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A b s t r a c t . Stimulated by recent high frequency radio polarization measurements of M83 and M51, 
we consider the influence of non-axisymmetric features (bars, spiral arms, etc...) on galactic mag-
netic fields. The time scale for the field amplification due to the non-axisymmetric velocity field is 
related to the time scale of angular momentum transport in the disk by the non-axisymmetric fea-
tures. Due to its dissipational character (cooling and angular momentum transport) the gas plays 
a major role for the excitation of non-axisymmetric instabilities. Since it is the gaseous component 
of the interstellar gas in which magnetic field amplification takes place we consider the interplay 
of gasdynamical processes triggered by gravitational instabilities and magnetic fields. A compar-
ison with the time scale for dynamo action in a disk from numerical models for disk dynamos 
gives the result that field amplification by non-axisymmetric features is faster in galaxies like 
M83 (strong bar) and M51 (compagnion and very distinct spiral structure), than amplification by 
an axisymmetric dynamo . Furthermore, we propose that axisymmetric gravitational instabilities 
may provide the turbulent magnetic diffusivity ηχ· Based on standard galaxy models we obtain 
a radially dependent diffusivity whose numerical value rises from 1025 c m 2 s - 1 to 1027 cm2«""1, 
declining for large radii. 

1. Introduction 

Recently Neininger (1992) and Neininger et al. (1991) reported most sensitive Λ2.8 
cm radio continuum measurements of M51 and M83, using the Effelsberg 100m 
telescope. At this frequency Faraday rotation is negligible, thus these polarization 
measurements show the intrinsic large-scale structure of the magnetic field. 

The magnetic field in M51 follows exactly the optical spiral arms. In particular, 
local deviations from the grand design spiral pattern are surprisingly well repro-
duced in the magnetic field morphology. It was concluded, that beside the action 
of a dynamo, the structure of the magnetic field may be explained as the response 
of the field to the particular dynamic pattern. 

In M83, a barred spiral, similar features were observed; the magnetic field closely 
follows the the optical structure. The field changes its direction by 90° at the ends 
of the bar and runs along the bar through the central region. Outside the bar it 
follows the optical arms. Again it was concluded, that gasdynamical processes which 
are related with the excitation of spiral structure or bars may be relevant for the 
observed magnetic field structure. 

It is the purpose of this contribution to consider possible interactions of axisym-
metric (clouds) and non-axisymmetric (spirals, bars, etc..) gravitational instabilities 
with galactic magnetic fields. 

2. Non-axisymmetric gravitational instabilities and spiral structure 

Spiral patterns are most prominent in galaxies which contain gas and are forming 
stars. In many cases they have an underlying "grand design", but the symmetry is 
almost always broken: fragmentary patterns and branching arms are very common. 
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A complete theory should account in a unified way for the underlying symmetries, 
the lack of perfection, and the importance of gas. 

The central twin problems of theories for spiral structure are the origin and 
persistence of the grand design. There is now little doubt that bars and compagnions 
are capable of driving grand-design spiral responses in gaseous and stellar disks (see 
Athanassoula 1984 for a review). 

Attempts to establish a theory of long-lived spiral density waves began with Lin 
and Shu (1964, 1966) who showed that tightly wrapped spiral density waves were 
admissible free oscillations of a stellar disk. Toomre (1969) however, demonstrated 
that such waves require continous regeneration, because they propagate radially 
with a substantial group velocity. Recurrent transient spirals have already been 
proposed by Goldreich and Lynden-Bell (1965), Julian and Toomre (1966) and 
Toomre (1981). They find substantial, but limited, growth as leading spirals swing 
to trailing in a shearing disk. The decline in the strength of the patterns is caused 
by a steady rise in random motion (heating) amongst the disk stars brought about 
by the fluctuating potential perturbations of the spirals themselves. 

The velocity dispersion in a stellar disk is conveniently expressed in terms of the 
parameter Q, which measures the ratio of radial component of velocity dispersion 
vs to the minimum required to suppress axisymmetric gravitational instabilities 
(Toomre 1964); viz. 

_ _VsK_ 

3.36GE ( ) 

here κ is the local epicyclic frequency, and Σ is the local surface density. A Q of 1 
is sufficient for axisymmetric stability, but non-axisymmetric instabilities continue 
until Q has risen to somewhere between 2 and 2.5. The value of Q has to be 
maintained under 2.5 if recurrent spiral activity is to be prolonged. This 
may be achieved in two different ways: 

1. Dissipation of the gas layer. Collisions between gas clouds will prevent them 
from acquiring high random velocities. 

2. Accretion. As material is added to the disk, the surface density will rise, which 
reduce the value of Q. 

Both effects are intrinsic properties of non-axisymmetric instabilities: 
Since the clouds crowd in the spiral arms they collide more often and since this 

kind of dissipation leads to a transfer of angular momentum, accretion will set in 
as a result of the excitation of spiral arms (see next section). 

Sellwood and Carlberg (1984) (SC) presented computer simulations of a self-
regulation mechanism for spiral instabilities in galactic disks. They allowed for 
cooling and accretion and argued that spirals are transient features in an evolv-
ing disk and that dissipation in the gas component is essential for the continued 
recurrence of spiral instabilities. 

SC observed continuous spiral activity for as long as the models run. Each 
individual spiral pattern lasts for less than a rotation period r ~ but 
patterns succeed each other so rapidly that models always have spiral 
appearance. 
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Thus, the role of gas is evident, only this component can cool fast enough to 
sustain the onset condition for non-axisymmetric instabilities. The Q value of the 
stellar and gaseous component is only loosely connected. Thomasson et al. (1991) 
reported numerical simulations in which the stellar Q stays constant, whereas the 
gaseous Q varies considerably with radius and time. 

2 . 1 . BARS 

Bars spontaneously form if, for self-gravitating masses, the criteria T/W > 0.14 and 
Q < 3 are fulfilled (Ostriker and Peebles 1973). Τ is the rotational kinetic energy 
and W is the potential energy. In other words, if most of the kinetic energy of the 
disk is in rotational rather than in random motion, the disk is strongly unstable to 
large-scale barlike modes. 

The bar leads to a gas response which is faster than the rotation outside coro-
tation CR (where the rotation frequency Ω is equal to the bar rotation frequency 
Ωρ) and lags it inside CR, thus giving rise to torques which act on the gas to 
drive inwards inside CR and outwards outside CR. The inflow time scale for any 
non-axisymmetric distortion, which is equal to the time scale for a redistribution of 
angular momentum in the disk, is given by (Lynden-Bell and Kalnajs 1972; Larson 

M ~ v^otR/G is the total mass interior to radius R; M disk ~ 2πΣ is the disk 
mass interior to R and vrot = ΛΩ is the rotation velocity. The non-axisymmetric 
disturbance of the gravitational potential produces a disturbance in the surface 
density δΣ. 

Eq. (2) shows that if most of the mass is in the disc, (M/Mdisk ~ 1) and if a non-
axisymmetric disturbance of large amplitude and wavelength is present Σ/δΣ ~ 1, 
the time scale for redistribution of angular momentum is of the same order as the 
orbital period, in accordance with the results of SC. 

The condition δΣ ~ Σ shows again the importance of the gaseous component. 
It has been shown by Lubow et al. (1986) that for a gas to star ratio of only 
15%, the gas contributes seven times more to self-gravity than the stars. The main 
reason for the importance of gas gravity is that a stellar disturbance is a fractionally 
small perturbation on an otherwise axisymmetric stellar disc, while the gas is fully 
participating. In that case only a small fraction of the stellar density generates a 
bar or a spiral wave, while much of the gas density generates a spiral field or a 
bar. So that the assumption δΣ ~ Σ is easily fulfilled for the gas, for even weak 
disturbances in the stars. 

3. Axisymmetric gravitational instabilities and star formation 

A galactic disk is unstable to axisymmetric gravitational instabilities (GI) if Q < 1 
(Toomre 1964). The GI leads to a growth of small density perturbations and causes 
a rotating disk to fragment into clumps. The angular momentum transport is then 
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provided by the shear and the viscosity produced this instability. The viscosity is 
related to the clouds that form in a locally gravitational unstable disk. The forming 
fragments have a scale and separation of order Ac given by 

and their velocity 

vc = ——. (4) 

The disk is marginally stable for vs = vc (we note that Q = jj*). 
We assume that the disc is kept on the border of GI, creating a cloudy medium 

with both cloud sizes and separation of order Ac. These clouds should provide the 
angular momentum transport by a two-dimensional random walk with a step length 
Ac and velocity vC} i.e. the viscosity is (Lin and Pringle 1987) 

ν ~ - λ^Ω(Λ). (5) 

From the onset condition Q < 1, Kennicut (1989) defined a critical gas surface 
mass density Ec. He found that in disk galaxies the observed surface mass density 
is larger than Ec. He concluded that the star forming threshold appears to be 
associated with the onset of large-scale GI in the gas disk. 

Thus, GI may serve as a large-scale source for turbulence in the interstellar 
medium; we will discuss this assumption and its application to dynamo action in 
galaxies in the last section. 

Here we proceed in relating the same dynamical processes which may be re-
sponsible for the disk structure to the magnetic field structure. 

4. Magnetic field amplification and spiral arms 

Any density disturbance in a magnetized disk, which moves with high velocity, in-
tensifies the component of magnetic field which is tangential to the disturbance. 
From the dynamical considerations it is clear, that any non-axisymmetric pertur-
bation leads to angular momentum transfer and thus to a radial inflow. 

Thus, it seems reasonble to approximate the dynamics of a disk galaxy which 
contains spiral arms or bars or is interacting, by a two-dimensional velocity field 
{yr, , vrot, 0). We use the induction equation, with dissipation neglected (Ruzmaikin 
et al. 1988, Sect. VII), 

ΛΌ 
- = V * ( V * B ) . 

For the azimuthal field component Βφ one gets 

δΒψ Ô dÇî 
- ^ = - ë - r ^ B , ) + B r r - . (6) 

with Br ~ const. 
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Fig. 1. The dynamo time scale tdynamo (Eq. (9)) (dotted line), the time scale r (Eq. (2) and 
(8)) for exponential growth of the toroidal field due to amplification by non-axisymmetric 
perturbations (broken line) and the rotation period P(R) (solid line) in a "standard" 
galactic disc. 

The solution to this equation grows exponentially as 

dtl 
Βφ — Β φ Ο(ΓΟ) 4- rBrr 

dr 
exp rBTr 

dQ, 
dr ' 

where the amplification time is 

- f f l " 

(7) 

(8) 

Eq. (8) describes the same time scale as Eq. (2). Thus, we compare this time scale 
with the time scale an αω-dynamo needs to amplify a magnetic field. Here we 
use the numerical simulations of Camenzind and Lesch (1992) which describe the 
time evolution of axisymmetric magnetic fields in galactic disks. It is known, that 
axisymmetric fields have the highest growth rate, i.e. the smallest time scale. Its 
typical growth time is (Camenzind and Lesch 1992) 

ynamo — 
^bulge 

VT(Rbulge) 
~ 10 yrs Rbuige 

2 
VT -1 

3 kpc Î3-102 6 cm2s-l\ (9) 

Rbuige is the bulge radius, where the differential rotation of the disk evolves 
into rigid rotation of the central bulge. There, the gradient of differential rotation 
is highest and thus, it acts as the source for the dynamo action. The amplified flux 
diffuses radially outwards. As the source of the turbulent diffusivity we take the 
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Fig. 2. The radial profile of the turbulent diffusivity ητ. Here it is assumed that axisym-
metric gravitational instabilities provide the viscosity ν (Eq. 5) in the disk and that the 
viscosity is equivalent to a turbulent diffusivity. 

axisymmetric gravitational instability. As mentioned above one can define a viscos-
ity driven by the GI. Since disk galaxies are locally unstable against GI (Kennicut 
1989) this assumption seems to be reasonable. 

In Fig. 1 we show the time scales τ (Eq. (2) and (8)), tdynamo (Eq. (9)). and 
the rotation period P(R) = 2π/Ω(Λ) for a rotation curve of the form (Ωο is the 
rotation frequency of the rigidly rotating central region) 

which presents a general rotation curve of a disk galaxy. Furthermore we assume an 
exponential for Σ. Obviously the amplication by a non-axisymmetric perturbation 
is much faster than an axisymmetric dynamo. 

In Fig. 2 we show the turbulent diffusivity as a function of radius, for a galaxy 
with an exponential disk and Ω(Λ) given by Eq. (10). The numbers we obtain with 
our assumption that GI are responsible for ητ are very close to the values of ητ 
deduced from observations of the turbulence in the interstellar medium (Ruzmaikin 
et al. 1988). 
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