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Abstract

The seismic response of a wide variety of structures, from small but irreplaceable museum exhibits to large bridge
systems, is characterized by rocking. In addition, rocking motion is increasingly being used as a seismic protective
strategy to limit the amount of seismic actions (moments) developed at the base of structures. However, rocking is a
highly nonlinear phenomenon governed by non-smooth dynamic phases that make its prediction difficult. This study
presents an alternative approach to rocking estimation based on a physics-informed convolutional neural network
(PICNN). By training a group of PICNNs using limited datasets obtained from numerical simulations and encoding
the known physics into the PICNNs, important predictive benefits are obtained relieving difficulties associated with
over-fitting and minimizing the requirement for a large training database. Two models are created depending on the
validation of the deep PICNN: the first model assumes that state variables including rotations and angular velocities
are available, while the second model is useful when only acceleration measurements are known. The analysis is
initiated by implementingK-means clustering. This is followed by a detailed statistical assessment and a comparative
analysis of the response-histories of a rocking block. It is observed that the deep PICNN is capable of effectively
estimating the seismic rocking response history when the rigid block does not overturn.

Impact Statement

Free-standing bodies like museum exhibits or large bridge piers can experience rocking motion when subjected
to earthquakes. This response is notoriously difficult to predict given the hard nonlinearities arising from the
multiple impacts and the response dependency on the initial conditions. The models presented in this article
combine convolutional neural networks with the known rocking dynamics into a physics-informed data-driven
framework that is able to predict the full history of the seismic response of rocking bodies with high accuracy
provided the body does not overturn.

1. Introduction

Formany years, the dynamics of rocking objects have captivated the attention of the scientific community,
in part because it is a phenomenon that is frequently seen. A wide variety of structures engage in an
uplifting response when faced with powerful dynamic actions (earthquakes, blasts, etc.) whose temporal
evolution is infamously challenging to forecast and predict. From small but invaluable museum exhibits
to substantial bridge piers or wind turbine towers, a wide variety of structures at all scales demonstrate this
fundamental dynamic behavior. The underlying process of rocking motion has been demonstrated to be
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extremely complicated, sensitive to initial conditions, hence history-dependent, and by no means well
understood, despite the apparently intuitive nature of the rocking motion (Ma, 2010).

On the other hand, rocking structures are capable of uplifting and sustaining a strong nonlinear motion,
while limiting the development of base moments since they are not fixed to the foundation or the ground
(Thiers-Moggia and Málaga-Chuquitaype, 2021). It has been proposed that this uplift can act as a sort of
rocking isolation for both bridges and buildings (Bachmann et al., 2019; Thiers-Moggia and Málaga-
Chuquitaype, 2020; Vassiliou et al., 2021). However, until recently it was been believed that analytical or
numerical models can not accurately predict the rocking motion, as many efforts faced frequent failure in
the recreation of experimental data (ElGawady et al., 2011; Kalliontzis and Sritharan, 2018).

The rigid block rocking response is sensitive to defects in the supporting surfaces, as well as variations
in initial conditions (Bachmann et al., 2018). This makes it hard to precisely replicate the output of one
experiment, suggesting that the seismic rocking motion of a rigid block is chaotic, to the extent that slight
instabilities can result in vastly varied outcomes for a single excitation. The rigid rocking block numerical
model most widely used today (Housner, 1963) is deterministic, and the predicted seismic rocking
response to a known support motion is susceptible to modeling assumptions, especially those regarding
energy losses during ongoing impacts. Such sensitivity of rocking models discourages structural
engineers from adopting rocking as an approach to modify earthquake response (Deng et al., 2012). It
seems unfeasible to predict with sufficient certainty the seismic rocking response of blocks to a given
ground excitation based on the results of a single experiment.

In this article, we follow the widespread assumption of planar rocking under unidirectional ground
motion (Bachmann et al., 2021; Pan and Málaga-Chuquitaype, 2020; Reggiani Manzo and Vassiliou,
2021). Lachanas et al. (2022) found that the vertical ground motion component can exhibit a variable and
sometimes significant impact on the rocking response which can be both detrimental and beneficial to the
structural response; however, when considering a large dataset of records, this influence tends to become
statistically insignificant. This also reflects the small number of studies to date that deal with the rocking of
three-dimensional rigid bodies (Chatzis and Smyth, 2012). However, it is worth noting that two-
dimensional models can represent the response of several practical applications such as planar wall
elements and bridge piers with a relatively long length-to-thickness ratio (Thiers-Moggia and Málaga-
Chuquitaype, 2020; Reggiani Manzo and Vassiliou, 2021). Besides, our approach and conclusions are
applicable to rigid bodieswith a vertical axis of symmetry and uniformdensity and canbe extended to base-
isolated rigid blocks (Pellecchia et al., 2022).

Recently, the advancements in sensing and computational technologies have offered a major incentive
for a wider adoption of structural health monitoring. The primary existing approaches concentrate on
collecting structural elements and updating models from observed data. For example, the Bayesian
probabilistic approach in model class selection (Vanik et al., 2000; Beck and Yuen, 2004; Huang and
Schröder, 2021), seismic interferometry in structural damage detection (Todorovska, 2009; Sen et al., 2021;
Uzun et al., 2021; García-Macías and Ubertini, 2022) and Kalman filtering in dynamic force identification
(Liu and Shepard, 2005; Lourens et al., 2012; Khodabandeloo and Jo, 2015; Naets et al., 2015). However, it
remains difficult to properly employ sensing data for modeling and predicting rocking responses under
ground excitation, something to which this article aims to contribute.

1.1. Brief literature review

The seismic response of rigid rocking blocks is a highly non-linear phenomenon of difficult prediction due
to its negative post-uplift stiffness and related impact phenomena (Bachmann et al., 2021; Reggiani
Manzo and Vassiliou, 2021). Under strong base-shaking, slender blocks and tall rigid objects and
structures may enter a rocking motion that occasionally results in overturning.

Conventional methods for predicting the seismic response of a structuremake use of sensing data, such
as identification-based approaches and analytical techniques (Zhang et al., 2020). In recent years,
nonlinear response-history analysis has gained the community’s favor given its relatively precise
quantification of structural responses, especially in terms of displacement histories whose peaks are
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strongly correlated with the damage condition of structural elements. Typically, the response history is
estimated using numerical time-stepping methods in conjunction with finite-element (FE) modeling.
Model updating canminimize the differences between the field sensed response of the actual structure and
the reproduced response of the parameterized FEmodel. Model updating has been widely researched and
employed to forecast the non-linear structural seismic response to known incoming inputs (Brownjohn
and Xia, 2000; Sun and Betti, 2015). However, since the number of parameters requiring updating is
usually large and given the restricted availability of high-quality sensing data, these techniques still
necessitate significant computing effort for updating FE models with high accuracy. And although low-
fidelity models are more computationally efficient, it is difficult to maintain accuracy in the presence of
uncertainties, particularly when modeling hard nonlinear responses like rocking.

Recent attention has concentrated on the application of artificial intelligence (AI) to the prediction of the
seismic response of various structures. In this regard, AI has demonstrated its potential as an effective
response modeling tool for a range of dynamic problems (Chen and Billings, 1992; Chen and Chen, 1993;
Zhang et al., 2007).Within the field of structural dynamics, Neural Networks are one of themost prominent
AI algorithms currently used. Over time, it has been conclusively established that neural networks can
surpass alternative algorithms in terms of precision and speed. Convolutional neural network (CNN),
recurrent neural networks (RNNs), AutoEncoders, and the like are gradually becoming the preferred tool of
data scientists. As the present computer graphics cards are specifically built for parallel computing, deep
learning–artificial neural networks (ANNs) are regarded as an effective and robust computational method
for addressing difficult problems. The conventional multilayer perceptron (MLP) ANN algorithm has been
used for modeling seismic responses of buildings throughout the previous decade, and many of them have
started to incorporate the physics of the problem into their schemes of training.

Wu and Jahanshahi (2019) developed a CNN to identify and predict the dynamic response of a
nonlinear single-degree-of-freedom (SDOF) system and a linear SDOF system, both with fixed bases. As
a result of the convolution layers acting as filters, the suggested CNNmethod was more resistant to noisy
input. Therefore, the developed CNN was suitable for predicting the dynamic response of an actual
conventional fixed-base structure. Although the standard MLPANNs model was more computationally
efficient, difficulties subsisted in attaching a physical meaning to the model. The CNN, on the other hand,
offered greater interpretability making it preferable to the typical MLP method.

Yu et al. (2020) proposed a unique physics-guidedmachine-learning technique for structural dynamics
modeling based on RNN and MLP. In addition, this method also integrated the underlying knowledge of
structural dynamics into a data-driven machine-learning framework to guide and train the model for
prediction. The proposed physics-guided RNNs successfully predicted the dynamic response and showed
successful generalization ability even under partially unknown physics.

Zhang et al. (2020) presented a novel physics-guided convolutional neural network (PhyCNNs) for
modeling the seismic response of structures by developing a data-driven surrogate. The performance of
the proposed approachwas validated both numerically and experimentally with only limited datasets from
simulations and real sensing measurements. Their results proved that the PhyCNN framework is
computationally efficient for modeling the seismic response. It was suggested that the proposed algorithm
was basic and could be easily scalable to other structures subjected to other kinds of hazards.

All the studies mentioned above have dealt with fixed-base structures. By contrast, not many studies
have examined the use of data-driven methods for the response prediction of uplifting structures that
engage in rockingmotion. In fact, many researchers believe that the rigid rocking block is a chaotic system
for which minor changes in its governing parameters (block characteristics, initial conditions, or base
excitation) can lead to drastically divergent results (Bachmann et al., 2018). The experiments conducted
byVassiliou et al. (2015) andKalliontzis et al. (2016) to confirmHousner’s rigid rockingmodel (Housner,
1963) indicated that, given themodeling uncertainties, particularly those relative to impact, estimating the
seismic response history of a certain rocking block to a specific ground excitation is hard.

In this context, Pan et al.’s (2021) work showed that by implementing neural networks the compu-
tational time required to estimate the rocking response of a rigid block can be significantly reduced
compared to the use of FE models, especially when the Graphical Processing Unit’s acceleration is
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enabled. The networks trained by Pan et al. (2021) were able to construct the rocking spectrum of
structures more effectively than FE runs; however, a large database was required to complete a significant
number of dynamic response-history analyses.

More recently, Achmet et al. (2023) proposed a ML-based tool for the rapid assessment of damage to
rocking systems using the k-nearest neighbor (k-NN) algorithm and support vector machines (SVMs).
This is a second attempt to effectively use machine-learning algorithms to assess the seismic performance
of rigid bodies under ground motion. The study concluded that ML algorithms are promising for the case
of rocking structures. Although some loss of precision was documented when dealing with real ground-
motion records.

To the authors’ knowledge, the two studies mentioned above are the only ones to attempt to model the
structural response of rocking systemswith AI tools. Besides, advanced deep learningmodels like ANNs,
RNNs, and CNNs as discussed above, have not been applied to the rocking problem in combination with
embedded physical relationships. It should be noted that ANN alone is incapable of capturing sequential
information in input data, which is necessary for processing the data containing time series typical of
seismic responses. The other two deep learning architectures—RNN and CNN can overcome this
limitation in conventional MLP. However, RNNs require a large number of time steps in processing
and are susceptible to the vanishing and exploding gradient problem. In this article, we present a first
attempt to apply advanced deep learning tools in combination with physics-informed approaches to solve
full rocking response estimations.

1.2. Research aims and objectives

In this article, a physics-informed convolutional neural network (PICNN) is proposed for simulating the
rocking response of free-standing rigid blocks subjected to ground excitation. This newly developed tool
intends to solve the limitations of mechanics-based numerical modeling on the one hand, and solely data-
drivenmodeling of the rocking response on the other. This is done by adding a physic-based component to
a data-driven CNN to achieve a more accurate estimation of the rocking response-histories of ideally rigid
blocks in a hybrid data-driven way.

Inspired by previous studies that used PICNNs for the seismic response prediction of fixed-based
structures, e.g., Zhang et al. (2020), this study modifies and extends PICNNs reach to the more difficult
task of predicting rocking behavior. Likewise, in comparison with other purely data-driven methodolo-
gies proposed for the assessment of rigid rocking motion, e.g., Achmet et al.’s (2023), the PICNN
framework proposed here aims to achieve a higher computational efficiency with less training time and
requiring fewer labeled samples. Besides, the newly proposedmodels better capture the complex and hard
non-linear relationships in the time-series data; reduce the need for manual feature engineering, and
explicitly incorporate the constraints of the equation of motion into the training process.

The basic idea is to first make the known physics accessible to the deep-learning framework by
defining the physics loss function. Then, the PICNNs are trained by creating and using seismic datasets
with the aid of a widely used numerical model of the rigid block rocking response. It should be noted,
however, that the door is open for the use of experimental data when such dataset becomes available.
Finally, the trained PICNN model is validated and observations are made on its performance.

The article is organized as follows. Section 2 presents the dynamics of rocking motion and introduces
the development of the training datasets from numerical analysis. Section 3 presents the architecture of the
PICNN framework for rocking structural seismic response. Then, the data analysis is presented including
numerical validation of the deep PICNN framework through examples containing only the ground
acceleration measurements. Two model cases will be examined, Model 1 which uses available input
measurements of angular displacement and velocity, whileModel 2 only relies on availablemeasurements
of angular acceleration. For each model case, an optimization study will be conducted to determine its
performance and limitations. Section 5 presents a discussion on the performance of the PICNN framework
for seismic rocking response based on the results and analysis performed in the previous sections,
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followed by an analysis of the limitations of this study and recommendations for further work. Finally, the
conclusions of this study are summarized in Section 6.

2. The seismic response of free-standing rigid rocking blocks

This article deals with the rocking response and stability of rigid blocks subjected to a horizontal ground
excitation €ug. The schematics of the problem are shown in Figure 1. The rigid object under consideration is
a single slender block of size R and slenderness α. It is assumed that the rigid block is placed on a surface
where the coefficient of friction is large; therefore no sliding is observed between the block and the base
and the block engages in rotational motion around the pivot points O or O0. The size of the rigid block is
defined in equation (1) and its slenderness is defined in equation (2):

R¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2þB2

p
, (1)

α¼ a tan
b
h

� �
, (2)

where R is the block semi-diagonal (i.e., the radial distance from the center of rotation O to the center of
gravity), H is the location of the center of gravity above the base of the block and B is the distance of the
center of gravity from the side, α is the block slenderness (i.e., α is the angle the block semi-diagonal made
with the vertical when the block is at rest, in [rad]), and the angle θ quantifies the block’s rotation. In
particular, the case study considered in this article, deals with a block semi-diagonal R¼ 9 m and a block
slenderness α¼ 0:06 rad, which is representative of a rigid bridge pier (Thiers-Moggia and Málaga-
Chuquitaype, 2020).

The rigid block will uplift and start to rock when the overturning moment is greater than the restoring
moment as a result of its self-weight. The corresponding mathematical expression is shown by

€ug ≥ g tanα, (3)

where g is the acceleration of gravity. The equation of motion for the rocking block, assuming that no
sliding or bouncing occurs during impact, can be described based on Housner’s (1963) model and is
expressed as follows (Vassiliou et al., 2015):

Io€θ tð ÞþmgRsin �α�θ tð Þ½ � ¼�m€ug tð ÞRcos �α�θ tð Þ½ �, θ tð Þ < 0, (4)

Io€θ tð ÞþmgRsin α�θ tð Þ½ � ¼�m€ug tð ÞRcos α�θ tð Þ½ �, θ tð Þ> 0, (5)

where for a rectangular block Io ¼ 4=3ð ÞmR2; therefore, equations (4) and (5) can be rewritten as follows:

€θ tð Þþp2 sin αsgn θ tð Þð Þ�θ tð Þ½ ��€ug
g
cos αsgn θ tð Þð Þ�θ tð Þ½ � ¼ 0, (6)

where p is the quantity that characterizes the dynamic properties of the block and p represents the in-plane
pendulum frequency of the same block dangling from its pivot point. For a rectangular block
p¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

3g=4R
p

. The case study used in this article has a p¼ 0:904 rad=s.
An important feature of the rocking response is the impact phenomenon that occurs once the angle of

rotation θ reverses, losing some of its kinetic energy. This energy loss is expressed in terms of a coefficient
of restitution V loss that relates the angular velocity before impact _θ1 to the post-impact angular velocity _θ2
in the following way:

_θ2 ¼V loss
_θ1: (7)

The widely used Housner’s model (Housner, 1963) implies an equality of the moment of momentum
before and after impact that results in a coefficient of restitution that depends only on the geometry and
mass of the block. In this article, we consider V loss to be an independent parameter of the rocking problem
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and assume two values of it (0.9 and 0.5) to examine its influence on the accuracy of the proposed PICNN
model.

It is also possible that, depending on the signature of the base acceleration, the rigid blockwill overturn
before or after impact. In this study, over-turning is defined by computing the full rotation history of the
block to determine whether the rigid block topples or not when subjected to a particular ground motion.

The aforementioned equations were scripted and solved inMATLAB (version 2023(b)) to simulate the
two-dimensional seismic response of a rigid block. Moreover, a selection of ground motion records taken
from the PEER Ground Motion database (Chiou et al., 2008) was used. This ground-motion database
comprises a total of 1656 samples (i.e., independent seismic record sequences) and the corresponding
number of response histories were generated. For each seismic simulation, a time period of 60 seconds
was selected with time steps of 0.05 seconds resulting in 1200 data points per record.

Table 1 presents a summary of the database of records used as input to generate the rocking responses in
this article. Mean values as well as representative peak characteristics of the acceleration records are
presented for the whole NGAdatabase used as well as a sub-set of stronger records selected on the basis of
their amplitude and duration to have a larger energetic content delivered in a shorter period of time as will
be described later in the article.

In deep learning, the selection of the training datasets has a crucial function. In general, the data would
be randomly divided into training, validation, and prediction sets, in the ratios of 70%, 15%, and 15%,
respectively. This approach to data partition was also followed in this study. Moreover, since the whole
dataset is expected to be influenced by the ground-motion characteristics of the input acceleration record
set, any random divisions of the data would impact significantly the ability of the generalized trained
model. Therefore, aK-means clustering approach was followed for data clustering. K-means clustering, a
type of unsupervised learning, has the advantages of easy implementation; and with a large number of
variables, it can be computationally fast and guarantees convergence (Yuan and Yang, 2019).

The performance of the PICNN for predicting rocking behavior will be assessed through numerical
validation assuming that histories of rotation θ, angular velocity _θ, and accelerations €θ are available for
training. These histories are available from the MATLAB simulations described above but can be

Table 1. Main characteristics of the ground-motion record sets used

Date set Mean mag. Mean Max Mean Max Mean

PGA (g) PGA (g) PGD (m) PGD (m) Duration (s)

NGA data 6.77 0.15 1.6 6.49 188.32 46.96
Strong GM 6.65 0.52 1.66 18.36 188.32 33.50

Figure 1. Geometric characteristics of the rigid block model.
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potentially obtained from measurements. In addition, several optimization studies will be conducted to
investigate the performance of the proposed PICNN model when predicting the rocking response for
accessing real field measurements in applications: (i) including overturning cases or not including
overturning; or (ii) restricting or not restricting the range of ground motions used for input training. To
this end, comparative analysis of the predicted measurements from the deep PICNN and the reference
measures from the numerical model will be presented in terms of response-history comparisons and
statistical analysis techniques to establish a quantitative measure of the performance of the PICNN in
estimating the rocking response under earthquake excitations. This will indicate whether the deep PICNN
is adequate or not for assessing the rocking response of the rigid block subjected earthquake motion.
Before introducing the performance metrics employed, the following section will present the PICNN
framework used.

3. Physics-informed CNN framework

This section presents the architecture of the PICNN to estimate the seismic response of rocking structures.
Two model cases are introduced and discussed with emphasis on the definition of their loss functions.

As discussed in Section 1.1, there appears to be a consensus that neural networks are an effective
technique for solving problems like classification and regression (Bharath and Reza, 2018). CNN
(or ConvNet) is a class of ANN, used most frequently to examine visual images (Ciresan et al., 2011;
Valueva et al., 2020) with widespread applications in image classification, image segmentation, medical
image analysis and brain–computer interfaces (Avilov et al., 2020). Deep neural networks have trad-
itionally been trained using data alone. However, by including physical restrictions (e.g., the governing
laws of dynamics) throughout the training step, the resilience of learning from the data may be improved
even further.

A four-layer PICNN is proposed herein for the analysis of response series as shown in Figure 2. The
four layers comprise a feature learning layer, a fully-connected layer, and input and output layers. Also,
one graph-based tensor differentiator is used. In this study, dropout layers are additionally implemented to
avoid complex modifications to the training data (Srivastava et al., 2014; Zhang et al., 2020).

In general, for the prediction of seismic responses, the inputs are the ground motion records (real or
artificial), and the outputs are histories of structural response parameters like structural displacement
x θ, tð Þ or structural velocity _x θ, tð Þ. It should be noted that the velocities _x θ, tð Þ are worked out through the
tensor differentiator by unitizing the finite difference method (FDM). The combined loss is the sum of the
loss of measurement data and the loss resulting from the physics used to simulate the interdependence of
the output characteristics. Different to the general CNN, the input and output in the deep PICNN
framework are both time sequences.

To fit better more conventional expressions used in the PICNN modeling of dynamic systems, the
governing equation of motion for a rocking body can be expressed as follows:

f≔€x θ, tð Þþh θ, tð ÞþΓ€ug tð Þ ! 0, (8)

where €x θ, tð Þ is the acceleration relative to the ground, h θ, tð Þ is the generalized term, €ug is the ground
motion, and Γ is the force distribution factor.

A graph-based tensor differentiator is incorporated with the one-dimensional CNN in order to relate
different physical parameters of varying temporal nature. The basic concept of the network is to give the
ground acceleration as input (containing n test points with time series from t1 to tn), and then output
the state space variables containing displacement x θ, tð Þ, the velocity _x θ, tð Þ. All the inputs and outputs
are time-related and have the sample points from t1 to tn. As detailed later the convolution operation,
zero-padding is added to each convolution layer’s output sequence to guarantee the same input/output
length.

In addition to the input and output layers, the PICNN framework also includes several hidden layers
named the feature learning layers and the fully connected layers (Lawrence et al., 1997; Lecun et al.,
2015). A convolution layer, a nonlinear activation function, and a feature pooling layer are among them
and compose the feature learning layer. The sets of sample points that pass through each layer will output a
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feature map, as the feature pooling layers are used to extract the characteristics from the input/output from
the preceding layer.

In order to add the physics-informed component into the CNN framework, the outputs passed through
the convolution layers will be further processed by a graph-based tensor differentiator based on the FDM
to get its derivation _θ tð Þ, €θ tð Þ which works as the main variables in the physics loss function. In general,
the simplest and themost common loss calculated for deep learningmodel uncertainty is themean squared
error (MSE). In this article, the weighted mean squared error (WMSE) is used to assign different weights
to individual parameters based on significance in the overall optimization process. This approach enables
PINNs to effectively handle imbalanced data, incorporate the physics of the problem, and account for data
uncertainties, further achieve more accurate and robust results during the optimization process.

The fundamental idea of constructing the physics loss here is to make the network hyper-parameters
(equation (9)) as optimal as possible so that the PICNN can comprehend the measurement data while also
meeting the physical relationships of the governing equation of motion, as shown in equation (8):

θ¼ Wθ,bθf g, (9)

whereWθ is the weight parameter of the neural network and bθ is the neural network bias parameter. For
the total loss, J θð Þ, which comprises data loss and physics loss, the definitions are shown below:

J θð Þ¼ JD θð Þþ JP θð Þ, (10)

JD θð Þ¼ 1
N

XN
i¼1

xpi � xmi
� �2þ 1

N

XN
i¼1

_xi
p� _xi

mð Þ2þ 1
N

XN
i¼1

hp�hmð Þ2, (11)

JP θð Þ¼ 1
N

XN
i¼1

_xp� xpt
� �2þ 1

N

XN
i¼1

_xpt þhpþΓ€ug
� �2

, (12)

where JD θð Þ is the data measurements loss, JP θð Þ is the physics loss defined to impose a restriction
that can be used to simulate the interdependence of the output characteristics in the neural work
framework; p and m are superscripts denoting prediction and measurement.

The application of the standard neural network (for example, ANNandCNN) is limited in practice, due
to the unavoidably huge numerical inaccuracies resulting from the integration of accelerations to

Figure 2. The architecture of physics-informed convolutional neural network (PICNN). The inputs are
ground motion (€ug), and the outputs are state space variables: rotation (θ), rotational velocity ( _θ). The
derivatives of the outputs from the tensor differentiator are angular velocity (θt), acceleration ( _θt).
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displacements. This normal approach requires firstly the determination of the structural displacements
based on the ground acceleration data, and then the training of a CNN model using the interpreted
displacements. The PICNN embeds the physical relationships into its training; theoretically speaking, it
would be able to accurately predict the block rotations (or related drifts) only based on the ground
accelerations. In the following subsections, the features of the four different kinds of layers used will be
detailed.

3.1. Convolution layer

The convolution layer is the foundation of the PICNN framework, and is an essential part of building the
CNN. A convolutional layer works like an ordinary neural network in a hidden layer, it converts the input
to an abstract representation. To execute computations between feed-in value and the hidden neurons, the
convolutional layer employs a local connection rather than awhole connectivity. It uses at least one kernel
to conduct a convolution between each region of input and the kernel as it slides over the input. The
activation maps, which may be viewed as the outcome from the convolutional layer, store the findings
including characteristics derived from several kernels. Every kernel can serve as a feature extractor
individually and all neurons will share their weights. By convolving an input sequence throughout the full
temporal space, the time dependence is recorded.

Typically, a nonlinear activation function (such as ReLu, tanh, etc.) is implemented to the values
resulting from convolutional actions between the kernel and the input. Those values are recorded in the
activation maps and will be eventually sent to the subsequent network layers. In this study, a RelU
function was applied as defined in the following equation:

f xð Þ¼ 0 for x< 0

x for x≥ 0

�
: (13)

3.2. Pooling layer

Pooling layers offer a method for downsampling feature maps by summarizing the existence of
characteristics within patches of the characteristic mapping. Common pooling techniques include average
pooling and max pooling, which summarize the average presence of a feature or the most active presence
of a feature, respectively. Average Pooling Computes the mean value for each patch on the map.
Maximum Pooling determines the largest value for each patch of a feature map. For the proposed PICNN
framework, the pooling layer is restricted as the feature of downsampling is not wanted for solving
regression problems involving time series like the one under consideration.

3.3. Fully-connected layer

A layer with full connectivity multiplies the feed-in value by a weight matrix and then adds a bias vector
(Géron, 2019). Normally, One or more fully connected layers come after the convolutional (down-
sampling) layers. As suggested by the name, all neurons in the completely connected layer are linked to all
neurons in the layer underneath it. To solve the regression problem (time-series prediction) like the one
presented in this study, a Tanh function (nonlinear activation functions) is implemented within the fully-
connected layers with the linear activation functions applied to the output layer (Zhang et al., 2020).

3.4. Dropout layer

A dropout layer is one of the most widely used regularization approaches for minimizing overfitting in
deep learning models. When a model exhibits more accuracy on the training data but poorer accuracy on
the test data or unknown data, this is known as overfitting. In the dropout approach, random neurons are
deleted or excluded from hidden or visible layers. Normally, the dropout layer can be placed after each
convolution layer or fully-connected layer. The input units are set to zero at random at each training step
with the frequency of rate. Inputs that are not set to zero are multiplied by 1/(1� rate) such that the sum of
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all inputs remains unchanged. The dropout rate in this study was set to 0.2 and placed before the fully-
connected layers. Finally, to get the model trained in a local PC environment, the authors used a standard
PC with 32 GB memory, 12th Gen Intel Core i7–12,700 CPU and an NVIDIA RTX A4500 video card.

3.5. Rotation-rotational velocity model: model 1

The first model developed will assume that measurements of all state variables (θ and _θ) are available for
training. This condition is typical of datasets developed via numerical models, like the one described
above. In this case, the loss function is defined as the sum of the data loss and physics loss, referring to
equations (8)–(12), the equation of motion of the nonlinear rocking system, therefore, can be expressed as
follows:

€θ tð Þþp2 sin αsgn θ tð Þð Þ�θ tð Þ½ �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
h

¼ €ug
cos αsgn θ tð Þð Þ�θ tð Þ½ �

g|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Γ

, (14)

where Γ is the force distribution factor and h is the generalized term that can be derived as
h¼�€θ tð Þ�Γ€ug.

3.6. Rotational acceleration-only model: model 2

In real-world applications, accelerometers are more commonly used to monitor structures and hence
accelerograms are usually the only information available on existing buildings or structures. This imposes
a limitation for standard deep learning models to predict structural displacements, or in our case rotations,
using acceleration data alone. The second Model is designed to be able to predict rotations based on
acceleration measurements for training by incorporating physics into the training process. Themodel will
be optimized to minimize the physics loss function defined below based only on accelerations, the input
dataset is the ground acceleration and the output rotations will then be fed into the differentiator to get its
derivatives—rotational acceleration. Other features of the layers implemented in the framework can be
found in Sections 3.1–3.4, above. To this end, the loss function was redefined and has the derived physics
loss function shown below:

J θð Þ¼ 1
N

XN
i¼1

€xi
p�€xi

mð Þ2, (15)

where €xip is the acceleration in prediction and €xim is the acceleration in measurement. It should be noted
that, as most real applications will measure linear accelerations, €x θ, tð Þ, these are obtained from the
corresponding rotational accelerations €θ tð Þ for the purpose of this calculation. The redefined physics loss
function is only related to the structural angular acceleration measurements, having the physics informed
by the tensor differentiator.

4. Numerical validation and model performance

4.1. K-means clustering

In order to carry out a more efficient training and validation of the model being proposed, K-means
clustering is used to partition the original dataset of 1656 pairs of records and corresponding analyses into
training, validation and prediction categories. This is expected tomaximize the use of a dataset that may be
limited in the context of data-drivenmodels but is extensive from the earthquake engineering point of view.

The sample peak ground displacements was then processed into several clusters using the K-means
algorithm (Chamundeswari et al., 2012). In the context of unsupervised learning, K-means it is a common
technique for data mining that clusters datasets into a specified number of groups. Two K-clustering
methods were implemented to determine the optimum amount of clusters k: elbow method and silhouette
method. The elbow indicates the point at which the number of clusters begins to increase. The silhouette
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score of a point indicates the distance between that point and its cluster centers across all clusters. It gives
information on clustering quality that may be used to decide whether the current clustering requires more
refinement. The key distinction between elbow and silhouette values is that elbow simply calculates the
Euclidean distance, while silhouette also considers characteristics such as variance, skewness, high-low
disparities, and so on (Faber, 2012). As presented in Figure 3, the value of k is determined as k¼ 4 in this
study.

The selected groundmotion samples were then divided into four clusters as shown in Figure 3. In order
to randomly and evenly separate the samples into three datesets for prediction, testing, and prediction, the
function of dividerand in MATLAB was used to divide the samples in each cluster into three sets. The
final training, testing, and prediction sets are the sum of the division samples in all four clusters. The K-
means clustering approach described above was applied to each ground-motion sub-set, and each sub-set,
totaling around 188 ground motions each, was in this way partitioned into 4 representative clusters.

In the following section, the performance of the PICNN framework for rocking response will be
investigated based on two model cases: (i) Model 1: having available measurements of rotation and
angular velocity and (ii) Model 2: having only available measurements of angular acceleration. The
statistical analysis for conducting overall framework performance checks will be presented first. This is
followed by the comparative analysis visualizing the deviation between the prediction and reference
response histories.

4.2. Model 1

The numerical validation of the developed PICNN framework for predicting rocking response is firstly
performed assuming that measurements of all state variables (x θ, tð Þ and _x θ, tð Þ) are available for training.
From the group of 1656 independent seismic sequences, only 50 samples were randomly selected in
consistency with the clustering procedure as known datasets for training purposes, while the remaining
datasets were kept as unknown datasets to evaluate the prediction performance.

Figures 4 and 5 present representative examples of response history plots, comparing the reference data
from numerical simulation and the predictions obtained using the PICNN Model 1 framework. It is
customary to distinguish between cases where the block overturns and those where it does not overturn.
From Figure 4b, it can be found that the predicted responses deviate significantly from the reference data
obtained through numerical simulation, indicating a limitation in the model’s ability to predict rocking
response in the case of overturning. These findings imply that excluding samples of overturning behavior
from the training dataset has the potential to enhance the framework’s accuracy. By focusing on

Figure 3. K-means clustering.
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Figure 4. Representative response-history plots for Group A.
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Figure 5. Representative response-history plots for Group B.
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nonoverturned scenarios, the model can better concentrate on learning relevant patterns, leading to more
precise predictions for such responses.

An optimization study focusing on three key factorswas therefore conducted, including groundmotion
type, rocking behavior cases, and the coefficient of restitution (V loss). Table 2 presents four different
training cases, each representing a specific combination of these factors. GrpA involves the entire ground
motion dataset with uplifted rocking cases and a coefficient of restitution of 0.9. GrpB includes the whole
ground motion dataset with nonoverturned rocking cases only and the same coefficient of restitution.
GrpC and GrpD focus on a stronger ground motion sub-dataset with nonoverturned cases, but GrpC
maintains a coefficient of restitution of 0.9, while GrpD has a lower coefficient of restitution of 0.5 which
is closer to some experimental observations. By conducting the optimization study on these groups, the
initial goal is to identify the optimal configuration that will enhance accuracy and reliability of the
framework in predicting the rocking response, hence identifying the most appropriate dataset and
parameter settings that enable more reliable and robust predictions.

Different ground motions have varying characteristics in terms of amplitude, frequency content, and
duration. A sub-ser of relatively strong ground motion records was selected to group records with Peak
Grond Accelerations (PGAs) larger than 0.3 g and a total duration of less than 60 seconds. The whole
ground motion record set and the selected strong ground motion sub-set are plotted in Figure 6.

Table 2. Model 1 training cases

Comparison Ground motion type Rocking case Coefficient of restitution V loss

GrpA Whole Including overturning 0.9
GrpB Whole Nonoverturned 0.9
GrpC Strong Nonoverturned 0.9
GrpD Strong Nonoverturned 0.5

Note. This table compares different ground motion types, rocking cases, and coefficient of restitution.

Figure 6. Duration versus peak ground acceleration (PGA) plot for whole ground motion records and
selected strong motion records.
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In the context of rocking behavior, the coefficient of restitution determines the amount of energy
dissipated or transferred when the rocking block impacts or collides with the ground surface. A higher
coefficient of restitution represents a more elastic collision, where a significant portion of the energy is
restored after impact, therefore resulting in quicker oscillations and a longer duration for the system to
reach a steady state of static equilibrium position. Conversely, a lower coefficient of restitution indicates a
more inelastic collision, where a larger proportion of the energy is dissipated. A relatively high coefficient
of restitution, 0.9, was assumed to model a more rapid and energetic response, leading to more visually
distinguishable features in the predicted response-history plots. Additionally, a coefficient of restitution of
0.5 was selected to provide a comparison that aligns more closely with some real-world conditions.

Statistical analyses are performed for the four different cases (GrpA, GrpB, GrpC, and GrpD) outlined
in Table 2, each with a different combination of ground motion type, rocking case, and coefficient of
restitution. These analyses are carried out to quantitatively evaluate the performance of the PICNN
framework in predicting rotations and angular velocities under different scenarios.

Equations (16) and (17) give the mathematical expression for mean absolute error and root-mean-
square error:

MAE¼ 1
N

X
∣yi� ŷ∣, (16)

RMSE¼
ffiffiffiffiffiffiffiffiffiffi
MSE

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

X
yi� ŷð Þ2

r
, (17)

where yi is the actual value and ŷ is the predicted value. MAE (Mean absolute error) calculates the
difference between the original and estimated values by taking the mean absolute difference throughout
thewhole dataset under consideration.MSE (Mean Squared Error) represents the variance by squaring the
average difference across the dataset. RMSE (RootMean Squared Error) is the square root ofMSE (Faber,
2012). These metrics were calculated over the 50 points of the testing set.

Tables 3 and 4 provide a comparison of the mean and standard deviation values for mean absolute error
(MAE) and root mean squared error (RMSE) for different training groups related to θ tð Þ and _θ tð Þ. It can be
seen that in both tables, a consistent improvement in the mean and standard deviation values for bothMAE
and RMSE is observed as one progresses from GrpA to GrpD. Among these comparison groups, GrpD
(Strong groundmotion, Nonoverturned rocking case,V loss ¼ 0:5) has the lowest meanMAE (θ: 0.000289;

Table 3. Comparison of mean and standard deviation for MAE and RMSE (θ tð Þ)
Grp Mean MAE Std MAE Mean RMSE Std RMSE

GrpA 0.00449 0.0101 0.0168 0.0456
GrpB 0.000851 0.000666 0.00139 0.00119
GrpC 0.000561 0.000648 0.000983 0.00132
GrpD 0.000289 0.000265 0.000621 0.000581

Note. This table shows the mean and standard deviation values for MAE and RMSE for different training group data.

Table 4. Comparison of mean and standard deviation for MAE and RMSE ( _θ tð Þ)
Row Mean MAE Std MAE Mean RMSE Std RMSE

GrpA 0.0049611 0.0077623 0.016695 0.035691
GrpB 0.0012583 0.00087776 0.0021541 0.0015357
GrpC 0.00095276 0.00096267 0.0018068 0.0018479
GrpD 0.00072197 0.00068101 0.001689 0.0015405

Note. This table shows the mean and standard deviation values for MAE and RMSE for different groups.
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_θ: 0.000722) and mean RMSE (θ: 0.000621; _θ: 0.00169) for both rotation and angular velocity, indicating
higher accuracy in predicting angular displacement. Figures 7 and 8 show the box plot ofMAE andRMSE
for the rocking response prediction for all groups. Among them, GrpD shows the smallest box size and the
lowest median for both angular displacement and angular velocity errors, this indicates that the prediction
response fromGrpDhas the smallest spread and lower errors compared to the other groups, implying better
predictive performance. GrpA generally exhibits the largest box sizes and highest medians, and have the
widest range of outliers. The individual data points beyond thewhiskers, which are plotted as red crosses in
these figures, represent outliers in the dataset. These outliers indicate instances where the predicted values
deviated significantly from the actual values, resulting in large prediction errors. In this context, the outliers
specifically indicate the inability of the model to accurately predict overturned cases. The inability to
accurately predict overturned cases is a significant finding as it highlights a limitation of the model in
capturing and predicting such highly dynamic and unstable behavior.

The correlation coefficient measures the strength of the association between two variables. Pearson’s
correlation is a commonly used correlation coefficient in linear regression (Faber, 2012). Another
indicator commonly used to evaluate the performance of model for prediction is the Coefficient of

Figure 8. Box plot––root-mean-square error and mean absolute error in _θ tð Þ.

Figure 7. Box plot––root-mean-square error and mean absolute error in θ tð Þ.
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Figure 9. Histogram graph for correlation coefficient (θ tð Þ).

Figure 10. Histogram graph for correlation coefficient ( _θ tð Þ).
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Figure 12. Histogram graph for coefficient of determination ( _θ tð Þ).

Figure 11. Histogram graph for coefficient of determination (θ tð Þ).
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determination (R2), which is a measure of how well the variation in one variable can be explained by the
variation in another variable. A value closer to 1 indicates that the model’s predictions are more accurate
and closely match the actual data, with 1 indicating a perfect fit. The mathematical expression for both
correlation coefficient and coefficient of determination (R2) can be found below:

r¼
Pn
i¼1

xi��xð Þ yi��yð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

xi��xð Þ2Pn
i¼1

yi��yð Þ2
s , (18)

R2 ¼ explained variance
total variance

¼
Pn
i¼1

ŷi��yð Þ2

Pn
i¼1

yi��yð Þ2
, (19)

where n is the number of data points, xi and yi are the data points for the two variables, �x and �y are the
means of the two variables, ŷi is the predicted value of yi, and �y is the mean of yi .

Figures 9–12 show the histogram graphs of correlation coefficient and coefficient of determination for
the rocking response prediction (θ tð Þ and _θ tð Þ) with Model 1. Generally speaking, these histograms show
a concentration of correlation coefficients around higher values, indicating strong correlations between
the predicted and actual values, which suggests that the framework predictions are accurate and align well
with the observed data. The clustering of correlation coefficients around higher values (closer to 1)
indicates that the PICNN Model 1 has a good fit and effectively predicts the overall rocking response.
There is a consistent improvement in R and R2 histograms when moving toward GrpD, for both angular
displacement and velocity, indicating that the framework is capable to capture the rocking response in
non-overturning under more consistent ground motion with lower values of the coefficient of restitution.
From the histogram plots, it is evident that the R2 values for velocity predictions are generally higher and
tend to cluster closer to 1 compared to the R2 values for displacement predictions (dis). This suggests that
the PICNN model is more accurate in predicting velocity responses than displacement responses.

Guan et al. (2021) proposed a new novel performance metric, designed to examine the fraction of the
dataset in which the relative difference between predicted and actual values falls below a predefined
percentage, mathematically defined as follows:

D25% ¼
countif abs ŷi�yi

yi

	 
h i
⩽25%

N
, (20)

where countif is a function that counts the number of the data points satisfying the condition in the square
brackets, abs is the function that takes the absolute value of its argument, ŷi is the predicted value, yi is the
actual value and N is the total number of data points. Table 5 summarizes the average percentage obtained
from the Performance Metric, setting the threshold of 25% for the four case studies. It is found that GrpD
(Strong ground motion, Nonoverturned rocking case, V loss ¼ 0:5) achieved the highest accuracy in
predicting both rotation (θ) and angular velocity ( _θ), 92.683 and 92.836%, respectively. There is a
consistent improvement in accuracy for both u and ut, indicating that stronger ground motions and lower
values of V loss lead to more accurate predictions.

The box plots shown in Figure 13 further support the observations regarding the accuracy of the
predictions. The plot illustrates the distribution of the predefined performance metric for rotation (θ) and
angular velocity ( _θ) across the four groups. As seen in the box plot, GrpD exhibits the smallest spread of
performances, indicating higher prediction accuracy for both θ and _θ compared to the other groups.
Moreover, the median line of GrpD is the highest, indicating a better central tendency of the predicted
values with respect to the actual data. Figures 14 and 15 show typical examples of response-history plots
in Group D. It can be seen that Model 1 is capable of predicting the rocking response very well for a wide
variety of ground-motion signatures.
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In order to have a quantitative measure of the performance of the midfield PhyCNN framework and
evaluate the success of the displacement and velocity measurement. The probability density function
(PDF) of the normalized error distribution is calculated as follows:

p¼ PDF
ytrue� ypredict
max jytruejð Þ : (21)

The same conclusion was reached when conducting the error distribution analysis, where angular
velocity predictions exhibit higher accuracy compared to angular displacement predictions. It is found
that the prediction error mainly located within the 0:5% area for both displacement and velocity
measurements. The corresponding confidence intervals (CI) are determined as 99:17 and 100%, respect-
ively, as shown in Figure 16.

4.3. Model 2

Figure 17 shows the rocking response-history plots obtained with Model 2, which uses inputs of
accelerations only. The red dotted line in these plots shows the reference output from the numerical
simulation. It can be seen that the predicted angular acceleration has an excellent fit with the reference line,
inditing good performance of Model 2. However, the predicted rotation directly shows relatively larger
mismatches in amplitude although is still able to follow the general response pattern.

A statistical analysis was also performed on the predictions of Model 2 to get a quantitative
understanding of its performance. The same optimization study implementing four training groups
defined beforewas followed, as shown in Tables 6–8. TheD25% performancemetric between the predicted

Table 5. Relative difference presented in performance metric––25%

Comparison Ground motion type Rocking case V loss θ (%) _θ (%)

GrpA Whole Uplifted 0.9 85.935 84.903
GrpB Whole Nonoverturned 0.9 87.221 90.377
GrpC Strong Nonoverturned 0.9 88.992 92.324
GrpD Strong Nonoverturned 0.5 92.683 92.836

Note. This table compares different ground motion types and rocking cases.

Figure 13. Prediction performance metric in box plot.
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Figure 14. Representative response-history plots for Group D.
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Figure 15. Representative response-history plots for Group D. Cont.
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rocking response and the reference true valuewas calculatedwith the selected threshold of 25%, as before.
Generally speaking, even for the worst cases, the percentage accuracy for prediction of the rocking
angular acceleration is still above 80% in most cases (Table 6) and the error values (Tables 7 and 8) are
acceptable.

5. Discussion

We have proposed two PICNNs models in the previous sections, and have performed statistical,
comparative and optimization analyses on them. The results of these analyses provided valuable insights,
but it is important to note that limitations were also observed. It has been shown, for example, that the
accuracy of the predictive framework proposed can be significantly influenced by the duration of the
ground motion, the possibility of overturning, and the value of the coefficient of restitution.

The characteristics of the input ground motion (duration, amplitude and frequency) have shown a
significant influence on the performance of the PICNNs. The amplitude and frequency of ground motion
affects the total amount of input data available for analysis, and a stronger ground motion can facilitate a
better learning of the seismic rocking response. On the other hand, a weaker ground motion may not
capture the full range of dynamic behavior needed for the neural network to establish a good prediction. In
this study, a relative stronger ground motion record dataset (PGA larger than 0.3 g) was selected for
training and available to predict the rocking seismic response under the ground motion. As shown in
Table 5, using a stronger ground motion input, the relative differences performance metric D25% of both
rotations θ an angular velocity _θ increased by 3 and 8%, respectively. The duration of ground motion
affects the temporal context available for the model to learn from, potentially influencing the model’s
ability to capture long-term dynamic effects and transient responses without overwhelming the training
process. A broader range of duration for ground motion input can introduce more complexity and
variability in training the model, which results in larger uncertainties. Striking the right balance in
selecting ground motions with a suitable range of characteristics is essential for the current PICNNs
framework to generalize well and make more robust and accurate predictions.

The statistical analysis conducted in the previous section also showed that the behavior of rocking
(overturned or non-overturned) would determine the performance of our deep PICNNs. The physics
restraints embedded in the framework spring from the governing equation of motion, however, as it does
not explicitly incorporate information about overturned or non-overturned cases, the PICNNs would not
be able to identify or differentiate between these cases. The ability of the PICNN framework to capture and
identify rocking behaviorwould primarily depend on the availability and representation of relevant data in

Figure 16. Error distribution of prediction for training case GrpD.
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the training set. If the training data include large examples of overturned or non-overturned cases, the
network could learn to associate certain input patterns with rocking behavior. However, this understand-
ing would be implicitly learned from the data rather than explicitly encoded through the physics-informed
component of the deep neural network. Alternatively, a parallel regression model could be used to

Figure 17. Representative response-history plots for Group H.
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distinguish between overturning and non-overturning cases in the first instance, leaving the proposed
PICNN to concentrate on learning the main features of the non-overturning responses.

The value of coefficient restitution selected in constructing the database for training also plays a
substantial role when analyzing the performance of PICNNs framework in predicting rocking seismic
response. The coefficient of restitution quantifies the energy dissipation and restitution characteristics
during impacts, and directly affects the dynamic response of the rocking block. A higher coefficient of
restitution tends to lead to more pronounced rocking motion with greater peak displacements and
accelerations. On the other hand, a lower coefficient of restitution results in reduced rocking motion
and dampened response. Avalue of 0.5 is commonly employed in experiments to represent approximately
50%of the kinetic energy is preserved or restored during the interaction between the rocking block and the
ground surface. In the numerical validation section, it was observed that the accuracy of the PICNN
framework for predicting rocking response in terms of angular displacement, velocity, and acceleration
improved when a lower coefficient of restitution of 0.5 was selected, closer to what is typically
encountered in real-world applications.

As observed in some of the angular displacement response-history plots presented above, the
chattering effect occurs in the numerical simulation can impact the accuracy and reliability of the PICNNs.
Chattering refers to the occurrence of rapid and irregular oscillations during low-amplitude oscillations or
transitions in the system (Giouvanidis et al., 2022). Capturing chattering in the rocking response has
proven to be particularly challenging with the neural networks explored as the discontinuities and abrupt
changes that occur during the transient behavior of rocking structures can be very hard to model.

Table 6. Relative difference performance metric D25%

Comparison Ground motion type Rocking case V loss θ _θ

GrpE Whole Including overturning 0.9 74.88% 84.88%
GrpF Whole Nonoverturned 0.9 77.77% 84.91%
GrpG Strong Nonoverturned 0.9 92.17% 98.72%
GrpH Strong Nonoverturned 0.5 92.31% 98.46%

Note. This table compares different ground motion types and rocking cases.

Table 7. Comparison of mean and standard deviation for MAE and RMSE (θ tð Þ)
Grp Mean MAE Std MAE Mean RMSE Std RMSE

GrpE 0.12311 0.17892 0.16998 0.33088
GrpF 0.0065114 0.0066121 0.0068473 0.0069561
GrpG 0.0038064 0.003933 0.0042992 0.0047477
GrpH 0.0027572 0.0028623 0.0031424 0.003566

Note. This table shows the mean and standard deviation values for MAE and RMSE for different training group data.

Table 8. Comparison of mean and standard deviation for MAE and RMSE(€θ tð Þ)
Row Mean MAE Std MAE Mean RMSE Std RMSE

GrpE 0.0058026 0.0049696 0.010464 0.0096568
GrpF 0.0010291 0.0016468 0.0019295 0.0036063
GrpG 0.00081508 0.00094159 0.0015096 0.0018738
GrpH 0.00079679 0.00097953 0.0017361 0.0023965

Note. This table shows the mean and standard deviation values for MAE and RMSE for different groups.
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The chattering phenomenon in PICNNs predictions for rocking behavior can cause unstable and
unreliable results, hindering the interpretation and utilization of the outputs. It can also cause convergence
difficulties during training, impeding the network optimization process. Additionally, the sensitivity of
chattering to small changes in initial conditions can pose challenges, as slight variations can lead to

Figure 18. Comparison of predicted and observed peak response parameters.
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divergent predictions and significant impacts on the prediction of rocking behavior. To address the issue of
chattering when implementing PICNNs to predict the seismic rocking response, possible strategies
include improving data representation by incorporating chattering-related dynamics, refining the loss
functions to account for chattering, and adjusting network architecture and regularization techniques
(dropout, weight decay, or adaptive learning rate algorithms) to enhance stability. Additionally, conduct-
ing sensitivity analyses on initial conditions and input parameters helps understand the system’s
sensitivity to chattering and aids the interpretation of the predictions (Pizarroso et al., 2022). Also,
several learning rates, batch sizes, and number of layers were tested, the PICNNs implemented here can be
further tuned by evaluating their performance on a wider set of ground-motion and rocking response data.

Another interesting possibility is related to the model’s ability to predict global statistics of rocking
responses even if individual response-history signatures deviate from the observations. This is explored in
Figure 18 that shows a comparison of peak rotation and peak acceleration values extracted from the
predicted response series and their numerical observations. In both cases, duration is used as a ground
motion IM following our previous observation regarding its role in shaping the PICNN’s predictions of
rocking responses. It is clear from this figure, that good levels of estimation are achieved by both models.
These encouraging results open the door for the use of PICNNmodels for the estimation of probabilities of
exceedance of certain peak response levels (i.e., failure) even if overturning probabilities are not well
captured.

6. Conclusion

This article has demonstrated that PICNNs are capable of simulating the hard-nonlinear problem of rigid
blocks engaged in seismically induced rocking motion. The work and results presented have shown, for
the first time, that using the deep learning method of CNN (convolutional NN) with physics constraints
encoded offers a simplified and efficient alternative for predicting the rocking response over a range of
real ground-motion records. The article presents a way to integrate the underlying physics of rocking
dynamics into theCNNarchitecture to guidemodel training. The proposed deep PICNNmodel consists of
five convolution layers and three fully connected layers for data interpretation, a graph-based tensor
differentiator was used for deriving the angular acceleration with encoded physics constraints. Two
models have been proposed. Model 1 assumes that the entire set of response histories including rotations
and rotational velocities are available for training, while Model 2 assumes that only acceleration
measurements are available.

Overall, the rocking response predicted by the proposed PICNN is in good agreement with the
numerical model when training with only one rocking feature for nonoverturning cases under consistent
strong ground motions. The robustness of the proposed technique is illustrated by training the PICNN
with mixed/limited datasets, stressing the importance that the quantity and quality of data has on the
prediction performance.

On the other hand, it was found that the current developed deep PICNN cannot accurately predict the
rocking response of blocks that overturn since it fails to capture the ever-increasing amplitude in drifts and
rotations. However, it is expected that in those cases, an alternative regression model could be used to
distinguish first, in a prior step, between overturning and non-overturning cases, and the currently
proposed PICNN can then be used to estimate the response history of non-overturning blocks.

The results of the error distribution analysis performed indicate that the deep PICNN framework
performs better when estimating the angular acceleration than the block rotation with a confidence
interval of 100 and 99:17%, respectively. Furthermore, it was found that the proposed deep PICNN
framework can significantly reduce computational costs. The model is more generalizable and has lower
training expenses than traditional numerical FEA modeling. It is important to note that in this study, the
proposed PICNNmodel has been verified bymeans of widely accepted numerical procedures, and further
investigations should be performed in order to confirm experimental results which would strengthen the
confidence on the application of PICNN to predict hard nonlinear problems like rocking and to estimate
future states of motion, especially with Model 2 which is closer to real applications.
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