= Ẽ2 = ι1,2(E2), which is equivalent to E1

∼= E2. 2

Remark 5.7. Following a suggestion by D. Orlov, we can show that if X1 is a projective scheme

such that T0(OX1) = 0, X2 is a scheme and ΦE : Perf (X1) −→ Db(X2) is an exact fully faithful

functor, then E ∈ D(Qcoh(X1 ×X2)) is uniquely determined (up to isomorphism).

Indeed, suppose that there exist F ∈ D(Qcoh(X1 × X2)) and an isomorphism ΦF
∼= ΦE .

Consider the quasi-functors

Φdg
E ,Φ

dg
F : Perf dg(X1) −→ Ddg(X2)

corresponding to E and F under the bijection given by [Toë07, Theorem 8.9]. Let C ⊆
Ddg(Qcoh(X2)) be the full dg subcategory whose objects are the same as those in the essential

image of ΦE . If Ψdg : C → Perf dg(X1) is a quasi-functor which is the inverse of Φdg
F in Hqe,

consider the composition

Fdg := Ψdg ◦ Φdg
E : Perf dg(X1) −→ Perf dg(X1)

which has the property ΦO∆

∼= id ∼= H0(Fdg). As in the proof of [LO10, Corollary 9.13], the

dg quasi-functor Fdg extends to Gdg : Ddg(X1) −→ Ddg(X1). On the other hand, by [Toë07,

Theorem 8.9], there exists (a unique) G ∈ D(Qcoh(X1 ×X1)) such that Gdg ∼= Φdg
G . Hence

ΦO∆
∼= H0(Fdg) ∼= ΦG

and, using for example [CS12, Theorem 1.2], we get G ∼= O∆. Therefore Gdg ∼= id and so Φdg
E
∼=

Φdg
F . Applying [Toë07, Theorem 8.9] again, we deduce E ∼= F .

Notice that the proof above does not work if the functor ΦE satisfies (∗) in the introduction

but it is not fully faithful. Nevertheless we expect the result to be true in this case as well.
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