PRIMARY IDEALS AND PRIME POWER IDEALS

H. S. BUTTS AND ROBERT W. GILMER, JR.

1. Introduction. This paper is concerned with the ideal theory of a commutative ring R. We say R has Property (α) if each primary ideal in R is a power of its (prime) radical; R is said to have Property (δ) provided every ideal in R is an intersection of a finite number of prime power ideals. In (2, Theorem 8, p. 33) it is shown that if D is a Noetherian integral domain with identity and if there are no ideals properly between any maximal ideal and its square, then D is a Dedekind domain. It follows from this that if D has Property (α) and is Noetherian (in which case D has Property (δ)), then D is Dedekind. This suggests the following question: In the definition of a Dedekind domain (i.e., every ideal is a product of prime powers) can "product" be replaced by "intersection"? This paper answers this question in the affirmative. In fact, Theorem 11 shows that (δ) holds in a commutative ring with identity if and only if R is a Z.P.I. ring (i.e., every ideal is a product of prime ideals). We note that this implies that Property (α) follows from Property (δ) in case R has an identity (Theorem 8 shows that Property (δ) implies Property (α) in any commutative ring).

In addition some results concerning the implications of Property (α) are obtained. For example, if the ascending chain condition for prime ideals holds in the domain D with identity, then (α) holds in D if and only if D_{P} is a discrete valuation ring for each proper prime P of D. This result is related to (1, Theorem 1.0) which shows for an integral domain J with identity that J_{P} is a discrete rank-one valuation ring if and only if each ideal of J with prime radical is a prime power. Another result in this vein is (9, Theorem 3.8): if the ascending chain condition for prime ideals holds in the integral domain J with identity, then J is a Prüfer domain (i.e. J_{P} is a valuation ring for each prime ideal P of J) if and only if every primary ideal of J is a valuation ideal (13, p. 340).

The notation and terminology are those of $(12 ; 13)$ with one exception: \subseteq denotes containment and \subset denotes proper containment. As stated previously, all rings considered are assumed to be commutative.
2. Rings with Property (α). In this section we derive some consequences of Property (α). We see at once that if R has Property (α), then so does any homomorphic image R / A of R and any quotient ring R_{M} of R. We say that a prime ideal P of a ring R is unbranched if P itself is the only P-primary ideal of R; otherwise we say P is branched. R is a u-ring if R is unbranched. R is
said to have dimension n if there is a strictly ascending chain of $n+1$ prime ideals $(\neq R)$ of R but no such chain of $n+2$ prime ideals.

Theorem 1. Suppose (α) holds in the ring R and M is a proper ideal of R such that M is a minimal prime of $P+(x)$ for some prime P of R and some $x \in M-P$. Then the powers of M properly descend, $P \subseteq \cap_{1}^{\infty} M^{n}$ and $\cap_{1}^{\infty} M^{n}$ is the intersection of all M-primary ideals of R.

Proof. For i a positive integer, M is a minimal prime of $P+\left(x^{i}\right)$. If Q_{i} is the isolated primary component of $P+\left(x^{i}\right)$ belonging to M, then $Q_{1} \supset Q_{2} \supset \ldots$ (We have $x^{i} \in Q_{i}-Q_{i+1}$.) For each $i, Q=M^{n_{i}}$ for some n_{i}. Hence $n_{1}<n_{2}<\ldots$ so that the powers of M properly descend. Further,

$$
P \subseteq \bigcap_{1}^{\infty} M^{n_{i}}=\bigcap_{1}^{\infty} M^{i}
$$

If Q is the intersection of all M-primary ideals, then because $M^{n_{i}}$ is M primary,

$$
\bigcap_{1}^{\infty} M^{n_{i}} \supseteq Q .
$$

Since each M-primary ideal is a prime power, then

$$
Q \supseteq \bigcap_{1}^{\infty} M^{j}
$$

Hence

$$
Q=\bigcap_{1}^{\infty} M^{j} .
$$

Theorem 2. Suppose (α) holds in the ring R and P and M are prime ideals of R such that $P \subset M \subset R$. Then

$$
P \subseteq \bigcap_{1}^{\infty} M^{n}
$$

Proof. Let $m \in M-P$ and let P_{0} be a minimal prime of $P+(m)$ contained in M. By Theorem 1,

$$
P \subseteq \bigcap_{1}^{\infty} P_{0}{ }^{n} \subseteq \bigcap_{1}^{\infty} M^{n} .
$$

Corollary 1. If (α) holds in the ring R and $P \supset \bar{P}$ are prime ideals in R with $R \neq P$, then P is idempotent if and only if P is the union of a chain of primes properly contained in P.

Proof. If $P \neq P^{2}$, Theorem 2 shows that P is not the union of such a chain.
Conversely, if P is not the union of such a chain, then Zorn's lemma implies that we can find a prime ideal $M \subset P$ such that there are no prime ideals properly between M and P. Thus if $p \in P-M, P$ is a minimal prime of $M+(p)$. Then by Theorem 1, $P \supset P^{2}$.

Theorem 3. Suppose (α) holds in the rings R and M is a proper prime ideal of R such that $M \supset P_{1}$ for some prime ideal P_{1}. Then

$$
P_{0}=\bigcap_{1}^{\infty} M^{n}
$$

is a prime ideal containing each prime ideal properly contained in M. Further, each M^{i} is primary.

Proof. The theorem is obvious if $M=M^{2}$. Suppose $M \supset M^{2}$ and let \subseteq be the collection of prime ideals properly contained in M. By assumption, \mathbb{S} is not empty and Theorem 2 shows that \mathfrak{S} is inductive under \subseteq. Hence \subseteq contains a maximal element P such that P is prime in $R, P \subset M$, and there are no primes properly between P and M. Now if $\bar{R}=R_{M} / P^{e}$, where " ρ " denotes extension with respect to the quotient ring R_{M} (12, p. 218), \bar{R} has Property (α). In \bar{R}, each proper ideal is \bar{M}-primary where $\bar{M}=M^{e} / P^{e}$ and hence is a power of \bar{M}. Therefore \bar{R} is a Dedekind domain. Consequently

$$
\begin{aligned}
P^{e} / P^{e}=\bigcap_{1}^{\infty} \bar{M}^{k}=\bigcap_{1}^{\infty}\left(M^{e} / P^{e}\right)^{k}=\bigcap_{1}^{\infty} & \left(\left[M^{k}\right]^{e}+P^{e} / P^{e}\right) \\
& =\bigcap_{1}^{\infty}\left(M^{k}+P\right)^{e} / P^{e}=\bigcap_{1}^{\infty}\left(M^{k}\right)^{e} / P^{e} .
\end{aligned}
$$

It follows that

$$
P^{e}=\bigcap_{1}^{\infty}\left(M^{k}\right)^{e} \text { and } P=\bigcap_{1}^{\infty} M^{(k)}
$$

This implies that the symbolic powers of M properly descend, and it follows by induction that $M^{n}=M^{(n)}$ for every positive integer n (for, if $M^{k}=M^{(k)}$ then $M^{k}=M^{(k)} \supset M^{(k+1)} \supseteq M^{k+1}$ and $M^{(k+1)}=M^{k+1}$ since $M^{(k+1)}$ is a power of $M)$. This means that each power of M is primary, $\cap_{1}^{\infty} M^{k}=P$ is a prime ideal, and each prime ideal properly contained in M is contained in P.

Corollary 2. If (α) holds in the domain D, then prime power ideals of D are primary.

Theorem 4. Suppose (α) holds in the ring R. If the prime ideal M is nonmaximal in the set of proper prime ideals of R or if M is not a minimal prime of (0), then

$$
M \subseteq \bigcap_{1}^{\infty} R^{i}
$$

If M is both maximal in the set of proper prime ideals of R and a minimal prime of (0), and if M is not contained in $\cap_{1}^{\infty} R^{i}$, then M is unbranched.

Proof. Suppose M is non-maximal in the set of proper prime ideals of R. Let P be a proper prime of R properly containing M, let $p \in P-M$, and let
P_{0} be a minimal prime of $M+(p)$ contained in P. By Theorem $1, P_{0} \supset P_{0}{ }^{2}$. By Theorem 3,

$$
M \subseteq \bigcap_{1}^{\infty} P_{0}{ }^{n} \subseteq \bigcap_{1}^{\infty} R^{n}
$$

Now suppose M is maximal in the set of proper prime ideals of R but not a minimal prime of (0). If $M=M^{2}$, then

$$
M=\bigcap_{1}^{\infty} M^{n} \subseteq \bigcap_{1}^{\infty} R^{n}
$$

If $M \supset M^{2}$, consider $x \in R-M$. For each integer $i, Q_{i}=M+\left(x^{i}\right)$ is R-primary since any ideal with radical R is R-primary. If $Q_{i}=Q_{i+1}$ for some i, then R / M contains an identity; for if $x^{i}=m+r x^{i+1}+\lambda x^{i+1}$, (with λ an integer, $r \in R, m \in M)$, then $s x^{i} \equiv s(r x+\lambda x) x^{i}(\bmod M)$ for each $s \in R$. Since M is a prime ideal and $x^{i} \notin M$, then $s \equiv s(r x+\lambda x)(\bmod M)$ for all $s \in R$. Now Theorem 3 implies that M^{2} is M-primary, so that R / M^{2} also contains an identity (5, Lemma 3, p. 75). Therefore

$$
\left[R / M^{2}\right]=\left[R / M^{2}\right]^{2}=\left[R^{2}+M^{2} / M^{2}\right]=R^{2} / M^{2}
$$

and $R=R^{2}$. Hence

$$
M \subset R=\bigcap_{1}^{\infty} R^{n}
$$

If $Q_{i} \supset Q_{i+1}$ for each i, then $Q_{i}=R^{n_{i}}$ where $n_{1}<n_{2}<\ldots$ so that

$$
M \subseteq \bigcap_{1}^{\infty} Q_{i}=\bigcap_{1}^{\infty} R^{n_{i}}=\bigcap_{1}^{\infty} R^{j}
$$

In any case

$$
M \subseteq \bigcap_{1}^{\infty} R^{n}
$$

Finally, if M is both maximal among the set of proper primes of R and a minimal prime of (0) and if M is not contained in $\cap_{1}^{\infty} R^{i}$, then the preceding paragraph shows that if $Q_{i}=M+\left(x^{i}\right)$ where $x \in R-M$, then $Q_{i}=Q_{i+1}$ for some i and R / M contains an identity. If M were branched, we could find $n>1$ such that M^{n} is M-primary. Then R / M^{n} contains an identity so that

$$
R / M^{n}=\left[R / M^{n}\right]^{2}=R^{2} / M^{n}
$$

and $R=R^{2}$, a contradiction. Hence M is unbranched as asserted.
Corollary 3. If (α) holds in the ring R where either R is a domain or R is an idempotent ring, then given prime ideals P_{1} and P_{2} of R with $P_{1} \subset P_{2}$,

$$
P_{1} \subseteq \bigcap_{1}^{\infty} P_{2}{ }^{n}
$$

Proof. By Theorem 2, we need only examine the case when $P_{2}=R$. If $R=R^{2}$, it is obvious that

$$
P_{1} \subseteq \bigcap_{1}^{\infty} R^{n}
$$

If R is a domain and $P_{1} \neq(0)$, the statement follows from Theorem 4. For $P_{1}=(0)$ it is obvious.

We turn our attention now to the case of a ring R satisfying the ascending chain condition for prime ideals and in which (α) holds. Our principal result is contained in Corollary 4, which shows that an integral domain with identity satisfying these properties is a Prüfer domain. We begin with

Theorem 5. Let R be a quasi-local ring in which the ascending chain condition for prime ideals holds. Suppose further that (α) holds in R and that (0) is primary for the ideal P. Then given $x, y \in R$, either $x \in(y)$ or $y \in(x)$.

Proof. If P_{0} is a proper prime of R distinct from P, the ascending chain condition for prime ideals implies that there exists a prime ideal $P_{1} \subset P_{0}$ such that there are no prime ideals properly between P_{1} and P_{0}. Hence if $p_{0} \in P_{0}-P_{1}, P_{0}$ is a minimal prime of $P_{1}+\left(p_{0}\right)$. Theorem 1 then shows that $P_{0} \neq P_{0}{ }^{2}$ and Theorem 3 implies that there is a prime ideal $N\left(P_{0}\right) \subset P_{0}$ such that $N\left(P_{0}\right)$ contains each prime ideal properly contained in P_{0}. It follows that the prime ideals of R are linearly ordered by (9 , Lemma 3.4).

Now suppose M is the maximal ideal of R. If $M=P$, then M is the only prime ideal distinct from R. Hence if $x, y \in M,(x)$ and (y) are M-primary since $\sqrt{ }(x)=\sqrt{ }(y)=M$. Hence $x \in(y)$ or $y \in(x)$ since (α) holds in R. If, say, $x \notin M, x$ is a unit in R and $y \in(x)=R$.

If $M \neq P$, then consider $M_{1}=N(M)$. The prime ideal M_{1} has the following property (\#):
(\#) If $r, s \in R$, and $r \notin M_{1}$, then $r \in(s)$ or $s \in(r)$.
If r or s is a unit, this is clear. If $r, s \in M$ and if $s \in M_{1}$, then $r \in M-M_{1}$, (r) is M-primary so that (r) $\supset M_{1}$ by Theorem 3 and $s \in M_{1}$. If $s \in M-M_{1}$ also, then (s) is M-primary and $(r) \subseteq(s)$ or $(s) \subseteq(r)$ since (α) holds in R.

Suppose $P_{0} \subseteq M_{1}$ is a prime ideal of R such that every prime properly containing P_{0} has Property (\#). We show that P_{0} has Property (\#). Thus suppose that $x, y \in R, x \notin P_{0}$. Let P_{1} be a minimal prime of (x). Because of the linear ordering of the prime ideals of $R, P_{1} \supset P_{0}$. Let " e " denote extension of ideals of R with respect to the quotient ring $R_{P_{1}}$. Then $(x)^{e}$ is $P_{1}{ }^{e}$-primary. As shown above, $\bar{y} \in(x)^{e}$ or $\bar{x} \in(y)^{e}$, say $\bar{x} \in(y)^{e}$, so that $x v=u y$ for some $u, v \in R, v \notin P_{1}$. By the hypothesis concerning $P_{1}, u \in(v)$ or $v \in(u)$. If, say, $u=w v$, then $x v=w v y$ and $v(x-w y)=0$. But (0) is P-primary and $v \notin P_{1} \supset P_{0} \supseteq P$. Thus $x-w y=0$ and $x \in(y)$. Because the ascending chain condition for prime ideals holds in R, the ideal P has Property (\#).

Then if $x, y \in R$ and $x \notin P$ or $y \notin P$, then $x \in(y)$ or $y \in(x)$. On the other hand, if $x, y \in P$, then P is a minimal prime of (x) and of (y). Since (α) holds in R, x is in the isolated primary component of (y) belonging to P or y is in the isolated primary component of (x) belonging to P. If, say, $v x=u y$ where $v \notin P$, then we have $u \in(v)$ or $v \in(u)$ since P has Property (\#). If $v=s u$, then $u \notin P$ since $v \notin P$ and we have $u(y-s x)=0$. Since (0) is P-primary, $y=s x$ and $y \in(x)$. This completes the proof of the theorem.

Corollary 4. Suppose (α) and the ascending chain condition for prime ideals hold in the domain D. If P is a proper prime ideal of D, then D_{P} is a valuation ring. Hence if D contains an identity, D is a Prüfer domain.

Note. Corollary 4 may also be obtained by an application of (3, Corollary 2.4) and (9, Theorem 3.8) once we observe that Theorem 3 shows that if (α) holds in the domain D with identity, then each prime ideal P of D is an S-ideal according to the terminology of (3).

Corollary 5. If (α) and the ascending chain condition for prime ideals hold in the ring R with identity, then given P, a minimal prime of (0), there is an integer k such that $P^{k+1}=P^{k+2}=\ldots$.

Proof. Let $P^{k}=P^{(k)}$ be the isolated primary component of P belonging to (0). Let M be a maximal ideal containing P and let " e " denote extension of ideals with respect to the quotient ring R_{M}. Then $S=R_{M} /\left(P^{k}\right)^{e}$ is a ring satisfying the hypothesis of Theorem 5 . Hence if $x \in M-P$,

$$
P^{e} /\left(P^{k}\right)^{e} \subseteq\left[P^{k}+(x)\right]^{e} /\left(P^{k}\right)^{e}
$$

by Theorem 5. Therefore $P^{e} \subseteq\left[P^{k}+(x)\right]^{e}$. Now given $v \in P^{k}$, there is a $y \notin P$ such that $v y=0$ by definition of P^{k}. Thus

$$
P^{e} \subseteq\left[P^{k}+(y)\right]^{e} \quad \text { and } \quad(v P)^{e}=(v)^{e} P^{e} \subseteq\left[v P^{k}\right]^{e} \subseteq[v P]^{e}
$$

Hence $(v P)^{e}=\left(v P^{k}\right)^{e}$. This holds for each maximal ideal of R so that $v P=v P^{k}$ for each $v \in P^{k}(13, \mathrm{p} .94)$. In particular, $P^{k+1} \subseteq P^{2 k}$ so that $P^{k+1}=P^{k+2}=\ldots$.

Theorem 6. Let P be a proper prime ideal of a valuation ring R.
(a) In order that P be unbranched it is necessary and sufficient that P be the union of a chain of prime ideals properly contained in P. If P is unbranched, P is idempotent.
(b) If P is branched, then the intersection M of all P-primary ideals is a prime ideal containing each prime ideal properly contained in P.
(c) If P is branched, then each P-primary ideal is a power of P if and only if $P \neq P^{2}$.

Proof. (a) follows from (3, Lemmas 1.6, 3.4), and (b) follows from (9, Lemma 2.12).

To prove (c), note that if $P \supset P^{2}$, then given Q primary for P, Q contains a power of P by (3, Lemma 1.6). If, say, Q contains P^{n+1} but not P^{n}, then choose
$x \in P^{n}-Q$. We have $Q \subset(x)$ so that $Q=x Q_{1}$ for some ideal Q_{1} of R. Since Q is primary and $x \notin Q$, we must have $Q_{1} \subseteq P$. Thus

$$
Q=x Q_{1} \subseteq P^{n} \cdot P=P^{n+1} \quad \text { and } \quad Q=P^{n+1}
$$

Hence if $P \neq P^{2}, P$-primary ideals are prime powers. The converse is evident since P is branched.

Now suppose R_{v} is the valuation ring of a valuation v with value group G. If P is a branched prime ideal of R and if M is the intersection of all P-primary ideals, we consider the isolated subgroups Δ_{2} and Δ_{1} of G corresponding to M and P, respectively; see (13, p. 40). Since there are no prime ideals properly between M and P, there are no isolated subgroups properly between Δ_{1} and Δ_{2} so that Δ_{2} / Δ_{1} has rank one and its elements may be considered to be real numbers (13, p. 45). Let H denote the set of positive elements of Δ_{2} / Δ_{1}. Part (c) of Theorem 6 shows that each P-primary ideal is a power of P if and only if $P \neq P^{2}$. Because $H-(H+H)$, where $H+H=\{g+h \mid g, h \in H\}$, is the set of positive elements of Δ_{2} / Δ_{1} corresponding to P^{2}, we have: each P-primary ideal is a power of P if and only if $H \supset H+H$. Because Δ_{2} / Δ_{1} has rank one, this is equivalent to the assertion that $\Delta_{2} / \Delta_{1} \simeq Z$, the additive group of integers; see (11, p. 239). In summary we can say: (α) holds in R_{v} if and only if given $H_{1} \subset H_{2}$ consecutive isolated subgroups of $G, H_{2} / H_{1} \simeq Z$. In accordance with terminology used in case R_{v} has finite rank, we shall call such a valuation ring discrete (13, p. 48). In terms of its ideal theory, R_{v} is discrete if and only if every idempotent prime in R_{v} is unbranched. Equivalently, R_{v} is discrete if and only if the only idempotent ideals in R_{v} are unbranched prime ideals (3, Corollary 1.4). To summarize we state

Theorem 7. Suppose the ascending chain condition for prime ideals holds in the integral domain D with identity. Then (α) holds in D if and only if D_{P} is a discrete valuation ring for each proper prime ideal P of D.

The proof is immediate once we observe:
Lemma 1. If D is an integral domain with identity such that (α) holds in D_{P} for each proper prime P of D, then (α) holds in D.

Proof. Let Q be primary in D and let $P=\sqrt{ } Q$. We show that Q is a power of P. We need consider only the case when $Q \subset P$. Then $Q D_{P}=P^{k} D_{P}$ for some k since (α) holds in D_{P}. Now if M is a maximal ideal of D containing P, then Corollary 2 shows that $P^{k} D_{M}$ is primary in D_{M}. But $Q D_{M}$ is also primary in D_{M} so that

$$
\begin{aligned}
P^{k} D_{M}=\left(P^{k} D_{M}\right) D_{P} \cap D_{M}=P^{k} D_{P} \cap D_{M}= & Q D_{P} \cap D_{M} \\
& =\left(Q D_{M}\right) D_{P} \cap D_{M}=Q D_{M} .
\end{aligned}
$$

Since this equality holds for each maximal ideal M containing Q, this implies that $Q=P^{k}(\mathbf{1 3}, \mathrm{p} .94)$ and (α) holds in D as asserted.

Remarks. If E denotes the ring of even integers, then the ascending chain condition for prime ideals holds in E, and for each proper prime P of E, E_{P} is a discrete rank-one valuation ring; see (7, Lemma 3). Yet (α) does not hold in E; (18) is (6)-primary but is not a power of (6).

In view of Theorem 6 one can easily see that the ring S of (9 , Section 5) is a domain in which (α) holds. Yet S is not integrally closed, and is therefore not a Prüfer domain. Hence Corollary 1 is false if the ascending chain condition for prime ideals is dropped from the hypothesis.
3. Rings with Property (δ). In this section we obtain a complete classification of rings satisfying Property (δ). Theorems 11, 13, 14 contain these classifications.

Theorem 8. If (δ) holds in the ring R, then (α) holds in R.
Proof. Let Q be a primary ideal of R and let $P=\sqrt{ } Q$. Let

$$
Q=\bigcap_{i=1}^{n} P_{i}^{e_{i}}
$$

be a representation of Q as an intersection of powers of distinct prime ideals. We have $P \subseteq P_{i}$ for each i. But since P is prime and $P \supseteq \cap P_{i}{ }_{i}$, we must have $P \supseteq P_{i}$ for some i and therefore, say, $P=P_{1}$. Then $P_{1} \subset P_{i}$ for $i \geqslant 2$, so $\bigcap_{i=1}^{n} P_{i}{ }^{e}{ }_{i}$ is not contained in P_{1}. (If $n=1$, in particular if $P=R$, then we have $Q=P_{1}{ }^{e}{ }_{1}$ and Q is a prime power). Hence since

$$
P_{1}^{e_{1}}\left(\bigcap_{i=2}^{n} P_{i}^{e_{i}}\right) \subseteq Q
$$

and Q is P_{1}-primary, $P_{1}{ }^{e_{1}} \subseteq Q$. It follows that $Q=P_{1}{ }^{{ }^{e}}$ and Q is a prime power.
Theorem 9. Let R be a ring in which (δ) holds and in which each prime ideal P distinct from R is contained in $\bigcap_{n=1}^{\infty} R^{n}$. Then an ideal of R with prime radical is a prime power.

Proof. Suppose A is an ideal of R with radical P, a prime ideal. If $P=R$, A is R-primary and $A=R^{k}$ for some k by Theorem 8. If $P \subset R$, then the hypothesis concerning R implies that in at least one representation of A,

$$
A=\bigcap_{i=1}^{n} P_{i}^{e_{i}}
$$

as an intersection of powers of distinct prime ideals, each $P_{i} \neq R$. Then as in the proof of Theorem 8, we may assume that $P=P_{1}$ and $P \subset P_{i}$ for $i \geqslant 2$. Theorem 2 then shows that $P_{i}{ }_{i} \supseteq P_{1}{ }_{1}{ }_{1}$ for $i \geqslant 2$ so that $A=P_{1} e_{1}$ and our proof is complete.

Theorem 10. Let D be a domain in which (δ) holds. If D is idempotent, D is Dedekind. If D is not idempotent, then each non-zero ideal of D is a power of D.

Proof. Since (δ) holds in $D,(\alpha)$ also holds in D. Corollary 3 then implies that if P is a proper prime ideal of $D, P \subseteq \cap D^{n}$. By Theorem 9 , an ideal of D with prime radical is a prime power. By (8, Lemma 6), proper prime ideals of D are maximal; see also (1, Lemma 1.1).

Now if $D \supset D^{2}$, Corollary 1 shows that (0) is the only prime ideal of D distinct from D. Hence each non-zero ideal of D has radical D; it is therefore a power of D, and our conclusion holds.

If $D=D^{2}, D$ is Noetherian, as we shall presently see. Thus suppose A and B are proper ideals of D and $A \subset B$. Let $A=M_{1} e_{11} \cap \ldots \cap M_{k}{ }^{e}{ }_{1 k}$ where each M_{j} is a proper prime ideal and $M_{i} \neq M_{j}$ for $i \neq j$. If $B=P_{1}{ }^{e_{21}} \cap \ldots \cap P_{s}{ }_{s}{ }_{2 s}$, with the same requirements on the P_{i} 's, then each P_{i} contains some M_{j} and is therefore equal to M_{j} since M_{j} is maximal. Further, $P_{i} e_{2 i}$ is primary by Theorem 3 and

$$
\prod_{v \neq j} M_{v}^{e_{1 v}} \text { is not contained in } P_{i}
$$

so that $M_{j}{ }^{e_{1 j}} \subseteq P_{i} e_{2 i}$. It follows that B is of the form $M_{1} e^{e_{21}} \cap \ldots \cap M_{k} e_{2 k}$ for some set of non-negative integers $e_{21}, \ldots, e_{2 k}$ where $e_{21} \leqslant e_{1 i}$ for each i and for at least one $i, e_{2 i}<e_{1 i}$. This shows that any ascending chain of ideals of D whose first element is A is finite. Because A is arbitrary, D is Noetherian. Hence D contains an identity by (4, Corollary 2). That each ideal of D is a product of prime ideals then follows easily from the intersection representation and the fact that proper prime ideals are maximal.

Note. In (6) it is shown that an integral domain D, each non-zero ideal of which is a power of D, is characterized as the unique maximal ideal of a valuation ring R such that $R=G F(p)+D$ for some prime number p.

Before proving Theorem 11, we shall need
Lemma 2. Let S be a ring such that $S A=A$ for each ideal A of S. If A and B are comaximal ideals of $S, A \cap B=A B$. If A is comaximal with each of B and C, A is comaximal with $B C$.

Proof. The proof is analogous to that given when S contains an identity (12, p. 177).

Theorem 11. Suppose R is an idempotent ring in which (δ) holds. Then each ideal of R is a product of prime ideals. Consequently, R is Noetherian, contains an identity, and is a Z.P.I. ring (10).

Proof. Let P be prime in $R, P \neq R$. Then R / P is a domain satisfying (δ). By Theorem $10, R / P$ has dimension $\leqslant 1$.

Next we note that if P_{1} and P_{2} are prime ideals of R neither of which contains the other, then $P_{1}+P_{2}=R$. For if $P_{1}+P_{2} \subset R$, then $P_{1}+P_{2} \subseteq M \subset R$ since $P_{1}+P_{2}$ is an intersection of prime power ideals and R is idempotent. Then since R has dimension $\leqslant 1, M$ is a minimal prime of $P_{1}+(x)$ for any
$x \in M-P_{1}$ and a minimal prime of $P_{2}+(y)$ for any $y \in M-P_{2}$. Then Theorems 1 and 3 show that

$$
P_{1}=\bigcap_{1}^{\infty} M^{n}=P_{2}
$$

a contradiction. Hence $P_{1}+P_{2}=R$.
Now note: If (δ) holds in the idempotent ring R, Theorem 9 shows that each ideal of R with prime radical is a prime power. Clearly R is a u-ring also. Then (8, Theorem 15) shows that an ideal of R with prime radical is primary. Because R has dimension $\leqslant 1, R x=(x)$ for each $x \in R$ (8, Theorem 5), and hence $R A=A$ for each ideal A or R.

Having observed all these facts, let A be an ideal of R and let

$$
A=P_{1} e_{1} \cap \ldots \cap P_{s} e_{s}
$$

where $P_{i} \neq P_{j}$ for $i \neq j$ and where each P_{i} is prime. In view of Corollary 3 , we may suppose that P_{i} does not contain P_{j} for $i \neq j$. Then our previous observations and Lemma 2 show that $A=P_{1} e_{1} \ldots P_{s} e_{s}$. Hence each ideal of R is a product of prime ideals and is therefore Noetherian (10, Satz 11). Since $R=R^{2}$, it then follows that R contains an identity (4, Corollary 2).

Remark. Theorem 13 will show that in a ring without identity in which (δ) holds, it need not be true that each ideal is a product of prime ideals.

Theorem 12. Suppose the ring R has Property (δ) and $R \neq R^{2}$. Then R is Noetherian and $\operatorname{dim} R \leqslant 0$.

Proof. We have previously observed that $\operatorname{dim} R \leqslant 1$. Suppose $\operatorname{dim} R=1$ and let $P \subset M \subset R$ be a chain of prime ideals of R. Now (δ) holds in the domain R / P. Theorem 10 then shows that R / P is a Dedekind domain since M / P is not a power of R / P. In particular,

$$
R / P=[R / P]^{2}=R^{2}+P / P=R^{2}+M^{2}+P / P=R^{2}+M^{2} / P=R^{2} / P
$$

the equality $R^{2}+M^{2}+P=R^{2}+M^{2}$ following from Theorem 2. Thus $R=R^{2}$, a contradiction. It follows that R has dimension $\leqslant 0$.

Now let (0) $=M_{1} e_{1} \cap \ldots \cap M_{k}{ }^{e}{ }_{k} \cap R^{e}$ where the M_{i} are distinct prime ideals properly contained in R. Then $\left\{M_{1}, \ldots, M_{k}, R\right\}$ is the set of prime ideals of R. Now R is not contained in $\cup M_{i}$ by (12, p. 215), so if we choose $r \in R-\cup M_{i}$, then $(r)=R^{t}$ for some t. Note then that if $s \in R-R^{2}$, then $R=R^{2}+(s)$. Then $R^{2}=R^{3}+s R$ so that

$$
R=R^{3}+R s+(s) \subseteq R^{3}+(s) \quad \text { and } \quad R=R^{3}+(s)
$$

Continuing we find that $R=R^{t}+(s)=(r, s)$ so that R is finitely generated. Now consider any M_{i}, say M_{1}. Since M_{1} is not contained in $\cup_{j \neq 1} M_{j}$, we may
choose $a \in M_{1}-\cup_{j \neq 1} M_{j}$. If $M_{1}=M_{1}{ }^{2}$, let b be any element of M_{1}. If $M_{1} \supset M_{1}{ }^{2}$, let $b \in M_{1}-M_{1}{ }^{2}$. Then $(a, b)=M_{1} \cap R^{e}$. If

$$
M_{1} \subseteq \bigcap_{n=1}^{\infty} R^{n}
$$

$(a, b)=M_{1}$. If M_{1} is contained in R^{v} but not in R^{v+1}, choose $c \in M_{1}-R^{v+1}$. Then $(a, b, c)=M_{1} \cap R^{u}$ where $u<v+1$ so that $M_{1} \subseteq R^{u}$ and (a, b, c) $=M_{1}$. In any case, M_{1} is finitely generated. That R is Noetherian now follows from the following lemma.

Lemma 3. If each prime ideal of the ring R is finitely generated, then R is Noetherian.

Proof. For rings with identity, the lemma was first proved by Cohen (2, p. 29). For arbitrary R, let S be a ring of characteristic zero obtained by adjoining an identity to R. R is Noetherian if and only if S is Noetherian, and if A is an ideal of S such that $A \cap R$ is finitely generated in R, then A is finitely generated in S by (4, Theorem 1). Thus, in our case, if P is a prime ideal of $S, P \cap R$ is prime in R and is therefore finitely generated in R. Hence P is finitely generated in S. By Cohen's theorem, S is Noetherian and therefore R is Noetherian.

Corollary 6. (δ) holds in the ring R if and only if R is Noetherian and (α) holds in R.

Proof. By Theorems 8, 11, and 12 the conditions are necessary. That they are sufficient follows from the primary representation theorem in Noetherian rings.

Theorem 13. If (δ) holds in the ring R where $R \neq R^{2}$ and if there exists a prime ideal M such that

$$
M \subseteq \bigcap_{n=1}^{\infty} R^{n}
$$

then $R=F_{1} \oplus \ldots \oplus F_{k} \oplus D$ where F_{i} is a field and D is a non-zero domain, not a field, such that each non-zero ideal of D is a power of D.

Conversely, if $\left\{F_{i}\right\}_{1}^{k}$ and D are as just described and if

$$
S=F_{1} \oplus \ldots \oplus F_{k} \oplus D
$$

then (δ) holds in S and $F_{1}+\ldots+F_{k}$ is a prime ideal of S contained in $\cap_{n=1}^{\infty} S^{n}$.
Proof. Since (δ) holds in R / M, Theorems 10 and 12 show that $M=\cap_{1}^{\infty} R^{n}$. Then if M_{0} is a prime ideal of R distinct from M and R, a repetition of the idea used in the proof of Theorem 4 shows that R / M_{0} is a field (i.e. if M_{0} is not contained in $\bigcap_{1}^{\infty} R^{n}$ and if $x \in R-M_{0}$, then $M_{0}+\left(x^{n}\right)=M_{0}+\left(x^{n+1}\right)$ for some n. This equality implies that R / M_{0} contains an identity and \bar{x} is a unit in R / M_{0}).

Now let $(0)=M_{1}{ }^{e}{ }_{1} \cap \ldots \cap M_{k}{ }^{e}{ }_{k} \cap M^{e}$ be an irredundant primary representation of (0). (By Theorem $12, R$ is Noetherian, and by Theorem 8, (α) holds in R, so that such a representation exists. R is not a prime belonging to (0) since $M \subseteq \bigcap_{1}^{\infty} R^{n}$, the intersection of all R-primary ideals.) For each $i, M_{i} \subseteq \cap_{1}^{\infty} R^{n}, M_{i}$ is maximal, and M_{i} is a minimal prime of (0) by Theorem 12. Hence $e_{i}=1$ for each i by Theorem 4. Thus

$$
R /\left(M_{1} \cap \ldots \cap M_{k}\right) \simeq R / M_{1} \oplus \ldots \oplus R / M_{k}
$$

(12, p. 178). Therefore

$$
\begin{aligned}
R /\left(M_{1} \cap \ldots \cap M_{k}\right)= & {\left[R / M_{1} \cap \ldots \cap M_{k}\right]^{2} } \\
& =\left\{R^{2}+\left(M_{1} \cap \ldots \cap M_{k}\right)\right\} /\left(M_{1} \cap \ldots \cap M_{k}\right) .
\end{aligned}
$$

Since $R \supset R^{2}, R^{2}$ cannot contain $M_{1} \cap \ldots \cap M_{k}$.
This implies that $\left(M_{1} \cap \ldots \cap M_{k}\right)+M^{e}=R$, for no prime distinct from R contains both M^{e} and $M_{1} \cap \ldots \cap M_{k}$ (assuming $k \geqslant 1$. It will be shown at once that $e=1$ so that if $k=0, R$ is a domain in which each non-zero ideal is a power of R and Theorem 13 holds) so that $M^{e}+\left(M_{1} \cap \ldots \cap M_{k}\right)=R^{s}$ for some s. But R^{2} does not contain $M_{1} \cap \ldots \cap M_{k}$ so that $s=1$. Consequently,

$$
R \simeq\left[R /\left(M_{1} \cap \ldots \cap M_{k}\right)\right] \oplus R / M^{e} \simeq R / M_{1} \oplus \ldots \oplus R / M_{k} \oplus R / M^{e}
$$

Our proof will be complete as soon as we prove that $e=1$. Since (δ) holds in R / M^{e}, this follows from

Lemma 4. Let S be a ring in which (δ) holds. Suppose S has a unique prime $P \subset S$, that (0) is P-primary, and that $P=\bigcap_{n=1}^{\infty} S^{n}$. Then $P=(0)$ and S is a domain.

Proof. If $r \in S-S^{2},(r)=S$. Hence $\left(r^{2}\right)=S^{2} \supset P$ so that $P=[P:(r)](r)$ and therefore $P=P(r)$.

Since S is Noetherian, there exists $b \in S$ such that $m=b m$ for each $m \in P$ (4, Corollary 1). Now there exists $v \in S$ such that $v-b v \notin P$ since S / P does not contain an identity $\left(S / P \supset S^{2} / P\right)$. Then if $m \in P$ we have

$$
0=v(m-b m)=m(v-b v),
$$

$v-b v \notin P$, so that $m \in(0)$ since (0) is P-primary. Hence $P=(0)$.
We proceed to prove the converse. If $R=F_{1} \oplus \ldots \oplus F_{k} \oplus D, R$ is Noetherian. Corollary 6 shows that (δ) holds in R if and only if (α) holds in R. But (α) does hold since the primary ideals of R are of the form

$$
\begin{gathered}
F_{1}+\ldots+(0)+\ldots+F_{k}+D, \quad F_{1}+\ldots+F_{k} \\
F_{1}+\ldots+F_{k}+D^{q}
\end{gathered}
$$

It is likewise clear that

$$
F_{1}+\ldots+F_{k}=\bigcap_{n=1}^{\infty} R^{n}
$$

Theorem 14. If (δ) holds in R where $R \neq R^{2}$ and if there exists no prime ideal P such that $P \subseteq \cap_{n=1}^{\infty} R^{n}$, then $R=F_{1} \oplus \ldots \oplus F_{k} \oplus S$ where each F_{i} is a field and S is a non-zero ring, every ideal of which is a power of S. The converse also holds.

Proof. The hypothesis concerning R, Theorem 12, and the proof of Theorem 4 show that if P is a prime ideal distinct from $R, R / P$ contains an identity. Now R is Noetherian by Theorem 12 and (α) holds in R by Theorem 8. Hence (0) has a primary representation

$$
(0)=M_{1}{ }^{e}{ }_{1} \cap \ldots \cap M_{k}{ }^{e}{ }_{k} \cap R^{e}
$$

Since each $M_{i}{ }^{{ }^{i}}$ is M-primary, $R / M_{i}{ }^{e}{ }_{i}$ has an identity for each i. Thus

$$
R /\left(M_{1}{ }^{e}{ }_{1} \cap \ldots \cap M_{k}{ }^{e}{ }_{k}\right) \simeq R / M_{1} e_{1} \oplus \ldots \oplus R / M_{k}{ }^{e}{ }_{k}
$$

has an identity also and therefore $M_{1}{ }^{e}{ }_{1} \cap \ldots \cap M_{k}{ }^{e}{ }_{k}$ is not contained in R^{2}. By Theorem 4, each $e_{i}=1$. Also $e \neq 0$ since R does not contain an identity. It follows that ($M_{1} \cap \ldots \cap M_{k}$) $+R^{e}=R$ so that

$$
R \simeq R / M_{1} \oplus \ldots \oplus R / M_{k} \oplus R / R^{e}
$$

This completes the proof of Theorem 14. The proof of the converse is similar to that of Theorem 13.

References

1. H. S. Butts and R. C. Phillips, Almost multiplication rings, Can. J. Math., 17 (1965), 267-277.
2. I. S. Cohen, Commutative rings with restricted minimum condition, Duke Math. J., 17 (1950), 27-42.
3. R. Gilmer, A class of domains in which primary ideals are valuation ideals, Math. Ann., 161 (1965), 247-254.
4. Eleven nonequivalent conditions on a commutative ring, Nagoya Math. J., 26 (1966), 183-194.
5. -_ Extension of results concerning rings in which semi-primary ideals are primary, Duke Math. J., 81 (1964), 73-78.
6. -On a classical theorem of Noether in ideal theory, Pac. J. Math., 13 (1963), 579-583.
7. - The cancellation law for ideals of a commutative ring, Can J. Math., 17 (1965), 281287.
8. R. Gilmer and J. Mott, Multiplication rings as rings in which ideals with prime radical are primary, Trans. Amer. Math. Soc., 114 (1965), 40-52.
9. R. Gilmer and J. Ohm, Primary ideals and valuation ideals, Trans. Amer. Math. Soc., 117 (1965), 237-250.
10. S. Mori, Allgemeine Z.P.I.-Ringe, J. Sci. Hiroshima Univ., Ser. A, 10 (1940), 117-136.
11. B. L. van der Waerden, Modern algebra, vol. I (New York, 1949).
12. O. Zariski and P. Samuel, Commutative algebra, vol. I (Princeton, 1958).
13. —— Commutative algebra, vol. II (Princeton, 1960).

Louisiana State University,
Baton Rouge, Louisiana, and
Florida State University, Tallahassee, Florida

