
PRIMARY IDEALS AND PRIME POWER IDEALS 

H. S. BUTTS AND ROBERT W. GILMER, JR. 

1. Introduction. This paper is concerned with the ideal theory of a 
commutative ring R. We say R has Property (a) if each primary ideal in R 
is a power of its (prime) radical; R is said to have Property (8) provided every 
ideal in R is an intersection of a finite number of prime power ideals. In (2, 
Theorem 8, p. 33) it is shown that if D is a Noetherian integral domain with 
identity and if there are no ideals properly between any maximal ideal and its 
square, then D is a Dedekind domain. It follows from this that if D has Property 
(a) and is Noetherian (in which case D has Property (5)), then D is Dedekind. 
This suggests the following question: In the definition of a Dedekind domain 
(i.e., every ideal is a product of prime powers) can "product" be replaced by 
"intersection"? This paper answers this question in the affirmative. In fact, 
Theorem 11 shows that (ô) holds in a commutative ring with identity if and 
only if R is a Z.P.I, ring (i.e., every ideal is a product of prime ideals). We 
note that this implies that Property (a) follows from Property (ô) in case R 
has an identity (Theorem 8 shows that Property (ô) implies Property (a) in 
any commutative ring). 

In addition some results concerning the implications of Property (a) are 
obtained. For example, if the ascending chain condition for prime ideals holds 
in the domain D with identity, then (a) holds in D if and only if DP is a discrete 
valuation ring for each proper prime P of D. This result is related to (1, 
Theorem 1.0) which shows for an integral domain J with identity that JP is a 
discrete rank-one valuation ring if and only if each ideal of J with prime 
radical is a prime power. Another result in this vein is (9, Theorem 3.8): if 
the ascending chain condition for prime ideals holds in the integral domain J 
with identity, then / is a Prufer domain (i.e. JP is a valuation ring for each 
prime ideal P of J) if and only if every primary ideal of J is a valuation ideal 
(13, p. 340). 

The notation and terminology are those of (12; 13) with one exception: 
ÇI denotes containment and C denotes proper containment. As stated 
previously, all rings considered are assumed to be commutative. 

2. Rings with Property (a). In this section we derive some consequences 
of Property (a). We see at once that if R has Property (a), then so does any 
homomorphic image R/A of R and any quotient ring RM of R. We say that a 
prime ideal P of a ring R is unbranched if P itself is the only P-primary ideal 
of R; otherwise we say P is branched. R is a u-ring if R is unbranched. R is 
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said to have dimension n if there is a strictly ascending chain of n + 1 prime 
ideals (T*R) of R but no such chain of n + 2 prime ideals. 

THEOREM 1. Suppose (a) holds in the ring R and M is a proper ideal of R such 
that M is a minimal prime of P + (x) for some prime P of R and some 
x e M - P. Then the powers of M properly descend, P Ç CY? Mn and CY? Mn 

is the intersection of all M-primary ideals of R. 

Proof. For i a positive integer, M is a minimal prime of P + (xi). If Qt 

is the isolated primary component of P + (#*) belonging to M, then 
Qi D (?2 Z) • . . . (We have xl Ç Qt — Qi+i.) For each i, Q = Mni for some w*. 
Hence n\ < n2 < . . . so that the powers of M properly descend. Further, 

CO CO 

p c n F i = n M\ 
i i 

If Q is the intersection of all M -primary ideals, then because Mni is M-
primary, 

CO 

i 

Since each Jkf-primary ideal is a prime power, then 

Q 2 O Afy. 
i 

Hence 

Q = n M;". 
i 

THEOREM 2. Suppose (a) holds in the ring R and P and M are prime ideals of R 
such that P C M C R. Then 

CO 

P Q f~)Mn. 
i 

Proof. Let m ^ M — P and let P 0 be a minimal prime of P + (m) contained 
in M. By Theorem 1, 

CO CO 

pçn^çn Mn. 
i i 

COROLLARY 1. / / (a) holds in the ring R and P D P are prime ideals in R 
with R 9^ P, then P is idempotent if and only if P is the union of a chain of 
primes properly contained in P. 

Proof. If P 9^ P2, Theorem 2 shows that P is not the union of such a chain. 
Conversely, if P is not the union of such a chain, then Zorn's lemma implies 

that we can find a prime ideal M C P such that there are no prime ideals 
properly between M and P. Thus if p G P — M, P is a minimal prime of 
M + (p). Then by Theorem 1, P D P2. 
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THEOREM 3. Suppose (a) holds in the rings R and M is a proper prime ideal 
of R such that M D P i for some prime ideal Pi . Then 

oo 

p0 = r\ Mn 

i 

is a prime ideal containing each prime ideal properly contained in M. Further, 
each Ml is primary. 

Proof. The theorem is obvious if M = M2. Suppose M D M2 and let © be 
the collection of prime ideals properly contained in M. By assumption, © is 
not empty and Theorem 2 shows that © is inductive under C. Hence © 
contains a maximal element P such that P is prime in R, P C M, and there 
are no primes properly between P and M. Now if R = RM/Pe, where ile" 
denotes extension with respect to the quotient ring RM (12, p. 218), R has 
Property (a). In P, each proper ideal is ilf-primary where M = Me/Pe and 
hence is a power of M. Therefore R is a Dedekind domain. Consequently 

pyp* = r)Mk = n {Me/peY = n ([^"]e + pe/pe) 

It follows that 

n (M* + p)7P e = n {Mky/p\ 
i i 

(*) P e = n (M) e and P = HM' 
i i 

This implies that the symbolic powers of M properly descend, and it follows 
by induction that Mn = M(n) for every positive integer n (for, if Mk = M(k) 

then Mk = M™ 3 M^k+1) 3 ikf^1 and ikf^+1) = Mk+l since lf^+1) is a power 
of M). This means that each power of M is primary, P\̂ ° Mk = P is a prime 
ideal, and each prime ideal properly contained in M is contained in P . 

COROLLARY 2. If (a) holds in the domain D, then prime power ideals of D are 
primary. 

THEOREM 4. Step pose (a) holds in the ring R. If the prime ideal M is non-
maximal in the set of proper prime ideals of R or if M is not a minimal prime of 
(0), then 

MQHR*. 
1 

If M is both maximal in the set of proper prime ideals of R and a minimal prime 
of (0), and if M is not contained in C\f Rf, then M is unbranched. 

Proof. Suppose M is non-maximal in the set of proper prime ideals of R. 
Let P be a proper prime of R properly containing M, let p Ç P — M, and let 
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P 0 be a minimal prime of M + (p) contained in P. By Theorem 1, P0 D Po2-
By Theorem 3, 

CO CO 

i cn?o B çn Rn. 
i i 

Now suppose M is maximal in the set of proper prime ideals of R but not a 
minimal prime of (0). If M = M2, then 

M = r)MnQr)Rn. 
i i 

HMD M2, consider x 6 R — M. For each integer i, Qt = M + (x*) is 
i?-primary since any ideal with radical R is jR-primary. If (^ = Qi+i for some i, 
then R/M contains an identity; for if xi = m + rxi+1 + Xx m , (with X an 
integer, r Ç R, m Ç M"), then sx* = s(rx + Xx)x* (mod M) for each s £ R. 
Since M" is a prime ideal and xl (? ikf, then s = s(rx + Xx) (mod ikf) for all 
s £ R. Now Theorem 3 implies that M2 is ilf-primary, so that R/M2 also 
contains an identity (5, Lemma 3, p. 75). Therefore 

[R/M2] = [i?/M2]2 = [R2 + M2/ikf2] = R2/M2 

and i? = i?2. Hence 

CO 

MCR = nRn. 
1 

If Qi ~D Qi+i for each i, then Ci = Rni where Wi < w2 < . . . so that 
OO CO CO 

I l l 

In any case 

CO 

M c n #w. 
i 

Finally, if M is both maximal among the set of proper primes of R and a 
minimal prime of (0) and if M is not contained in P ^ R\ then the preceding 
paragraph shows that if Qt = M + (x*) where x £ R — M, then ()* = Q i + 1 

for some i and i^/ikf contains an identity. If M were branched, we could find 
n > 1 such that Mn is M-primary. Then i?/Mw contains an identity so that 

R/Mn = [i?/Jl/P]2 = i?2/Mw 

and R = i^2, a contradiction. Hence M is unbranched as asserted. 

COROLLARY 3. If (a) holds in the ring R where either Ris a domain or R is an 
idempotent ring, then given prime ideals Pi and P2 of R with Pi C Pi, 

P i ç n iY . 
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Proof. By Theorem 2, we need only examine the case when P2 = R. If 
R = R2, it is obvious that 

P i c n Rn. 
1 

If R is a domain and P i 9e (0), the statement follows from Theorem 4. For 
P i = (0) it is obvious. 

We turn our attention now to the case of a ring R satisfying the ascending 
chain condition for prime ideals and in which (a) holds. Our principal result 
is contained in Corollary 4, which shows that an integral domain with identity 
satisfying these properties is a Prufer domain. We begin with 

THEOREM 5. Let R be a quasi-local ring in which the ascending chain condition 
for prime ideals holds. Suppose further that (a) holds in R and that (0) is primary 
for the ideal P. Then given x, y Ç P , either x £ (y) or y Ç (x). 

Proof. If Po is a proper prime of R distinct from P , the ascending chain 
condition for prime ideals implies that there exists a prime ideal P i C Po such 
that there are no prime ideals properly between Pi and P0. Hence if 
po G Po — Pi, Po is a minimal prime of P i + (po). Theorem 1 then shows 
that Po 9e Po2 and Theorem 3 implies that there is a prime ideal N(P0) C Po 
such that N(P0) contains each prime ideal properly contained in P0 . It follows 
that the prime ideals of R are linearly ordered by (9, Lemma 3.4). 

Now suppose M is the maximal ideal of R. If M — P , then M is the only 
prime ideal distinct from R. Hence if x, y G M, (x) and (y) are M-primary 
since V(#) = V(y) = M. Hence x G (y) or y Ç (x) since (a) holds in R. 
If, say, x g M, x is a unit in R and y £ (x) = P . 

If M ^ P , then consider Mi = N(M). The prime ideal Mi has the following 
property (#): 

(#) Ifr,s€ R, and r g Mu then r £ (s) or s £ (r). 

If r or 5 is a unit, this is clear. If r, 5 £ M and if s Ç Mi, then r G M — M1} 

(r) is M-primary so that (r) D Mx by Theorem 3 and 5 £ -Mi. If s Ç ikf — Mi 
also, then (5) is M-primary and (r) C (s) or (s) C (>) since (a) holds in P . 

Suppose Po £ Mi is a prime ideal of P such that every prime properly 
containing P 0 has Property (#). We show that P 0 has Property (#). Thus 
suppose that x, y £ P , # (? Po- Let P i be a minimal prime of (x). Because of 
the linear ordering of the prime ideals of P , P i 3 Po. Let "e" denote extension 
of ideals of R with respect to the quotient ring RPl. Then (x)e is Pie-primary. 
As shown above, y £ (x)e or x £ (;y)e, say £ G (^)e, so that xz; = uy for some 
u, v £ R, v & Pi . By the hypothesis concerning Pi , w G W or y f (u). If, 
say, u = «w, then xy = wvy and z;(x — w;y) = 0. But (0) is P-primary and 
v (? P i D Po 2 P . Thus x — w;y = 0 and x £ (3/). Because the ascending 
chain condition for prime ideals holds in P , the ideal P has Property (#). 
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Then if x, y G R and x Q P or y £ P, then x G (y) or y £ (x). On the other 
hand, iî x, y G -P, then P is a minimal prime of (x) and of (y). Since (a) holds 
in P , x is in the isolated primary component of (y) belonging to P or y is in the 
isolated primary component of (x) belonging to P . If, say, vx — uy where 
v $ P , then we have u G («;) or Ï; G (w) since P has Property (#). If z; = su, 
then u d P since v (t P and we have #(3/ — sx) = 0. Since (0) is P-primary, 
y = sx and y G (x). This completes the proof of the theorem. 

COROLLARY 4. Suppose (a) and the ascending chain condition for prime ideals 
hold in the domain D. If P is a proper prime ideal of D, then D P is a valuation 
ring. Hence if D contains an identity, D is a Priifer domain. 

Note. Corollary 4 may also be obtained by an application of (3, Corollary 
2.4) and (9, Theorem 3.8) once we observe that Theorem 3 shows that if (a) 
holds in the domain D with identity, then each prime ideal P of D is an S-ideal 
according to the terminology of (3). 

COROLLARY 5. If (a) and the ascending chain condition for prime ideals hold 
in the ring R with identity, then given P , a minimal prime of (0), there is an 
integer k such that Pk+l = Pk+2 = . . . . 

Proof. Let Pk = P(fc) be the isolated primary component of P belonging to 
(0). Let M be a maximal ideal containing P and let ' V denote extension of 
ideals with respect to the quotient ring RM. Then 5 = RM/(Pk)e is a ring 
satisfying the hypothesis of Theorem 5. Hence if x G M — P , 

pe/{pky ç [p* + (x)Y/(Pky 

by Theorem 5. Therefore Pe C [Pk + (x)]e. Now given v G Pk, there is a y g P 
such that vy = 0 by definition of Pk. Thus 

pe Ç [p* _|_ (y)]6 a n d typy = tyype ÇZ [vp*]e ÇZ [VP]e. 

Hence (vP)e = (vPk)e. This holds for each maximal ideal of R so that vP = vPk 

for each v £ Pk (13, p. 94). In particular, Pk+1 C P2* so that Pk+1 = Pk+2 

THEOREM 6. Let P be a proper prime ideal of a valuation ring R. 
(a) In order that P be unbranched it is necessary and sufficient that P be the 

union of a chain of prime ideals properly contained in P . If P is unbranched, P is 
idempotent. 

(b) If P is branched, then the intersection M of all P-primary ideals is a prime 
ideal containing each prime ideal properly contained in P. 

(c) If P is branched, then each P-primary ideal is a power of P if and only if 
P ^ P 2 . 

Proof, (a) follows from (3, Lemmas 1.6, 3.4), and (b) follows from (9, 
Lemma 2.12). 

To prove (c), note that if P D P2 , then given Q primary for P , Q contains a 
power of P by (3, Lemma 1.6). If, say, Q contains Pn+l but not Pn, then choose 
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x £ Pn - Q. We have Q C (x) so that Q = xQ1 for some ideal Qx of P . Since 
<2 is primary and x € Q, we must have Qi C P . Thus 

(? = xQiQPn-P = Pw + 1 and Q = ^n+1-

Hence if P 7̂  P2 , P-primary ideals are prime powers. The converse is evident 
since P is branched. 

Now suppose Rt is the valuation ring of a valuation v with value group G. 
If P is a branched prime ideal of R and if M is the intersection of all P-primary 
ideals, we consider the isolated subgroups A2 and Ai of G corresponding to 
M and P , respectively; see (13, p. 40). Since there are no prime ideals properly 
between M and P , there are no isolated subgroups properly between Ai and A2 

so that A2/Ai has rank one and its elements may be considered to be real 
numbers (13, p. 45). Let H denote the set of positive elements of A2/Ai. 
Part (c) of Theorem 6 shows that each P-primary ideal is a power of P if and 
only if P ^ P2 . Because H - (H + H), where H + H = {g + h\g, h £ H}, 
is the set of positive elements of A2/Ai corresponding to P2 , we have: each 
P-primary ideal is a power of P if and only if H 2) H + H. Because A2/Ai has 
rank one, this is equivalent to the assertion that A2/Ai ~ Z, the additive 
group of integers; see (11, p. 239). In summary we can say: (a) holds in Rv 

if and only if given Hi C H2 consecutive isolated subgroups of G, H2/Hi cm Z. 
In accordance with terminology used in case Rv has finite rank, we shall call 
such a valuation ring discrete (13, p. 48). In terms of its ideal theory, Rv is 
discrete if and only if every idempotent prime in Rv is unbranched. Equi-
valently, Rv is discrete if and only if the only idempotent ideals in Rv are 
unbranched prime ideals (3, Corollary 1.4). To summarize we state 

THEOREM 7. Suppose the ascending chain condition for prime ideals holds in 
the integral domain D with identity. Then (a) holds in D if and only if DP is a 
discrete valuation ring for each proper prime ideal P of D. 

The proof is immediate once we observe: 

LEMMA 1. If D is an integral domain with identity such that (a) holds in DPfor 
each proper prime P of D, then (a) holds in D. 

Proof. Let Q be primary in D and let P = \/Q. We show that Q is a power 
of P . We need consider only the case when Q C P- Then QDP = PkD P for 
some k since (a) holds in DP. Now if M is a maximal ideal of D containing P , 
then Corollary 2 shows that PkDM is primary in DM. But QDM is also primary 
in DM SO that 

PkDM = (PkDM)DP r\DM = PkDP H DM = QDP H DM 

= (QDM)DPr\DM = QDM. 

Since this equality holds for each maximal ideal M containing Q, this implies 
that Q = Pk (13, p. 94) and (a) holds in D as asserted. 
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Remarks. If E denotes the ring of even integers, then the ascending chain 
condition for prime ideals holds in E, and for each proper prime P of P , EP is 
a discrete rank-one valuation ring; see (7, Lemma 3). Yet (a) does not hold 
in E ; (18) is (6)-primary but is not a power of (6). 

In view of Theorem 6 one can easily see that the ring 5 of (9, Section 5) is a 
domain in which (a) holds. Yet 5 is not integrally closed, and is therefore not 
a Priifer domain. Hence Corollary 1 is false if the ascending chain condition 
for prime ideals is dropped from the hypothesis. 

3. Rings with Property (ô). In this section we obtain a complete classi­
fication of rings satisfying Property (<5). Theorems 11, 13, 14 contain these 
classifications. 

THEOREM 8. If (3) holds in the ring R, then {a) holds in R. 

Proof. Let Q be a primary ideal of R and let P = ^/Q. Let 

Q = n PÏ 

be a representation of Q as an intersection of powers of distinct prime ideals. 
We have P C Pt for each i. But since P is prime and P 3 C\ Pfi, we must have 
P'2-P\ for some i and therefore, say, P = Pi . Then P± C Pi for i > 2, so 
r\n

i==1Pie% is not contained in P i . (If n = 1, in particular if P = P , then we 
have Q = Pie i and Q is a prime power). Hence since 

Pï(nPY)QQ 

and Q is Pi-primary, Piei C Q. It follows that Ç = Piei and Q is a prime power. 

THEOREM 9. Let Rhea ring in which (8) holds and in which each prime ideal P 
distinct from R is contained in (^_1 Rn> Then an ideal of R with prime radical is 
a prime power. 

Proof. Suppose A is an ideal of R with radical P , a prime ideal. If P = R, 
A is P-primary and A = Rk for some k by Theorem 8. If P C R, then the 
hypothesis concerning R implies that in at least one representation of A, 

A = n P?" 

as an intersection of powers of distinct prime ideals, each Pt y^ R. Then as in 
the proof of Theorem 8, we may assume that P = P i and P C Pi for i > 2. 
Theorem 2 then shows that ? / i Z) Piei for i > 2 so that 4̂ = Piei and our 
proof is complete. 

THEOREM 10. Let D he a domain in which (5) holds. If D is idempotent, D is 
Dedekind. If D is not idempotent, then each non-zero ideal of D is a power of D. 
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Proof. Since (<5) holds in D, (a) also holds in D. Corollary 3 then implies 
that if P is a proper prime ideal of D, P C P\ Dn. By Theorem 9, an ideal of D 
with prime radical is a prime power. By (8, Lemma 6), proper prime ideals of D 
are maximal; see also (1, Lemma 1.1). 

Now if D 3 D2, Corollary 1 shows that (0) is the only prime ideal of D 
distinct from D. Hence each non-zero ideal of D has radical D; it is therefore 
a power of D, and our conclusion holds. 

If D = D2, D is Noetherian, as we shall presently see. Thus suppose A and B 
are proper ideals of D and A C B. Let A = Mieu P\ . . . C\ Mk

eik where each 
Mj is a proper prime ideal and Mt ^ Mj for i ^ j . If B = P^i H . . . H P /2 , , 
with the same requirements on the P / s , then each Pt contains some Mj and is 
therefore equal to Mj since Mj is maximal. Further, Pt

e2i is primary by Theorem 
3 and 

I I Me
v
lv is not contained in Jr i 

so that M/ij C Pt
e2i. It follows that B is of the form M&i C\ . . . C\ Mk

e2k 
for some set of non-negative integers £21, . . • , eu where 2̂1 < en for each i 
and for at least one i, e2t < en. This shows that any ascending chain of ideals 
of D whose first element is A is finite. Because A is arbitrary, D is Noetherian. 
Hence D contains an identity by (4, Corollary 2). That each ideal of D is a 
product of prime ideals then follows easily from the intersection representation 
and the fact that proper prime ideals are maximal. 

Note. In (6) it is shown that an integral domain D, each non-zero ideal of 
which is a power of D, is characterized as the unique maximal ideal of a valua­
tion ring R such that R = GF(p) + D for some prime number p. 

Before proving Theorem 11, we shall need 

LEMMA 2. Let S be a ring such that SA = A for each ideal A of S. If A and B 
are comaximal ideals of 5, A C\ B = AB. If A is comaximal with each of B and 
C, A is comaximal with BC. 

Proof. The proof is analogous to that given when 5 contains an identity 
(12, p. 177). 

THEOREM 11. Suppose R is an idempotent ring in which (8) holds. Then each 
ideal of R is a product of prime ideals. Consequently, R is Noetherian, contains 
an identity, and is a Z.P.I, ring (10). 

Proof. Let P be prime in R, P 7e R. Then R/P is a domain satisfying (ô). 
By Theorem 10, R/P has dimension < 1. 

Next we note that if P i and P 2 are prime ideals of R neither of which contains 
the other, then P1 + P 2 = R. For if Pt + P 2 C R, then Px + P 2 Q M C R 
since P i + P 2 is an intersection of prime power ideals and R is idempotent. 
Then since R has dimension < 1 , M is a minimal prime of P i + (x) for any 
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x 6 M — Pi and a minimal prime of P% + (y) for any y G M — P2. Then 
Theorems l and 3 show that 

P1=C)Mn = P2, 
i 

a contradiction. Hence P± + P% = R. 
Now note: If (ô) holds in the idempotent ring R, Theorem 9 shows that each 

ideal of R with prime radical is a prime power. Clearly R is a u-ring also. Then 
(8, Theorem 15) shows that an ideal of R with prime radical is primary. 
Because R has dimension < 1 , Rx = (x) for each x Ç i? (8, Theorem 5), and 
hence i^4 = 4̂ for each ideal 4̂ or R. 

Having observed all these facts, let A be an ideal of R and let 

A = px\ r\...r\ ps
es 

where Pt ^ Ps for i ^ j and where each Pi is prime. In view of Corollary 3, 
we may suppose that Pt does not contain Pj for i ?± j . Then our previous 
observations and Lemma 2 show that A = P\\ . . . Ps

e*. Hence each ideal of 
R is a product of prime ideals and is therefore Noetherian (10, Satz 11). Since 
R = R2, it then follows that R contains an identity (4, Corollary 2). 

Remark. Theorem 13 will show that in a ring without identity in which (5) 
holds, it need not be true that each ideal is a product of prime ideals. 

THEOREM 12. Suppose the ring R has Property (ô) and R ^ R2. Then R is 
Noetherian and dim R < 0. 

Proof. We have previously observed that dim R < 1. Suppose dim R = 1 
and let P C M C R be a chain of prime ideals of R. Now (ô) holds in the 
domain R/P. Theorem 10 then shows that R/P is a Dedekind domain since 
M/P is not a power of R/P. In particular, 

R/P = [R/P]2 = R2 + P/P = R2 + M2 + P/P = R2 + M2/P = R2/P, 

the equality R2 + M2 + P = R2 + M2 following from Theorem 2. Thus 
R = R2, a contradiction. I t follows that R has dimension < 0 . 

Now let (0) = Mx
ei H . . . H Mh

ek C\ Re where the Mt are distinct prime 
ideals properly contained in R. Then {Mi, . . . , Mfc, R} is the set of prime 
ideals of R. Now R is not contained in \J Mt by (12, p. 215), so if we choose 
r £ R ~ U M^ then (r) = i?* for some J. Note then that ii s £ R - R2, 
then i? = R2 + (s). Then i?2 = R* + sR so that 

R = R* + Rs+ (s) QR*+ (s) and 22 = Rz + (s). 

Continuing we find that R = Rl + (s) = (V, 5) so that i? is finitely generated. 
Now consider any Mu say Mi. Since Mi is not contained in W ^ i M jy we may 

https://doi.org/10.4153/CJM-1966-117-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1966-117-9


PRIMARY IDEALS AND PRIME POWER IDEALS 1193 

choose a € Mi - KJM1 M}. If ilf i = Mx
i, let b be any element of Mv If 

•M\ D Mi2, let S G i l f , - J^ 2 . Then (a, b) = Mt C\ Re. If 

Mi ç H 2?\ 

(a, ô) = ML If Mi is contained in Rv but not in Rv+\ choose c € Mx — i^+ 1 . 
Then (a, b, c) = MXC\ Ru where u < v + 1 so that ikfi C i?w and (a, 6, c) 
= Mi. In any case, Mi is finitely generated. That R is Noetherian now follows 
from the following lemma. 

LEMMA 3. If each prime ideal of the ring R is finitely generated, then R is 
Noetherian. 

Proof. For rings with identity, the lemma was first proved by Cohen (2, 
p. 29). For arbitrary R, let 5 be a ring of characteristic zero obtained by 
adjoining an identity to R. R is Noetherian if and only if 5 is Noetherian, and 
if A is an ideal of 5 such that A P\ R is finitely generated in R, then A is 
finitely generated in 5 by (4, Theorem 1). Thus, in our case, if P is a prime 
ideal of 5, P C\ R is prime in R and is therefore finitely generated in R. Hence 
P is finitely generated in S. By Cohen's theorem, 5 is Noetherian and therefore 
R is Noetherian. 

COROLLARY 6. (ô) holds in the ring R if and only if R is Noetherian and (a) 
holds in R. 

Proof. By Theorems 8, 11, and 12 the conditions are necessary. That they 
are sufficient follows from the primary representation theorem in Noetherian 
rings. 

THEOREM 13. If (8) holds in the ring R where R 9e R2 and if there exists a prime 
ideal M such that 

M c r\Rn, 

then R = Fi © . . . ®Fk © D where Fi is a field and D is a non-zero domain, 
not afield, such that each non-zero ideal of D is a power of D. 

Conversely, if {Fi)\ and D are as just described and if 

S = T̂ i © . . . © Fk® D, 

then (5) holds in S and Fx + . . . + Fkis a prime ideal of S contained in ^ ~ = 1 S*1-

Proof. Since (ô) holds in R/M, Theorems 10 and 12 show that M = H ? Rn. 
Then if M0 is a prime ideal of R distinct from M and R, a repetition of the idea 
used in the proof of Theorem 4 shows that R/M0 is a field (i.e. if Mo is not 
contained in C\i Rn and if x G R - M0, then M0 + (xn) = M0 + (xn+1) for 
some n. This equality implies that R/M0 contains an identity and x is a unit 
in R/M0). 

https://doi.org/10.4153/CJM-1966-117-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1966-117-9


1194 H. S. BUTTS AND ROBERT W. GILMER, JR. 

Now let (0) = Mx
ei Pi . . . Pi Mkh P Me be an irredundant primary 

representation of (0). (By Theorem 12, R is Noetherian, and by Theorem 8, 
(a) holds in P , so that such a representation exists. R is not a prime belonging 
to (0) since M C P5° Rn, the intersection of all P-primary ideals.) For each 
h Mf C P f Rn, Mt is maximal, and Mt is a minimal prime of (0) by Theorem 
12. Hence et = 1 for each i by Theorem 4. Thus 

R/(M1 P . . . P M») ~ 2Î/M! 0 . . . 0 i^/M, 

(12, p. 178). Therefore 

R/{M1 P . . . P M») = [JR/Mi P . . . P Mfc]
2 

= {P2 + (Mi P . . . P M») }/(Mi H . . . P M*). 

Since R D P2 , R2 cannot contain Mi P . . . P M*. 
This implies that (Mi P . . . P M*) + Me = P , for no prime distinct from 

R contains both Me and M\ C\ . . . C\ Mk (assuming k > 1. It will be shown at 
once that e = 1 so that if k = 0, R is a domain in which each non-zero ideal is 
a power of R and Theorem 13 holds) so that Me + (Mi r\ . . . C\ Mk) = Rs for 
some 5. But R2 does not contain Mi C\ . . . C\ Mk so that 5 = 1. Consequently, 

R ~ [22/(Mi P . . . P M»)] 0 JR/M« ~ jR/Mi 0 . . . 0 P /M* © R/Me. 

Our proof will be complete as soon as we prove that e = 1. Since (6) holds in 
P / M e , this follows from 

LEMMA 4. Le£ S be a ring in which (8) holds. Suppose S has a unique prime 
PCS, that (0) is P-primary, and thatP = P ~ = 1 S

n. Then P = (0) arcd 5 is a 
Jamais. 

Proof. Ur e S - S2, (r) = 5. Hence (r2) = S2 D P so that P = [P: (r)](r) 
and therefore P = P{r). 

Since S is Noetherian, there exists b (z S such that m — bm for each m £ P 
(4, Corollary 1). Now there exists v £ 5 such that v — bv (L P since 5 / P does 
not contain an identity (5 /P 3 S2/P). Then if m Ç P we have 

0 = v(m — #m) = ra(fl — Zw), 

v — bv (? P , so that w G (0) since (0) is P-primary. Hence P = (0). 
We proceed to prove the converse. If R = Pi 0 . . . 0 Fk 0 D, R is 

Noetherian. Corollary 6 shows that (d) holds in R if and only if (a) holds in R. 
But (a) does hold since the primary ideals of R are of the form 

Pi + . . . + (0) + . . . + Fk + D, Pi + . . . + Pfc, 

or Pi + . . . + Fk + D*. 

It is likewise clear that 

Pi + . . . + Fk = n Rn. 
n=l 
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THEOREM 14. If (5) holds in R where R ^ R2 and if there exists no prime 
ideal P such that P C fY°=1 R

n, then R = F1 © . . . © Fk : © S where each Ft 

is afield and S is a non-zero ring, every ideal of which is a power of S. The converse 
also holds. 

Proof. The hypothesis concerning R, Theorem 12, and the proof of Theorem 4 
show that if P is a prime ideal distinct from R, R/P contains an identity. Now 
R is Noetherian by Theorem 12 and (a) holds in R by Theorem 8. Hence (0) 
has a primary representation 

(0) = MA r\.. . n Mk
e
k r\ Re. 

Since each M fi is AT-primary, R/Mt
ei has an identity for each i. Thus 

R/{M1\ C\ . . . Pi Mk
ek) c^ R/MA © . . . © R/Mk

ek 

has an identity also and therefore Mfi r\ . . . C\ Mk
ek is not contained in R2. 

By Theorem 4, each et = 1. Also e 9^ 0 since R does not contain an identity. 
It follows that (Mi C\ . . . C\ Mk) + Re = R so that 

R ~ R/Ml © . . . © R/Mk © R/Re. 

This completes the proof of Theorem 14. The proof of the converse is similar 
to that of Theorem 13. 
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