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ABSTRACT. This paper presents a simple mathematical formula for correcting 
radio-echo-sounding data from an ice sheet or glacier for the effects of varying 
refractive index. The method requires some knowledge of the variation of refractive 
index with depth. In rare cases this may be known from direct measurement, but it 
can be estimated from the density profile. If even this is unknown, we show that the 
corrections can be estimated to an accuracy of about 3% of the depth to bubble close
off (i.e. to about ± 2 m for dry-snow conditions), and that the size of the refraction 
correction for a glacier or ice sheet with a flat bed is typically 6-10 m under these 
conditions. 

INTRODUCTION 

At VHF frequencies ( ~100 MHz), ice is one of the most 
transparent of geophysical materials, and pulses of radio
frequency energy can propagate through it without 
significant loss for hundreds of metres. This fact has 
been used extensively in the technique of radio-echo 
sounding to determine the thickness of some of the world's 
large ice sheets (see Macqueen, 1988; and references 
therein). However, the refractive index of an ice sheet is 
not constant, increasing with depth, and this introduces 
problems to accurate radio-echo sounding. Expressed in 
its simplest form, the problem is that a ray travels 
vertically downwards, is reflected from bedrock, and 
returns, will take less time to do so than it would if the 
refractive index were constant at the value appropriate to 
deep ice. The thickness of the ice mass will thus be 
underestimated and must be corrected appropriately, by 
typically 10 m, for accurate determinations of thickness. 
However, a more complicated problem arises if the 
underlying bedrock is inclined with respect to the 
horizontal (and indeed this situation is glaciologically 
more interesting since the slope of the bedrock is an 
important source of driving stress on an ice mass). In this 
case, the ray which reaches the bedrock in the shortest 
time does not propagate vertically and indeed does not 
describe a straight line. This causes particular difficulty in 
determining the point on the bedrock surface at which a 
ray is reflected and hence in deducing the profile of the 
bedrock surface. 

This problem has been addressed by Rasmussen 
(1986), who used a variety of models of n(z) (the 
variation of refractive index with depth) for which he 
derived analytic solutions of the ray equations. The 
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resulting correction formulae can be unwieldy in practice, 
and there exists the possibility that the refractive-index 
profile of a real ice mass may not be adequately described 
by the models. In the present paper, we derive a more 
general approach to the problem, in which no model of 
n(z) is assumed and corrections to the apparent bedrock 
position are expressed as polynomial expansions in the 
bedrock-slope angle. The coefficients of the polynomials 
are obtained from integrals of n(z), which can be derived 
directly if n(z) is known, and indirectly but sufficiently 
accurately if the density profile p(z) is known. We analyse 
a number of density profiles to determine typical values of 
the coefficien ts for dry-snow ice masses, so that even if no 
data are available about the variation of n or p with 
depth, a reasonably accurate correction can be calcul
ated. 

ANALYSIS 

We assume that the refractive index n of the ice varies 
only with depth z (and is therefore independent of 
horizontal position, i.e. the ice is stratified), until it 
reaches a constant value ni (the refractive index of pure 
ice) at a depth Zf. We also assume that the bedrock 
surface, from which the radio signals are reflected, lies 
deeper than this value Zc. In order to simplify the analysis 
but, without significant loss of generality, we will also 
assume that the bedrock surface is planar, with a slope 
parallel to the direction in which the radio-echo-sounding 
traverse is made (which we will define to be the x
direction). Rays will thus be confined to the x-z plane 
(see Fig. I) . 

A bundle of rays, with a wide spread in angle, is 
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Fig. 1. A ray follows a curvilinear path from the surface 
(<: = 0) to the point A, beyond which the refractive index 
of the ice becomes constant. The ray then describes a 
straight line until it strikes the bedrock perpendicularly at 
the point P. 

emitted at the origin 0 of the coordinate system and at 
time zero, and propagates into the ice. It will be proved 
below that the ray which reaches the bedrock surface 
(which is inclined at an angle e to the horizontal) in the 
shortest time is the ray which makes an angle e to the 
vertical when it is within the region of constant refractive 
index (z> zr). This ray follows a curvilinear path when 
z < Zr, reaching the point A(xr,zr) at time tr, after which 
it follows a straight path until it reaches the bedrock at 
the point P(xr,zr) at time T . The ray is reflected at this 
point, and exactly retraces its path until it reaches 0 at 
time 2T. The problem we have to solve is to determine 
the coordinates (x" zr) of the point P in terms of the two 
measurable parameters T (the one-way travel time) and e 
(the bedrock slope). We will show below that e can be 
determined from the radio-echo sounding measurements. 

Following Rasmussen (1986), we may put 

and 

Xr = ni sin () {zr --;==d=z=== 
lo Jn2 - n? sin2 0 

1 {zr n 2 dz 

tr = ~ lo Jn2 _ n? sin2 0 

(1) 

(2) 

for the coordinates of the point A. Beyond A the ray 
travels in a straight line for a time (T - tr), and hence a 
distance e(T - tr)/ni, until it reaches the bedrock at P. 
The coordinates of P are thus given by 

e(T - tr) sin 0 
Xr = Xr + --'----'---

ni 

and 

e(T - tr) cos 0 
Zr = zr + . 

ni 

Substituting from Equations (I) and (2), we obtain the 

desired results: 

eTsinB l zr dz 
Xr =---+nisinB 

ni 0 J n2 - n? sin2 B 

sinB lZf n2 dz 
(3) 

ni 0 Jn2 - ni
2 sin2 B 

eT cos B cos () l zr n2 dz 
Zr = +zr ---

ni ni 0 Jn2 - ni
2 sin2 B 

(4) 

In these two expressions, the first terms are the usual 
result (i.e. corrected for slope but uncorrected for 
refraction) and the following terms represen t the 
refraction corrections. 

We can use Equations (3) and (4) to show that the ray 
which reaches the bedrock in the shortest time must strike 
it perpendicularly (i.e. that the ray must make an angle of 
() to the vertical in the region where the refractive index is 
constant, if the bedrock makes an angle of () to the 
horizontal). The shortest time is significant because this is 
what is determined by the radio-echo-sounding tech
nique. 

Partial differentiation of Equation (3) with respect to 
() at constant T gives 

aXr eTcos() 01zr n2(1- n 2 /n?}dz 
-= +nicos ao ni 0 (n2 - n? sin2 0)3/2 

(5) 

and similarly differentiation of Equation (4) gives 

aZr = _ eT sin () _ ni sin 0 rr n
2
(1 - n

2 
/nn ~~ . (6) 

ao ni lo (n2 - n? sin2 ()) / 

Combining Equations (5) and (6) shows that 5xr/5<:r at 
constant T is -cot () and, since 5x/5<: for the ray, as we 
have defined it, is +tan e, it follows that a surface of 
constant travel time is perpendicular to the ray. From this 
it also follows that the ray which reaches the bedrock in 
the shortest time must strike it perpendicularly. 

This result may in turn be used to show how the 
bedrock slope can be determined from surface obser-

o ~ 0' x 

Z 

Fig. 2. Determining the bedrock-slope angle e from surface 
observations (see text for details). 
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vations . Suppose that the shortest travel time to the 
bedrock is determined from the point 0, and also from 
the point 0' which has x-coordinate .1X (see Fig. 2). 

It is clear that the travel times from 0 to A and from 
0' to A' must be identical, so the only difference arises 
from the difference in the path lengths AP and A'P'. If the 
one-way travel time from 0' to P' is less than that from 0 
to P by f).T, it thus follows that 

. e .1T 
sme= --

ni f).X 
(7) 

(Harrison, 1970). The bedrock slope e can thus be 
determined from the rate of change of travel time with 
surface position, as usual in the relocation of radio-echo
sounding data. 

In principle, then, we now have enough information 
to determine the location (xr, zr) of the point P at which a 
ray from 0 is reflected at the bedrock. The bedrock slope 
is obtained from Equation (7), and the coordinates of the 
reflection point are then given by Equations (3) and (4). 
However, these equations are not particularly simple to 
apply unless the refractive-index profile n(z) can be 
approximated by a simple analytic expression (e.g. 
Rasmussen, 1986). 

We adopt a more general approach by expanding the 
integrals of Equations (3) and (4) as polynomials in sin e 
and cos e. Specifically, we may write 

eTsine Loo (2m)! ( 
Xr = + 2 1-2m-l 

ni m=022m(m!) 

- h-2m) sin2m+1 e (8) 

and 

eTcose ~ (2m)! . 2m 
Zr = + Zf - L 2 h-2m cos e sm e 

ni m=022m(m!) 

(9) 

where the general integral Jp is defined by 

(10) 

Thus, if n(z) is known, the integrals lp can be evaluated 
for different values ofp and the correction terms obtained 
from Equations (8) and (9). For practical purposes, 
however, we may obtain expressions which are rather 
simpler to use by expanding cos e and sin e as polynomials 
in e, where e is expressed in radians. In general, we may 
write 

eT sin e 2 3 
X r = +~0+6e+6e +6e + (11) 

ni 

and 

It can be shown that the ~i are zero when i is even, and 
that the Si are zero when i is odd. The first few non-zero 
terms are given in Table 1 in terms of the integrals lp. 
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Table 1. The coefficients ~i and Si of Equations (11) and 
( 12) evaluated in terms of the general integral Ip of the 
rifractive index defined by Equation (10) 

L 1 -h 
V-3 - ~Ll +g-h 

i L 5 - i L 3 + 132
10Ll - l~oh 

kL 7 - i L 5 + ~F-3 - A3
2
7
0 L1 + 5~40 h 

(0 10 - h 
(2 - V-I +!h = -!6 
(4 -iJ-3+f2L1 -i4h 
(6 - --&L5 + IV-3 - .(2

1
0 Ll + 7~oh 

ESTIMATION OF ~i AND Si FOR REAL ICE 
MASSES 

Equations (11) and (12) show how to correct a radio
echo-sounding measurement for the effects of varying 

refractive index. Application of these equations requires 
knowledge of the coefficients ~i and Si' Table I shows how 
they may be calculated from the refractive-index profile 
n(z), using the definition of lp in Equation (10), but n(z) 
is a parameter which is seldom measured for an ice sheet 
or a glacier. However, the refractive index n is 
determined principally by the density P, and density 
profiles p(z) are more often available. In this section we 
discuss the relationship between P and n, and analyse a 
number of published p(z) profiles to deduce the 
corresponding coefficients ~i and Si. 

The simplest physically plausible assumption for the 
relationship between the density and the refractive index 
is that of linearity: 

n=1+Kp. (13) 

The constant K is clearly given by 

K = (ni - 1) / Pi (14) 

where ni and Pi are respectively the refractive index and 
the density of pure ice. Departures from this relationship 
are caused mainly by variations in the internal structure 
of the ice sheet, summarized by a structural parameter 
known as the Formzahl u. For a ray propagating 
vertically, a Formzahl u = 0 corresponds to ice in 
vertical layers, u = 2 to ice with no preferred direction 
and u = 00 to horizontal layers of ice. Figure 3 (replotted 
from Evans (1965)) shows the expected variation of n 
with p for these three values of Formzahl, assuming 
ni = 1.77 and Pi = 920kgm·3 (these numerical values 
are discussed below). 

From Figure 3 it can be seen that, ifu takes any value 
between 2 and 00, the linear assumption of Equation (13) 
is a reasonably accurate one. Evans (1965) stated that 
any value between 2 and 00 must be expected in practice 
and, since we are unlikely to possess detailed knowledge of 
the variation of u with depth, there seems little 
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Fig. 3. Rifractive index as afunction of density of ice (in Mg m·3) for different values of the Form<.ahl u. The upper 
curve corresponds to u = 00 , the middle curve to u = 2 and the lower curve to u = o. 

justification in adopting a model more complicated than 
that of Equation (13). 

In order to apply Equation (13) to p(z) profiles for 
real ice masses we must determine the constant K from 
Equation (14). First we consider the density Pi of pure ice. 

At the surface of an ice sheet or glacier, ice is deposited 
as snow crystals which, after it has settled, has a density of 
typically 200-300 kg m·3 or 350-400 kg m·3 if packed by 
wind (Seligman, 1936). At greater depths this material is 
compressed by the mass of the overlying material, 
increasing the density and resulting in a material which 
is normally (though erroneously; see Paterson, 1981 ) 
known asfirn. At a depth sufficient for the density to have 
reached a value of about 830 kg m~3 (typically about 70 m 
if the firn is dry, and less if wet), the interconnecting air 
passages between the grains of ice are sealed off ("bubble 
close-off') and the material is more accurately described 
as glacier ice. This ice is less dense than pure ice because 
of the trapped air bubbles, and some further increase of 
density occurs with increasing depth. Temperature effects 
are also significant in modifying the density, and are 
discussed below. 

Anderson and Benson (1963) quoted a density value 
for pure ice under laboratory conditions of 917 kgm·3, 
and Salamatin and others (1985) reported a value of 
916.7 kg m -3 for deep glacier ice, although this of course 
was measured in the laboratory after the core had been 
retrieved. When this figure is corrected for the effects of 
pressure, the density of deep ice is found to be about 
920kgm-3

. Nakawo (1986) quoted a value of 
919.6 ± 0.1 kgm-3 for deep (400 m) ice, which is 
consistent with Salamatin and others' measurement. 
Nakawo's figure can be corrected for the effects of air 
bubbles to derive the density of pure ice at a depth of 
400 m by assuming that the entrapped air at 70 m depth 
(bubble close-off) has a volume of 10-4 m3 kg-! of ice 
(Nakawo, 1986), and that below this it is in temperature 
and pressure equilibrium with the ice. At a depth of 
400 m and a temperature of - 35°C, the correction to the 
density is approximately 1.7 kg m-3

, giving a density for 
pure ice under these conditions of 921.8 ± 0.5kgm·3. 

However, Nakawo suggested that his density estimate was 

too high by approximately 0.5 kg m-3
, giving a final figure 

of 921.3 ± 0.5 kg m-3
. 

This figure can be compared with the laboratory value 
by correcting for the compressibility and volumetric 
thermal expansivi ty of ice. The effect of an overburden of 
400 m of ice is to increase the density by approximately 
0.25 kgm·3

, assuming a bulk elastic modulus of 13 GPa, 
and the effect of a temperature of -35°C is to increase the 
density by approximately 4.9 kg m-3

, assuming a volu
metric expansivity of 1.53 X 10-4 K-!. Thus, Nakawo's 
data are consistent with a density for pure ice under 
laboratory conditions of 916.5 ± 0.5kgm·3, which we 
shall take as a standard. 

The refractive index ni of pure (polycrystalline) ice is 
less well determined than the density, and this will 
therefore contribute more to the uncertainty in K. 
Although Yoshino ( 1961 ) reported a weak freq uency
dependence in the VHF band, this is now generally 
discredited (see Evans, 1965; Fitzgerald and Paren, 1975; 
Robin, 1975; Bogorodsky and others, 1985). More 
significant is a small temperature effect, which decreases 
the value of ni by about 0.02 between - I QC and - 60°C 
(N akawo, 1986). Statistical combination of avalues of ni 

for pure ice collected by Bogorodsky and others (1985), 
and values reported by Robin (1975) and Jezek (1985), 
gives a figure of 1.77 ± 0.01. Since the uncertainty in this 
result is comparable to the difference produced by large 
differences in temper~ture, it is reasonable to accept this 
value as appropriate to polycrystalline ice at a density of 
916.5 kg m·3 and normal glacier temperatures. It is 
consistent with a more accurate but unpublished 
measurement at Dye-3 due to Gorman (personal 
communication). Finally, then , we can evaluate the 
constant K from Equation ( 14) as (0.77 ± 0.01)/ 
(916.5 ± 0.5) m3 kg-! . Thus, 

K = (8.4 ± 0.1) x 10-4 m3 kg-1 

at 100MHz. 
This value of K has been used to derive profiles ofn(z) 

for profiles of p(z) published by a number of workers. In 
order to obtain a reasonably uniform data set, we have 
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Fig. 4. VHF refractive index plotted against depth for the data sets discussed in the text. 

restricted our analysis to dry-firn ice masses, i.e. those for 
which the depth of bubble close-off is about 70 m, and 
have excluded measurements from blue-ice areas. The 
data sets we have used are from Site 2, Greenland 
(Langway, 1967 ), Mizuho, Antarctica (Narita and 
Maeno, 1978), and from G2, Antarctica (Nishio, 1984). 
We also compare our deduced n(z) profiles with direct 
measurements of n(z) from Devon Island (made at 
420 MHz by Robin (1975)). Figure 4 shows the n(z) 
profiles for the upper 200 m of these ice masses. These 
values of n(z) have been used to evaluate the coefficients 
~; and S; by numerical integration, using Table I and the 
definition of Ip in Equation (10). The first three terms, in 
metres, are shown in Table 2. 

Substitution of various values of e into Equations ( 11 ) 
and (12), using these six coefficients, shows that the 
refraction correction can be calculated to a precision of 
better than 1 m for bedrock angles up to 0.5 rad (29°) . It 
thus seems unnecessary to calculate any of the higher
order terms. For a dry-snow ice mass whose density 
profile is unkown, an approximate correction for 
refraction can be made using the average coefficients 
(20, II and 9 m for the ~s and 9, -10 and -10 m for the 
ss), and Figure 5 shows the size of these approximate 
corrections. It can be seen from Table 2 that the 
coefficients are similar for different glaciers, so this 
approach should not introduce a large error as long as 

the depth to bubble close-off is within the range 50-70 m. 
In fact, use of these average values gives errors less than 
2 m for angles up to 0.5 rad when compared against the 
coefficients given in Table 2. The numerical integration 
shows that approximately half of the correction terms ~1 
to ~5 and So to S4 are built up in the upper 25 m of the firn, 
so that even limited measurements of the density profile 
will be better than none. 

We can also use these average coefficients to estimate 
the correction for a blue-ice or wet-snow ice mass, since to 
first order we expect the coefficients to be proportional to 
the depth of bubble close-off (clearly if this depth is zero, 
the ice mass is of almost constant refractive index and so 
the correction terms will be zero). 

GENERALIZATION TO THREE DIMENSIONS 

The method we have described can be generalized to 
allow for the possiblity that the bedrock slope is not 
parallel to the track followed by the radio-echo sounder. 
We continue to assume that the refractive index varies 
only with depth z, that the bedrock reflection point is 
below the depth at which the refractive index becomes 
constant and that the bedrock surface is planar. 
Measurements are made on an orthogonal x-y grid of 
points on the surface. 

Table 2. Experimental values (in m) of the coefficients ~; and s;for the data sets discussed in the text. The table also 
shows the estimated value of the depth Zr at which bubble close-off occurs, in m 

Data set Location 6 6 ~5 (0 (2 (4 zr 

Langway (1967) Site 2 21.6 11.0 8.0 10.0 -10.8 -10.0 66 
Narita and Maeno (1978) Mizuho 17.0 8.1 5.5 8.0 -8.5 -7.5 52 
Nishio (1984) G2 19.1 9.2 6.3 6.4 -9.5 -8.5 63 
Robin (1975) Devon Island 22.7 13.7 11.8 10.2 -11.4 -12.1 62 
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Ifwe write b (= bx , by , bz ) for the unit vector normal to 
the bedrock surface, the equa tion of the surface is 

b· s = k 

where k is a scalar constant and s is a vector denoting any 
point in the surface. Consider a ray which passes through 
the point X located at depth zoo Since the refractive index 
is constant below this point, the ray follows a straight 
path normal to the bedrock, as has already been shown. A 
point Xr on this ray is thus defined by 

Xr = X - ab 

where (X is the distance from x. The ray clearly meets the 
bedrock surface when 

(x-ab) · b=k 

so 

Q = b· x - k. 

Thus the total travel time from x to bedrock surface is 

nj 
T = - (b· x - k) . 

c 

Differentiating this parti ally with respect to X and Y (the 
x- and y-coordinates of the point x ) and re-a rranging 
gives 

(15) 

and 

(16) 

which are the three-dimensional equivalents of Equation 
(7 ). 

Since b is a unit vector, b; = 1 - b; - b; so the 
inclination e of the bedrock to the horizontal is given by 

(17) 

If this value of e is substituted into Equation (12), the z
correction will be obtained directly. Substitution into 
Equation (11) yields the correct magnitude for the 

horizontal correction, but not its direction. Since the 
projection of the rayon to a horizontal plane must point 
in the direction parallel to (bx , by , 0), we may write the x 
and y corrections x: a nd y: as 

(18) 

and 

I xrby 
Yr = 1 (19) 

(bl + b;)2 

where Xr is given by Equation (11 ). 

CONCLUSIONS 

We have described a simple method for correcting radio
echo-sounding measurements through ice masses for the 
effects of varying refracti ve index in the firn layer. This 
method expresses the corrections to the position of the 
bedrock reflection point (in the along-track and vertical 
directions) as polynomials in the bedrock angle e 
(Equations (11 ) and (12)) , and can be generalized to 
three dimensions. The coefficients of the polynomials can 
be calculated for a particular ice mass if its refractive 
index or density profile is known, but examination of 
measurements of ice masses in Greenland, Antarctica and 
Devon Island suggests that for dry-snow glaciers the 
coefficients have fairly well-defined values, and that use of 
average values is unlikely to introduce errors of more than 
3% of the depth to bubble close-off, i.e. typically 
0.03 x 60 m = 2 m for typical dry-snow conditions. 
The coefficient So is typical of the magnitude of the 
corrections (it is the correction which should be applied 
for an ice mass with a horizontal bedrock surface), and 
our data show that this coefficient varies between about 6 
and 10 m under these conditions. 

This surprisingly good result probably disguises the 
effects of varying temperature (and crystal orientation) 
within an ice mass and should perhaps be treated with 
some caution. However, the validity (and therefore 
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usefulness) of the method is not seriously compromised 
by this uncertainty since what we have developed is 
essentially a method of locating the position of the 
bedrock reflection given knowledge of the variation of 
refractive index with depth. Potentially more serious 
errors, which the radio-echo-sounding technique is at 
present unable to address, are caused by non-planarity of 
the bedrock surface over the scale of the Fresnel zone, and 
by the fact that there may be a layer of mud or till 
(between the bottom of the ice and the bedrock) which 
could give rise to anomalous or indeterminate echoes. 
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