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1. Introduction

Recall that the spectrum, a(T), of a linear operator T in a complex
Banach space is the set of complex numbers X such that T—XI does not
have a densely defined bounded inverse. It is known [7, § 5.1] that a(T)
is a closed subset of the complex plane C. If T is not bounded, a(T) may
be empty or the whole of C. If a(T) =£ C and T is closed the spectral mapping
theorem,

(1) °{P(T))=P(o(T)),

is valid for complex polynomials p(z) [7, § 5.7]. Also, if T is closed and
X $ o(T), (T—XI)~l is everywhere defined.

In the case when T is a bounded normal operator on a complex Hilbert
space § (TT* = T*T) I proved recently by elementary methods [1,
Theorem 2] that, for a complex polynomial p (z, z) in z and z,

(2) a{j,(T,T*)] = {j>(X,X):Xea(T)}.

An unbounded normal operator on § is a densely defined closed operator
T such that TT* = T*T. The purpose of this paper is to give the best
generalisation of (2) for such operators. Precisely, we shall show that for an
unbounded normal operator T,

(3) o[p(T, T*)] =

(cl denotes closure) and that (3) is false if the closure operation is omitted
from the right hand side. We shall writep[a(T)] for the set {p[X, l):Xe a(T)}
in future.

In the case when p is a polynomial in a single variable z it is not difficult
to show that p[o(T)] is closed. In this case then, (3) is a generalisation of
(1), for unbounded normal operators, because no assumption is made
about a(T) in the proof of (3).

No use of the spectral theorem is made in this paper. This is done
deliberately in the hope that the spectral theorem for unbounded normal
operators may follow from (3) as in the bounded case it follows from (2)
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[1]. (Such a proof would need to be short as the null space projections we
shall use are already sufficient for a deduction of the spectral theorem [3]).

2. Preliminaries

Henceforth we assume that T is a normal, but not necessarily bounded,
operator on a complex Hilbert space §. We use the notation of [2, § 2].
Standard results about unbounded operators will be used without further
reference. Most of what is required will be found summarised in [2, § 2]
with further references. We require the polar decomposition

T = \T\U = U\T\

of T, with U unitary and | r | = (T*T)i, and the unique decomposition

A = A+-A~

of a self adjoint operator A, with A+ and A~ positive, self adjoint and
fft(A+) QW(A-), fR(A~) Q9l(A+) [2, Theorems 22 and 12].

For each complex X and non-negative r we define E(X,r) to be the
(orthogonal) projection on $l[(\T—XI\ —rl)+]. It follows readily from [2,
Lemmas 17, 18 and Theorem 23] that:

(4) E(X,r) ^

(5) E{X, r)x^x (r-+ oo)(a;e§);

that (T—XI) E (X, r) is a bounded normal operator with domain § such that

(6) \\(T-XI)E(X,r)\\^r;

and, writing F(X, r) — I—E(X, r),

(7) (\T-XI\F(X, r)x, F(X, t)x) ^ r\\F(X, r)x\\* (x e ©(T)).

As in the proof of [2, Theorem 23] it follows that for fixed X the projec-
tions E(X, r) (r ^ 0) commute with each other and with \T—XI\. (A stronger
result than this is contained in [3, Lemma 1].) It also follows that:

(8) {(T-XI)E(X, r)}* = {T*-U)E{X, r);

(9) \(T-XI)E(X, r)\ = \T-XI\E(X, r).

3. A counter-example

Suppose § is separable and let (en) be a complete orthonormal sequence
in §. Define T by
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for all x = 2£Li ^nen such that the series for Tx is convergent. It can
readily be seen that T is normal and unbounded and that

Now take p(z, z) = z+z. Then <S>\J>{T, T*)] = %{T) and

It follows that
a[p(T, T*)J = {2/ra : n = 1, 2, • • •} u {0}

This example shows that the closure operation cannot be omitted from (3).
Note also that, in this example, T~\-T* is not closed.

4. An extension theorem

We have just seen that if p(z, z) is a polynomial with complex coef-
ficients p(T, T*) need not be a closed operator, and hence, certainly, not
normal. We shall show that p(T, T*) has a closed extension and that this is
always normal.

LEMMA 1. If p(z, z) has degree n thenp(T, T*) has dense domain %{Tn).

PROOF. Because T is normal ®(T) = 3)(T*) [2, Lemma 21 and
Theorem 22, Corollary 2)]. Hence %(TTT*') = S)(7>+s). It follows that
%[p{T, T*)] = S)(r»). Finally ®( r n )2S) ( r*" r" ) = ®[(r*T)n] and, be-
cause T* T is self adjoint, all its powers have dense domain.

Denote by p (z, z) the polynomial obtained from p (z, z) by replacing
all coefficients by their complex conjugates.

LEMMA 2. The operator p(T*, T)* is the closure ofp(T, T*) and is normal.

PROOF. By Lemma 1, %[p(T*, T)] = S)(rn). Hence, if x and y are in

Thus
p(T,T*)Qp(T*,T)*.

Write E{0, r) = E(r) and suppose that x e ^)[p(T*, T)*]. It follows
from (6) that E(r)x e ^>[p(T, T*)] and, from (8), that

E(r)p(T*. T)*Q{p(T*,T)E(r)}*

= p(T,T*)E(r).
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Thus, by (5),
P(T, T*)E(r)x = E(r)p(T*. T)*x

-+p(T*,T)*x {r-^co).

Because p(T*, T)* is closed it follows that p(T*. T)* is the closure of
p(T, T*); and hence, that p(T*, T)** = p{T, T*)*.

By (6) and (8) again,

\\p(T,T*)(E(r)-E{s))x\\ = \\P(T*,T){E(r)-E(s))x\\ (xe$).

It follows from the preceding paragraph that

%tf{T*. T)*] = <3)[p(T, T*)*],

\\P(T*. T)*x\\ = \\P(T, T*)*x\\ (x e <3)[p-{T*, T)*]).

Thus [2, Lemma 21] p~(T*, T)* is normal and the proof is complete.
Henceforth we shall write P(T, T*) for the closure of p{T, T*). Note

that the proof of Lemma 2 shows that E{r) commutes with P(T, T*).

LEMMA 3. (i) %l[P(T, T*)] = d9l[p{T, T*)]:

(ii) a[P(T, T*)] = a[p(T, T*)].

PROOF, (i) Because a closed operator has a closed null space, we have

dfHlp{T, T*)-\Q3l[P(T, T*)].

Conversely, suppose x e 3l[P(T, T*)]. Because E(r) commutes with
P(T, T*),

p{T, T*)E(r)x = E(r)P[T, T*)x = 0.

Thus E(r)x e 3l[p(T, T*)] and, by (5),

x = lim E{r)x e c\^l[j>(T. T*)],
r—M»

proving (i).
(ii) By (i) P(T, T*) is one to one if and only if p(T, T*) is one to one.

Thus P(T, T*) has an inverse if and only if p{T, T*) has an inverse. If
p(T, T*) has a bounded inverse

\\p(T, T*)x\\ ^ m\\x\\ {x e ®[p(T, T*)])

for some positive m. In this case an obvious limiting argument shows that

| |P(7\ T*)a;|| ^ m\\x\\ (x e $ [P(7 \ T*)]).

Hence P(T, T*) has a bounded inverse if and only if p(T, T*) has a bounded
inverse. Because fR[p(T, T*)] is dense in fR[P(T, T*)], Oea[p{T, T*)] if
and only if 0 e a[P(T, T*)] and (ii) now follows.
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LEMMA 4. / / X is complex, X $ a[p(T, T*)] if and only if there is a positive
number m such that

(10) \\p(T, T*)x-Xx\\ ^ m\\x\\ (x e ®[p(T, T*)]).

PROOF. If X $ a[p{T, T*)] then (10) holds with

Conversely, suppose that (10) holds. It follows that p(T, T*)—XI has
a bounded inverse. If x _L fft[p(T, T*)-XI] then x ± fR[P(T, T*)-XI]
and, because P(T, T*)—XI is normal,

x e 31[{P(T, T*)-XI}*] = 9l[P(T, T*)-XI].

By Lemma 3(i) and (10),

* e c\3l[p{T, T*)-U] = cl{0} = {O}.

Thus fH[p(T, T*)-U] is dense in § and X $ a[p(T, T*)].
We state as a corollary.

LEMMA 4'. Xea[p(T, T*)] if and only if there is a sequence (xn) of
elements of ^[p{T, T*)] such that \\xn\\ = 1 for all n and

p(T,T*)xn-Xxn->O (»->oo).

REMARK. Lemmas 4 or 4' applied to p(z, z) — z give the well known
result [5, X 11.9.10 Exercise 13], [6, § 31 Theorem 2] that a normal operator
has no residual spectrum.

5. The spectral mapping theorem

Two more lemmas are needed for the proof of (3). The first is stronger
than [4, V.I 1.3.3], but is, presumably, well known. The second is more
general than is strictly necessary for our purposes.

LEMMA 5. / / S is normal, X 4 o(S) and m = d{X, o(S))
(= inf {\X—fi\ : n e a(S)}), then

PROOF. (S—XI)-1 is everywhere defined (because S is closed), bounded
and normal. If S is bounded

and if S is not bounded

ff[(S-A/)-i] = {fo-A)-1 : it e a(S)} u {0}.
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In either case, by [1, Theorem 1], .

| | ( S - A / m =sup{|«| :ae<r[(S-A/)-i]}

= sup {|yM—X\~x : n 6 a(S)}

= mr\

COROLLARY. Under the above conditions,

\\{S-U)x\\^m\\x\\ (*6©(S)).

NOTE. The formulae for a[(S—A/)-1] follow from [4, VII. 3.11 and
VII 9.5] or [7, Theorem 5.71-A]. Alternatively, and preferably, they can
be proved directly without using any operational calculus.

For complex X and r ^ 0 let

D{X, r) = {zeC: \z-X\ ^ r}, T(X, r) = TE{X, r).

LEMMA 6. If r > s ^ 0,

a(T) n D(X, s) Q cr[T(X, r)] g [o(T) n D(X, r)] u {0}.

PROOF. Suppose fiea(T) n D(X,s). By Lemma 4' there is a sequence
(xn) in %{T) such that ||*B|| = 1 for all n and Txn—fixn -*• 0 (n ->• oo).
By (7),

\\{T-XI)F{X,r)xn\\\\F{X,r)xn\\ = \\\T-XI\F(X,r)xn\\\\F{X,r)xn\\

^{\T-U\F(X,r)xn,F{X,r)xn)

Now,

\\{T-XI)F(l, r)xn\\ ^ l/i-AI \\F(X, r)xn\\ + \\(T-/,I)F(X, r)xn\

so that

r\\F(X, r)xn\\* ^ s\\F(X, r)*J|«+\\(T-pI)xn\\ \\F(X, r)xn\\.

Because r > s and (T—/«/)#„ -> 0 it follows that

xn-E(X, r)xn = F(X, r)xn -* 0 (n -> oo).

Thus we may, and do, assume that xn = E(X, r)xn for each n. Then

T(X, r)xn-fixn = £(A, r)(T-/iI)xn

-> 0 (« -> oo);

^ e a[T(X, r)], and <r(r) n D(?., s) g a[T{X, r)].
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Now suppose that /x e o[T(X, r)] and that [i ^ 0. By Lemma 4' there is
a sequence (xn) in § such that | |x j | = 1 for all n and T(X, r)xn—[ixn -> 0
(n -»• oo). Then

T(X, r)xn-fiE(X, r)xn = E(X, r)(T{X, r)xn~ixxn)

Hence /i(xn—E(X, r)xn) ->• 0 (n -> oo) and, because fi =£ 0, we may assume
xn — E(X, r)xn for all n. In this case, xn e ®(T) for all n,

Txn-/ixn = T{X, r)xn-(ixn ->O (n -> oo)

and fi e a(T). Also,

(r-A/)£(A, r)xn-(p-X)xn = Txn-fixn

so that fj,~X e o[{T—XI)E(X, r)] and, by (6),

\fi-X\<\\(T-XI)E(X,r)\\^r.

Thus f*eD(X, r) and

•)] S [o{T) n Z)(A, r)] u {0}
as required.

For a related result see [5, X 2.6]. The operator T defined on a separable
space with complete orthonormal sequence (en) by

shows that we cannot have s = r in Lemma 6 (consider s = 1).

LEMMA 7. [̂<r(T) Q a[p(T, T*)].

PROOF. Let X e a(T) and take r > |A|. As in the proof of Lemma 6 we
obtain a sequence (xn) in § such that xn = E(0, r)xn and ||a;n|| = 1 for
all n, and Txn—Xxn -> 0 (»->oo). Thus «B6 2)[^(T,P)] for aU n,
T(0, r)xn—Xxn -> 0 (n -> oo) and, as in the proof of [1, Lemma 3],

P(T, T*)xn-p(X, X)xn = p(T(0, r), T(0, r)*)xn-p[X, X)xn

-+0 (n ->• co).

By Lemma 4', £(A, A) e a[p(T, T*)] and

THEOREM. a[p{T, T*)] = clp[a{T)].

PROOF. By Lemma 7, />|>(r)] Qa[p(T, T*)] and, because or[/>(r, T*)]
is closed,

https://doi.org/10.1017/S1446788700004663 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700004663


126 S. J. Bernau [8]

Conversely, suppose that X $ c\p[a(T)]. We consider two cases.

CASE 1, X^p(O, 0). In this case the distance m from X to
{p(0, 0)} u dp[a(T)] is positive. For r > 0, by (2) and Lemma 6,

o[p(T(0, r), T(0, r)*)] = p[a{T(0, r))]

Q&(0,0)}vclp[o(T)].

Hence, by the Corollary to Lemma 5,

\\p(T, T*)E(0, r)x-Xx\\ = \\p(T(0, r), 7(0, r)*)x-Xx\\

^m\\x\\ (a: 6$) .

Letting r —> oo we deduce,

| |P(7\ T*)x-te\\ ^ m\\x\\ (x e S>[P(7\ T*)]).

Hence, by Lemma 4, X <fc o[j>(T, T*)].

CASE 2, X = p(O,O). Because X$clp[o(T)], it follows that 0 $ a(T)
so that T has a bounded inverse S with domain §. Because T is unbounded

a(S) = &-1 : ii e a(T)} u {0}.

By [1, Theorem 1], ||S|| = sup {|a| : a e ff(S)} so, because S =fi 0, it follows
that <r(T) is non-empty. Hence there exists a in a(T) and X^p(ct., a).
Write Tx = T—cd and ^(z, f) = p(z-\-a., z-\-a). We have

and,

Because 7\ is normal, A ^ cl5r[cr(ri)] and A ^ ^(0, 0), Case 1 shows that

These two cases show that

o[p{T,T*)]Qc\p[a{T)].

and, with (11) complete the proof of the theorem.
We close with a comment on [1]. The remark following [1, Theorem 2]

called for an elementary proof that if A is bounded and normal and 0 ea(A)
then the set.
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F(A) = {xeH:\\Amz\\ £ \\x\\ (m = 1, 2, • • •)}

contains non-zero elements, and claimed that this would simplify the proof
that

o[p(T,T*)]Qp[o(T)l

A proof that F(A) ^ {0} can be given using the null space projections
and (7). This method, however, seems to be no shorter than the proof
given in [1]. In the unbounded case a proof that o[p(T, T*)] Q clp[o(T)~\
can be based on the subspaces F(A) but the situation is more complicated
and no appreciable simplification is obtained.
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