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Abstract

The purpose of this paper is to prove (1) if q = 1 (mod 8) is a prime power and there exists
a Hadamard matrix of order (q - l)/2, then we can construct a Hadamard matrix of order
4q, (2) if q = 5 (mod 8) is a prime power and there exists a skew-Hadamard matrix of order
(q + 3)/2, then we can construct a Hadamard matrix of order 4(q + 2), (3) if q = 1 (mod 8) is
a prime power and there exists a symmetric C-matrix of order (q + 3)/2, then we can construct
a Hadamard matrix of order 4(q + 2).

We have 36, 36 and 8 new orders 4« for n < 10000, of Hadamard matrices from the first, the
second and third theorem respectively, which were known to the list of Geramita and Seberry.
We prove these theorems by using an adaptation of generalized quaternion type array and relative
Gauss sums.

1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): 05 B 20.

1. Notations

To begin with, we list notations which will be used frequently in this paper.
q: a power of a prime p,
F = GF(q): a finite field with q elements,
K = GF(q'): an extension of F of degree t > 2,
Fx: the multiplicative group of F,
Kx: the multiplicative group of K,
SK'- the absolute trace from K,
SF'- the absolute trace from F,
SK/F: the relative trace from K to F,

© 1989 Australian Mathematical Society 0263-6115/89 $A2.00 + 0.00

371

https://doi.org/10.1017/S144678870003086X Published online by Cambridge University Press

https://doi.org/10.1017/S144678870003086X


372 Mieko Yamada [2]

<!;: a primitive element of K,
A*: the transpose of a matrix A,
Im: the unit matrix of order m,
Jm: the matrix of order m with every element +1,
®: tensor product of matrices,
Jm(x) = 1 +x + --- + xm-K

2. An adaptation of generalized quaternion
type array with trimming

In the following theorem we give a Hadamard matrix of order 4(n + 1).

THEOREM 1. Let

and

andK = -LM/2. Note

u
tl

L =

M

that

(
-

-

V -
/ l

=
1
1

these

( A

-B*
-C*

\-D*

1
1
1
1

- 1
1

- 1
- 1

1
- 1 -

1 -
- 1

- 1 -
- 1 -

1 -
- 1

1
- 1
- 1 -

1 -

- P
- 1
- 1

1,

1 \
1
1
1 /

are Hadamard

B
A*
D

-C

C
-D'
A*
B*

•

•

matrices of order 4. Here
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is a matrix of order 4/j if A, B, C, D are matrices of order n. Moreover suppose
that the component matrices A.B.C.D satisfy the following conditions:

(i) A.B.C.D are normal matrices of order n whose elements are from

O.-i};
(ii) AB = BA, AC = CA, AD = DA*, BC = C*B, BD" = DB*,

CD = DC, A*B = BA*, A*D* = D*A, CB = BC*, B*D = D*B,
C*D = DC*\

(iii) AA* + BB* + CC* + DD* = 4(n + 1)IH- 4Jn;
(iv) Ae = 2e, Be = Ce = De = 0 where e is the column vector of length n

with every element +1.
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Then

\®M* H
is a Hadamard matrix of order 4(« + 1).

PROOF. See [6].

If A, B, C,D are circulant matrices, then the matrix H is the right regular
representation matrix of a particular element in a non-associative quater-
nion extension ring over the generalized quaternion ring. So we may regard
the matrix H as an adaptation of generalized quaternion type array. More
precisely see [6].

3. Gauss sums and relative Gauss sums

We define Gauss sums and relative Gauss sums over a finite field.

DEFINITION. Let x be a character of F and let £p = e27Ci/p. Then the Gauss
sum Tf(x) is defined by

When x — 1, the principal character, then Xf(x) — - 1 . And if x i1 1» then
we have Xf {X)IF(X) = Q- If * is a non-principal character of K, then the
ratio

of two Gauss sums is called the relative Gauss sum associated with x-
The following theorem on relative Gauss sums is very important.

THEOREM 2. Let X — XK be a character of K and let XF, the character x
restricted to F, be non-principal. Let 2C be a system of representatives of the
quotient group Kx/Fx. Then we have

QK/F(X) = £ XF(SK,Fa)x(a).

Moreover we have the norm relation QJC/F(X)®K/F(X) = Ql~x-

PROOF. See [7, 8].

We need the following corollary concerning a character sum.

COROLLARY TO THEOREM 2. Let x be a non-principal character of K and
denote by XF the character x restricted to F. We take an 21 decomposed in
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the two parts

0}, ^={a:SKIFa=\}.

Then we have
when yF ±\,

X(fi) =
\

PROOF. See [7, 8].

4. Lemmas

In the rest of this paper, we suppose t = 2. Let x be the character of K
such that x{£) — C<?-i where Cq-i is a primitive (q — l)th root of unity. We
define the numbers zm by

i ± i (mod«f+l).

Furthermore we define the polynomial
9

f(x)= ^2 xz« (modx"-1 - 1).
m=0

LEMMA 1. The polynomial f{x) has the following properties:
(1) f(x) contains every xZm exactly twice except for x° = 1 which appears

only once,
(2) / (x)Z(x- 1 ) = q + (q+ l ) / , - i (x) - 2J{q_l)/2(x

2) (modx^ 1 - 1).

PROOF. (1) Since z_m = zm (mod^ — 1), f(x) contains every xZm twice
except for x° = 1. We show that f(x) contains xZm "exactly" twice. Let G
be the subgroup of Kx generated by £9~l. This is characterized as the set of
elements with the relative norm 1. Assume zm = zmi (mod q — 1), that is

(modx G).

This is equivalent to

MK/F —-î rr,—(SK/FZM\_
{ 2^ )

NK/F(l + ^ 1 ) m ) = NK/F(\ + ^
-(«-l)m) = (1 +£(«-»)»»'
-{q-\)m _ t(9-l)m' + z
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Putting a = £(«-')'", f} = («(?-iKj t^e equatiOn above becomes

oc B

Thus we have a — /? or a = i , that is m = ±m' (mod^ + 1). This implies
that there exists no zm such that zm = zm> (mod#- 1), m ̂  ±m' (mod#+1).

(2) Now let x be the character of K such that x(€) — C where £ is an
arbitrary (q - l)th root of unity.

Since
9

= E
m=0 m=0

it suffices to verify

= E x(fi) E

We can do this easily from the corollary to Theorem 2.

LEMMA 2. />«/ f(x) = fo{x2) + xfi(x2) (modx*-1 - 1). By replacing x2

by x in the polynomials fo(x2) and f\ {x2), we define the polynomials

<pQ(x) = fo(x) - J(q-xy2{x) (modx^-1)/2 - 1),
1 ) / 2 - 1).

Then all the coefficients of q>o(x) and (p\{x), except for the constant term
of(po{x), are from {1,-1} and we have

= q- 2/(?_1)/2(x) (modx^-')/2 - 1).

PROOF. We have

<Po(x)<Po(x~l) + <Pi(

- (MX) + MX'1) + fi(x) + Mx~{))J(q-m{x) + 2/(V-l)/2(*)

= /oW/o(Jt"') + /i(x)/,(r1)-(«+l)Vi)/2W (rnod^-1'/2 - 1).

Notice that fo(x)fo(x~1) + fi(x)f\{x~l) is congruent to

/ ( J C ) / ( X ~ 1 ) (modx(?-1) /2 - 1),
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neglecting odd power terms. Thus we obtain from Lemma 1,

{q)/ - 1),

and

fo(x)9o(x-1) + <py{x)<pi{x-x) = q- 2J{g_l]/2(x) (mod***-1*'2 - 1).

5. Further lemmas

In this section, we assume that q = 1 (mod 4) and put n = (q + l)/2. We
let / be a primitive fourth root of unity and y/ be the quadratic character of
F. We define the polynomial g(x) by

g(x) = J2¥(SK/FHm)imxm (modx"-l).
m=0

Since n is odd, we can write g(x) in following form,

?m)xm + i" £ V(SK/F$4m+n)xmg(x) = J2 W(SK/F?m)xm + i" £ V(SK/F$4m+n)xm (mod*" - 1).
m=0 m=0

Moreover we define the polynomials

a(x) = J2 V(SK/F$4m)xm (mod*" - 1),
m=0

p{x) = J^ ir(SK/FZ4m+n)xm (modx" - 1).
m=0

Then we have g{x) = a(x) + infi(x) (mod*" - 1) and Q(JC) and fi(x) have
the following properties.

LEMMA 3. For the polynomial a(x) and fi(x), we have

(1) a(x-l) = a(x), /?(*-') = /?(*) (modx"-l),

(2) a(x)a(x-l) + fi(x)p(x-l) = q (modjc" - 1).

PROOF. Let x = X*Xn be the character of K such that x*{€) =
Xn(£) = C« where C« is an arbitrary nth root of unity. The character
restricted to F becomes the quadratic character y/ of F.

From Theorem 2, we get

= a(C) + i"P(Cn) = E V&K/FZW = eK/F(X).
m=0
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Since
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= (a(C) + i"fi(C)) (a(5) - inWn))

377

we have

and

M = 0.
Hence

a(x)a(x-1) + ft{x)f}{x-') = q (modx" - 1).

Next we can easily check

Therefore it leads to that

n - l

-1) =

n - 1

a(x-1) = £ v{SK/Ft4m)x-m =
m=0 m=0

rt-l n-l

P{X~X) =
m=0 m=0

)xm = a(x)

(modx" - 1),

m = fi(X)

(mod*" - 1).

6. The main theorems

THEOREM 3. Ifq = 1 (mod 8) is a prime power and there exists a Hadamard
matrix of order (q - l)/2, then we can consturct a Hadamard matrix of order
4q.

THEOREM 4.1fq = 5 (mod 8) is a prime power and there exists a skew-
Hadamard matrix of order (q + 3)/2, then we can construct a Hadamard
matrix of order 4{q + 2).
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THEOREM 5. Ifq = 1 (mod 8) is a prime power and there exists a symmetric
C-matrix of order (q+3)/2, then we can construct a Hadamard matrix of order

2).

Theorems 4 and 5 were announced and proved in a private communicaton
by Z. Kiyasu [3], but he has not published the proof. In particular when
(q + 3)/2 is a prime power, these theorems reduce to Kiyasu's Theorem 9.18
of [2] (without proof). In [3] he used KSW array.

In this paper we prove the more general three theorems all by using an
adaptation of generalized quaternion type array with a trimming and relative
Gauss sums.

We have 36, 36 and 8 new orders 4« for n < 10000, of Hadamard matrices
from Theorems 3, 4, and 5 respectively, unknown to the list of Geramita and
Seberry [1].

(1) New orders obtained from Theorem 3.

n: 233,809,953,1193,1889,2393,2417,2441,2729,2953,3209,3593,

3617,3881,4049,4217,4721,4889,5657,5849,6073,6089,6257,6449,

6473,6569,6977,7177,7417,7433,7753,8297,8609,8713,8761,9833.

(2) New orders obtained from Theorem 4.

n: 103,125,151,655,879,1231,1951,1999,2239,2271,2559,2799,2839,

2959,3039, 3183,3583,3679,4359,4735,4863,4911,5079,5311,5503,

5815, 5983,6199,6639,7519,8119,8223,8679,9279,9631,9903.

(3) New orders obtained from Theorem 5.

n: 579,2019,3043,4443,6339,7419, 8523,9819.

7. Proof of Theorem 3

We define the matrices A and B by using the polynomials <Po{x) and q>\(x)
in Lemma 2 and let

B={\ !
where T is the basic circulant matrix of order (q - l)/2.

Since there exists a Hadamard matrix Ho of order (q-1 )/2, by assumption,
we define the matrices C and D by

"(- ' . "•') ®H0,
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We can verify that the matrices A.B.C.D satisfy the conditions of Theorem
1. It is obvious that the condition (i) is satisfied. Notice that the product of
the matrix (J J) and the matrix (_l, ",') is equal to the zero matrix. Hence
we obtain

= C*B, CB = BC*. BD* = DB*, B*D =

which are all the zero matrix. From D = C or D = C*, we have

CD = DC, C'D = DC\

Since <po{T) and (p\{T) are circulant matrices,

AB = BA, A*B = BA*.

Furthermore we get

AC = CA = A*C = CA* = 2 ( _| - 1 } ® Ho,

AC* = C*A = A*C* = C*A* =

that is,
AC = CA, AD = DA*, A*D*=D*A.

Therefore A,B,C,D satisfy the condition (ii).
By Lemma 2,

AA* + BB* + CC* + DD*

~

If m is even (odd), then zm is also even (odd). Hence we have

q + 1 ffu q~ l

/ ( 1 ) =

= 0.

So we obtain At - 2e, Be — 0. It is obvious that Ce = De = 0. Thus we
construct a Hadamard matrix of order Aq by Theorem 1.
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8. Proof of Theorem 4

We define the matrices A and B by using the polynomials a(x) and /?(x)
in Lemma 3,

={-\ ~i
where T is the basic circulant matrix of order (q + l)/2.

The matrices C and D are denned as follows:

Let Q denote a skew-Hadamard matrix of order (g + 3)/2, assumed to exist.
We transform Q in a normalized form

where e is the column vector of length (q+1)/2 with every element 1. Notice
that

Se = 0, 55* = —^—A J

Similarly to the proof of Theorem 3, we verify that the matrices A,B,C,D
satisfy the conditions of Theorem 1. It is obvious that the condition (i) is
satisfied. From Lemma 2 the matrices A and B are symmetric. So that if

AB = BA, AC = CA, AC* = C*A, BC = CB, CB = BC*

are valid, then the condition (ii) is satisfied. Now since a{T) and fi{T) are
circulant matrices, we obtain AB = BA. We have also

{(! !)•*•(.', ?
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=2(! ! ) 8 S '

\ V

= 2 ( !

, - ,>'M! 1)®'}
{(!
(1

= 2(-\

(.', -,')«

where / is the unit matrix of order (q + l)/2.
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Next from Lemma 3, we get

AA* + BB* + CC* + DD*

l \)®SS*

By the definition of A and 5 , it is easy to check that Ae = 2e, Be - 0. On
the other hand, from Se = 0, we have Ce = De = 0. Hence Theorem 4 is
proved.

9. Proof of Theorem 5

Let A, B be the same as in the proof of Theorem 4. Let R be a C-matrix
of order (q + 3)/2, assumed to exist in Theorem 5. We transform R in a
normalized form

-at;)-
Similarly we define the matrices C and D:

C = ( l ! ) ® t / + ( - l Y ) ® 7 ^ " / 2 ' D = CorD = C*.

Now we proceed in the same way as in the proof of Theorem 4.
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