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Abstract

Let R be a ring. A right /{-module C is called a cotorsion module if Ext),(F, C) = 0 for any flat right
R-module F. In this paper, we first characterize those rings satisfying the condition that every cotorsion
right (left) module is injective with respect to a certain class of right (left) ideals. Then we study relative
pure-injective modules and their relations with cotorsion modules.
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1. Introduction

Throughout this paper, all rings are associative with identity and all modules are
unitary.

Let R be a ring. A right i?-module C is called a cotorsion module [9] if
Ext)j(F, C) = 0 for any flat right fl-module F. The ring R is called right cotor-
sion if RR is cotorsion [2]. The class of cotorsion modules contains all pure-injective
(and hence all injective) modules, and is closed under finite direct sums and direct
summands.

Let ^ be a class of right /^-modules and M a right R-module. Following [10], a c€-
precover of M is a homomorphism <f> : F —>• M w i t h F 6 ff such that Hom(F', F) —>
Hom(F', M) is surjective for all F' € <^>. The ^-precover <j> is said to be a ¥?-cover
if any endomorphism h : F —>• F, such that (ph = <p, is an isomorphism. For <€
some familiar class of modules, say the class of flat modules, ^-covers will simply
be called flat covers, ^-envelopes of M can be defined dually. The existence of
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226 Lixin Mao and Nanqing Ding [2]

a flat cover and a cotorsion envelope for any module over any associative ring has
been recently proven [6]. An important feature of flat covers (respectively cotorsion
envelopes) is that their kernels (respectively cokernels) are cotorsion (respectively flat)
by Wakamatsu's Lemmas [25, Section 2.1].

In what follows, we write MR to indicate a right /?-module. M<7) denotes the
direct sum of copies of a module M indexed by a set / . As usual, J(M), Z(M) and
Soc(M) stand for the Jacobson radical, the singular submodule and the socle of M,
respectively. For a subset X of R, the left (right) annihilator of X in R is denoted
by l(X) (respectively r(X)). If X = {a}, we usually abbreviate it to l(a) (or r(a)).
We use K <e N and K <® N to mean that K is an essential submodule and a
direct summand of N respectively. For a right ^-module M, sM : F{M) —> M and
aM : M —»• C(M) denote a flat cover and a cotorsion envelope of M respectively.
We frequently identify M with its image in C(M) and think of M as a submodule of
C(M). For other definitions and notations, we refer the reader to [1, 10, 21, 25] as
background references.

In Section 2, we study rings such that every cotorsion right (left) module is injective
with respect to a certain class of right (left) ideals. For example, we show that R is a
von Neumann regular ring if and only if every cotorsion right ^-module is P-injective
if and only if every non-zero right i?-module contains a non-zero flat submodule; R is
a left PS ring if and only if every cotorsion right ^-module is Soc(R/?)-injective if and
only if every left /?-module M has a monic ^#J^-cover, where ^ J' denotes the class
of all mininjective left ^-modules; R is a left universally mininjective ring if and only
if every cotorsion left /?-module is Soc(s#)-injective if and only if every cotorsion
left /?-module is mininjective if and only if every quotient of any flat cotorsion left
/?-module is Soc(/;/?)-injective.

In Section 3, we study relative pure-injective modules and their relations with
cotorsion modules. Let M and N be right i?-modules. Recall that N is called M-
pure-injective if every homomorphism from a pure submodule of M to N can be
extended to a homomorphism from M to N. M is said to be quasi-pure-injective if
M is M-pure-injective. Some useful properties are presented. For instance, let MR be
a right /^-module with endomorphism ring S. It is shown that, if MR is quasi-pure-
injective, then Ss is a quasi-pure-injective right S-module; if MR is M^'-pure-injective
for any index set / , then S is a right cotorsion ring. We also prove that for a right
cotorsion ring R, the class of R-pure-injective right /?-modules is closed under direct
sums if and only if R is a semiperfect ring; a ring R is right perfect if and only if
every right ^-module has a cotorsion (pre)cover. As a byproduct, we find that every
quotient module of any cotorsion (or injective) right /?-module is cotorsion if and only
if every pure submodule of any projective right /?-module is projective if and only
if all flat right ^-modules are of projective dimension at most 1. This removes the
unnecessary hypothesis that R is a commutative domain from [15, Theorem 3.2].
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[3] Cotorsion modules and relative pure-injectivity 227

Section 4 is devoted to a new generalization of V-rings. A ring R is called a
right pure V'-ring if every simple right R-module is /?-pure-injective. This new class
of rings contains right V-rings, right perfect rings, commutative rings and semilocal
rings. Let / be a right ideal of a ring R. Following [17], /* stands for the intersection
of all maximal right ideals of R containing / . It is shown that R is a right pure-V-ring
if and only if K* ^ P* for any maximal submodule AT of a pure right ideal P of R.

2. Some properties of cotorsion modules

Let si be a nonempty collection of right ideals of a ring R. Following [23], a
right /?-module X is said to be si-injective provided that each /?-homomorphism
/ : A -*• X with A e si extends to R, or equivalently, Extl

R(R/A, X) = 0 for any
A € si. In particular, X is called P-injective (respectively, mininjective) [19] if X is
j^-injective with si = {all principal right ideals of /?} (respectively, {all simple right
ideals of /?}), and X is said to be Soc(RR)-injective (respectively, Soc(R R)-injective)
if s/ = {Soc(RR)} (respectively, si = {Soc(sfl)}).

LEMMA 2.1 ([16, Proposition 2.10]). Let R be a ring and si a nonempty collection
of right ideals of R. Then the following are equivalent:

(1) Every cotorsion right R-module is si -injective.
(2) Every pure-injective right R-module is si-injective.
(3) R/A is aflat right R-module for any A & si.

PROPOSITION 2.2. Let si be a nonempty collection of right ideals of a ring R such
that A is projective for any A € si. If RR is si -injective, then every cotorsion right
R-module is si -injective. The converse holds if R is right cotorsion.

PROOF. It is enough to show that every right ideal A in si is a pure submodule of R
by Lemma 2.1. Consider the equations

with aj e A,bt e R, su e R for all 1 < j < n, 1 < i < m. Since A is projective,
by the Dual Basis Lemma (see [14, 2B2.9, page 23]), there exist a family of elements
{ck : k € 1} c A and linear functionals {fk : k € 1} c HomR(A, R) such that for
any c € A, fk(c) = 0 for almost all k, and c = J^k ckfk(c). Since RR is .cZ-injective,
there are gk e HomR(R, R) such that

fk(dj) = gkiaj) = gk
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Therefore

It follows that A is a pure submodule of R by [14, Theorem 4.89].
The last statement is clear. D

A ring R is called right PP if every principal right ideal is projective. R is said
to be a right SF ring (respectively, right V-ring) if every simple right /?-module is
flat (respectively, injective). R is called right semi-artinian if every nonzero right
/^-module contains a nonzero simple submodule.

In [8], it was proved that a ring R is a right semi-artinian right V-ring if and only
if every nonzero right /?-module contains a nonzero injective submodule. Motivated
by this, we have the following result.

THEOREM 2.3. Let R be a ring. Then the following are equivalent:

(1) R is a von Neumann regular ring.
(2) Every cotorsion right R-module is flat.
(3) Every cotorsion right R-module is injective.
(4) Every cotorsion right R-module is P-injective.
(5) R is a right PP right P-injective ring.
(6) Every non-zero right R-module contains a non-zero flat submodule.

In particular, if R is a right semi-artinian right SF ring, then the above conditions
hold.

PROOF. (1) if and only if (3) holds by Lemma 2.1. (1) imples (2), (1) imples (5)
and (1) imples (6) are clear.

(5) imples (4) follows from Proposition 2.2.
(2) imples (1). Let M be any right /?-module. Then there is an exact sequence

C(M) >L ^0 ,

where L is flat. Thus M is flat by (2), and (1) follows.
(4) imples (1). Note that R/A is flat for any principal right ideal A by (4) and

Lemma 2.1. Thus R/A is projective since R/A is finitely presented. It follows that A
is a direct summand of R, which implies that R is von Neumann regular.

(6) imples (3). Assume that 0 - > - A - » B - > - C - > - 0 i s any exact sequence. To
simplify the notation, we think of A as a submodule of B. Let M be a cotorsion right
/?-module and / : A —>• M be any homomorphism. By a simple application of Zorn's
Lemma, we can find some g : D —> M where A c D c B, and g\A = / , such that
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[5] Cotorsion modules and relative pure-injectivity 229

g cannot be extended to any submodule of B properly containing D. We claim that
D = B. Indeed, if D ^ B, then B/D ^ 0. By (6), there exists a non-zero submodule
N/D of B/D such that N/D is flat. Since M is cotorsion, there exists h : N —>• M
such that h\D = g. It is obvious that h extends g; this yields the desired contradiction,
and so M is injective.

Finally, suppose that R is a right semi-artinian right SF ring. Then every cotorsion
right /?-module is ^/-injective by Lemma 2.1, where srf = {all maximal right ideals
of /?}. On the other hand, every j^-injective right /?-module is injective by [23,
Lemma 4]. It follows that every cotorsion right R-module is injective, as desired. •

The equivalences of (1) through (3) in Theorem 2.3 have been shown by Xu (see
[25, Theorem 3.3.2]) in a different way.

The following easy observation is given for completeness.

PROPOSITION 2.4. Let R be a ring. Then the following are equivalent:

(1) R is a semisimple Artinian ring.
(2) Every cotorsion right R -module is projective.
(3) Every non-zero right R-module contains a non-zero projective submodule.

PROOF. (1) implies (2) and (1) implies (3) are clear.
(2) implies (1). R is quasi-Frobenius, since every injective right /?-module is

projective, and R is von Neumann regular by Theorem 2.3, since every cotorsion right
/^-module is flat. So (1) follows.

(3) implies (1). By the proof of (6) implies (3) in Theorem 2.3, every right ^-module
is injective. Thus R is semisimple Artinian. •

A ring R is called left PS [18] if every simple left ideal is projective. It is obvious
that R is a left PS ring if and only if Soc(Ri?) is projective.

THEOREM 2.5. Let R be a ring. Then the following are equivalent:

(1) R is a left P S ring.
(2) Every cotorsion right R-module is Soc(RR)-injective.
(3) Every quotient of any (min)injective left R-module is mininjective.
(4) Every quotient of any (Soc(R R)-)injective left R-module is Soc(RR)-injective.
(5) Every left R-module M has a monk <Jt' J1-cover, where jft J denotes the class

of all mininjective left R-modules.
(6) R/ Soc(RR) is a flat right R-module.
(7) (Soc(RR))2 = Soc(RR).

PROOF. (2) if and only if (6) if and only if (7) follow from Lemma 2.1 and [5,
Proposition 1.4].
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(3) implies (1). Let N be a submodule of an injective left /?-module E and
n : E -> E/N the canonical map. Suppose that K is a simple left ideal of R, and
f : K -*• E/N is any homomorphism. Since E/N is mininjective by (3), there
exists g : R —*• E/N such that / = gi where t : K —> R is the inclusion. It
follows that there exists h : R -> £ such that g = nh, since /? is projective. Hence
/ = (7r/i)t = 7r(/u) and £ is projective by [21, Lemma 4.22].

(1) implies (3). Let X be any mininjective left i?-module and N any submodule
of X. We show that X/N is mininjective. To this end, let K be a simple left ideal
of R, i : K -» R the inclusion and 7r : X —> X/N the canonical map. For any
/ : K -> X/N, there exists g : K -> X such that 7rg = / , since K is projective
by (1). Hence there exists h : R —> X such that hi — g, since X is mininjective. It
follows that {nh)i = / , and (3) holds.

The proof of (1) if and only if (4) is similar to that of (1) if and only if (3).
(1) implies (7). It is clear that (Soc(R/?))2c $>oc{RR). We claim that Soc(RR)I ^ 0

for any simple left ideal / . If not, then there exists a simple left ideal Ra such that
Soc(RR)Ra = 0. Since R is a left P S ring, we have/? = lR (a) ©AT with K a left ideal
of R, and so Ra — Ka. On the other hand, K = R/lR(a) is simple. Thus Ka = 0,
and hence Ra = 0, a contradiction. Therefore, / = Soc(KR)I for any simple left
ideal / . It follows that Soc(RR) C (Soc(RR))2, and hence (Soc(RR))2 = Soc(RR).

(7) implies (1) follows from [5, Proposition 1.10 (b)].
(3) implies (5). Let M be any left R-module. Write F = £ { N < M : N e Jt J\

and G = ®{N < M : N ^ M J!\. Then there exists an exact sequence 0 —> K —•
G -> F -> 0. Note that G e ^ # ^ , so F e Jt'«/ by (3). Next we prove that the
inclusion j : F —>• M is an ^#J^-cover of M. Let t̂  : F ' —• M, with F ' e J{ J?, be
an arbitrary left /?-homomorphism. Note that ir(F') < F by (3). Define % : F' -*• F
via £(*) = V(•*) for x e F ' . Then i£ = i/*", and so i : F —> M is an ^#./-precover
of Af. In addition, it is clear that the identity map IF of F is the only homomorphism
g : F -> F such that ig = i, and hence (5) follows.

(5) implies (3). Let M be any mininjective left /?-module and N any submodule
of M. We show that M/N is mininjective. Indeed, there exists an exact sequence
0 -+ N —> E -+ L -+ 0 with E injective. Since L has a monic ^J^ -cover
(p : F —> L by (5), there exists a : E —• F such that the following exact diagram is
commutative:

0

N

https://doi.org/10.1017/S1446788700015858 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700015858


[7] Cotorsion modules and relative pure-injectivity 231

Thus <p is epic, and hence it is an isomorphism. Therefore L is mininjective. For any
K = R/A with A a simple left ideal, we have

0 = ExtR(K, L) -+ Ext\{K, N) -+ Ext2
R(K, E) = 0.

Therefore, Ext^(^T, N) = 0. On the other hand, the short exact sequence 0 -* N ->•
M -> M/N ->• 0 induces the exactness of the sequence

0 = ExlR(K, M) -+ E\tl
R(K, M/N) - • Ext\(K, N) = 0.

Therefore, Extjj(A\ M/N) = 0, as desired. •

Following [19], a ring R is called left universally mininjective if every left # -
module is mininjective. Recall that a ^-envelope a : M —>• L has the unique
mapping property [7] if for any homomorphism f : M —>• N with N e & , there
exists a unique g : L -> iV such that ga = f.

THEOREM 2.6. Let R be a ring. Then the following are equivalent:

(1) R is a left universally mininjective ring.
(2) Every simple left ideal is generated by an idempotent.
(3) Every cotorsion left R-module is Soc(RR)-injective.
(4) Every cotorsion left R-module is mininjective.
(5) Every quotient of any cotorsion left R-module is Soc(fi R)-injective.
(6) Every quotient of any flat cotorsion left R-module is Soc(RR)-injective.
(7) Every cotorsion left R-module has an M' J? -envelope with the unique mapping

property.
(8) R/ Soc(RR) is aflat left R-module.
(9) R is a left PS left mininjective ring.

Moreover, if R is a left cotorsion ring with Soc(RR) <CRR, then the above conditions
are also equivalent to:
(10) R is a left PS left Soc(RR)-injective ring.
(11) R is a left mininjective left nonsingular ring.
(12) R is a left mininjective ring with J(R) = 0.
(13) R is a von Neumann regular ring.

PROOF. (1) implies (7), (2) implies (9) and (5) implies (6) are trivial.
(2) if and only if (8) if and only if (3) hold by [5, Proposition 2.1] and Lemma 2.1.
(9) implies (4) follows from Proposition 2.2.
(1) implies (2). Let S be a simple left ideal. Then S is mininjective, and so 5 is a

direct summand of R. Thus (2) holds.
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(7) implies (4). Let M be any cotorsion left i?-module. There is the following
exact commutative diagram

where a and </> are ^J^-envelopes with the unique mapping property. Note that
4>ya = 0 = Oar, so (py = 0 by (7). Therefore L = im(y) c ker(0) = 0, and so M is
mininjective. Hence (4) follows.

(4) implies (1). Note that R/A is flat for any simple left ideal A by (4) and
Lemma 2.1. Thus R/A is projective since R/A is finitely presented. It follows that A
is a direct summand of R, which implies that R is left universally mininjective.

(3) implies (5). Note that (3) if and only if (9) holds by the preceding proof. Let
M be any cotorsion left i?-module and N any submodule of M. We show that M/N
is Soc(s/?)-injective. To this end, let n : M -> M/N be the canonical map and
i : Soc(RR) —>• RR the inclusion. For any / 6 HomR(Soc(R/?), M/N), there exists
g : Soc(RR) —*• M such that ng = / , since Soc(RR) is projective by (9). Hence there
exists h : RR —>• M such that hi = g, since M is Soc(/;/?)-injective by (3). It follows
that (nh)i = / , and so (5) holds.

(6) implies (3). Let M be any cotorsion left R-module. Then M has a flat cover
sM : F(M) -> M. Since ker(eM) is cotorsion, by Wakamatsu's Lemma, F(M) is
both flat and cotorsion. So M is Soc(R/?)-injective by (6).

(3) if and only if (10) holds by Proposition 2.2.
(9)implies (11). Note that Z,(Soc(RR)) = Z,(R) DSoc(RR) a.ndZ,{Soc(RR)) = 0

by [14, Exercise 12A (c), page 269] and (9), so Zt{R) D Soc(sfl) = 0, and hence
Z,(R) = 0 since Soc(RR) <e RR.

(11) implies (9) follows from [18, Example 2.5 (3)].
(11) if and only if (12). For a left cotorsion ring with Soc(RR) <e RR, we can

prove a more general result: Z,(/?) = J(R) = rR(Soc(RR)). In fact, since R is
left mininjective ring, Soc(RR) c Soc(RR) by [19, Theorem 2.21(c)]. It follows
that J(R) < rR(Soc(RR)) < rR(Soc(RR)). In addition, Zt(R) < J(R) by [19,
Theorem B.58] or the remark just before [2, Theorem 6], and rR(Soc{RR)) < Z,(R)
by Soc(fi/?) <e RR. Thus (11) if and only if (12) follows.

(13) implies (12) is obvious.
(12) implies (13). Note that R/J(R) is von Neumann regular by [2, Theorem 6].

The proof is complete. •
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REMARK 2.7. It is obvious that a left universally mininjective ring is left PS by
Theorem 2.6. However, the converse is not true as shown by the following example.

Let

and x = (J§) e /?. It is easy to see that Rx is a simple left ideal, and Rx can not
be generated by an idempotent, so Rx is not mininjective. However, R is a left PP,
and hence a left P S ring. In fact, it is easily checked that every element of R is
either nilpotent or idempotent or invertible. Note that x = ( \ °) is the only non-zero
nilpotent element and l{x) = /?(£§) is a summand of RR, and so Rx is projective, as
required.

COROLLARY 2.8. Let R be a commutative ring, then the following are equiva-
lent:

(1) R is a PS ring.
(2) R is a universally mininjective ring.
(3) Every cotorsion R-module is Soc(R)-injective.
(4) Every cotorsion R-module is mininjective.

PROOF. The result follows from Theorem 2.5 and Theorem 2.6. •

3. Relative pure-injective modules

In this section, we investigate the pure injectivity relative to a module and discuss
its relationship with cotorsion modules. We first recall the following definition (see,
for example, [24]).

DEFINITION 3.1. Let M and N be right /?-modules. N is called M-pure-injective
if every homomorphism f : K -> N, where AT is a pure submodule of M, can be
extended to a homomorphism g : M —>• N.

M is called quasi-pure-injective if M is M-pure-injective.

Clearly, if N is M-injective, then N is M-pure-injective. The next proposition is
easy to verify.

PROPOSITION 3.2. Let M and N be right R-modules. Then

(1) N is pure-injective if and only ifN is M-pure-injective for all right R-modules M.
(2) TV is cotorsion if and only if N is M-pure-injective for all free {respectively,

projective, flat) right R-modules M.
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It is obvious that the ring Z of integers (more generally, any domain) has no non-
trivial pure ideal, so every Z-module is Z-pure-injective. However, Z is not cotorsion.

PROPOSITION 3.3. For a right R-module M, the following are equivalent:

(1) Every pure submodule of M is a direct summand of M.
(2) Every right R-module is M-pure-injective.
(3) Every pure submodule of M is M-pure-injective.

In particular, if M is a finitely generated projective right R-module, then the above
conditions are equivalent to:
(4) Every pure submodule of M is finitely generated.
(5) Every flat quotient module of M is projective.

PROOF. The proof is straightforward and hence omitted. •

Some general properties of this kind of relative pure-injectivity follow below.

PROPOSITION 3.4. Let M and N be right R-modules. IfN is M-pure-injective, then
for every pure submodule K of M, N is K-pure-injective and M/K -pure-injective.

PROOF. Every pure submodule of K is also a pure submodule of M since K is a
pure submodule of M. Therefore it is clear that N is A"-pure-injective.

Now let us prove that N is M/K-pure-injective. Let L/K be any pure submodule
of M/K and / : L/K -> N any homomorphism. By [14, Exercise 30, page 162],
L is a pure submodule of M. Let ii\ : M —> M/K and n2 : L —»• L/K be the
canonical maps. Since N is M-pure-injective, there is a homomorphism g : M -*• N
that extends fn2. Note that K < ker(g), hence there exists h : M/K -» N such that
hnx = g. For any / e L, h(l + K) = hnx{l) = gU) = fn2{l) = fd + K). Thus h
extends / , and so N is M/K-pure-injective. •

The next lemma is easy to verify.

LEMMA 3.5. Let M be a right R-module and {Nt : i e 1} a family of right R-
modules. Then J~[/€/ N, is M-pure-injective if and only if' Nt is M-pure-injective for
every i e I.

In particular, a direct summand of an M-pure-injective right R-module is M-pure-
injective.

REMARK 3.6. In general, the class of Af-pure-injective modules is not closed under
direct sums. For example, let R be a von Neumann regular ring, but not right
Noetherian. Then the class of /?-pure-injective right modules is not closed under
direct sums.
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[11] Cotorsion modules and relative pure-injectivity 235

It is well-known that Mi © M2 is quasi-injective if and only if M, is M;-injective
for all/, j = 1,2.

PROPOSITION 3.7. Let M, and M2 be right R-modules. If Af, © M2 is quasi-pure-
injective, then Mi is Mj-pure-injective for all i, j = 1,2.

PROOF. This follows from Proposition 3.4 and Lemma 3.5. •

PROPOSITION 3.8. Suppose that N is M-pure-injective. If K is a pure submodule
ofM with K = LandL <® N, then K <® M.

PROOF. Let i : K —*• M and i : L —>• TV be the inclusions, n : N —>• L the
canonical projection and / : K —> L the isomorphism. Since N is Af-pure-injective,
there exists g : M -¥ N such that gi = if. Let a = f~xng : M ->• K. For
any k e K, ai(k) = f~lngi(k) = / " ' f(k) = k. So ai = lK, which implies that
K <® M. •

COROLLARY 3.9. IfM is a quasi-pure-injective right R-module, then M ispure-C 2,
that is, assume that K is a pure submodule of M with K = L and L <® M, then
K <® M.

PROPOSITION 3.10. Let M be aflat cotorsion right R-module. Then

(1) M ispure-C2.
(2) (pure-C3) If K and L are submodules of M with K n L = 0, K <® M and

L <® M, then K © L is a pure submodule of M if and only ifK © L <® M.

PROOF. (1) Since M is flat and cotorsion, then M is quasi-pure-injective by Propo-
sition 3.2. So (1) follows from Corollary 3.9.

(2) Let K = eM,e2 = e € End(MR), so that K © L = eM © (1 - e)L. Thus
(1 - e)L = L <® M. If K @L is a pure submodule of M, then (1 — e)L is also a pure
submodule of M. By (1), (1 - e)L <® M, and so there exists f2 = fe End(MR)
such that (1 — e)L = fM. Thus ef = 0, and hence h — e + f — fe is an idempotent
and K © L = hM <® M. The converse is clear. •

COROLLARY 3.11. If R is a right cotorsion ring, then RR ispure-C2 andpure-Ci.

PROPOSITION 3.12. Let M be aflat right R-module and N a right R-module. If
a(M) C N for all a : C(M) -+ C(N), then N is M-pure-injective.

PROOF. Let K be a pure submodule of M and i : K —>• M the inclusion. Note
that M is a pure submodule of C(M), so K is also a pure submodule of C(M). Since
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M is flat, so is C(M). Consequently, for any homomorphism / : K -> N, there
exists g : C(M) -> C(N) such that gaMi = oNf. By hypothesis, g{M) c AT. So
g|w : M ->• N extends / , as desired. •

COROLLARY 3.13. Let M be a flat right R-module. If M is a fully invariant
submodule ofC(M), then M is quasi-pure-injective.

REMARK 3.14. From the proof of Proposition 3.12, Corollary 3.13 can be extended
to a more general result, that is, a fully invariant pure submodule of a quasi-pure-
injective right /?-module is quasi-pure-injective. On the other hand, it is well known
that a module M is quasi-injective if and only if M is a fully invariant submodule of its
injective envelope. However, we do not know whether the converse of Corollary 3.13
is true.

PROPOSITION 3.15. Let sFRbea bimodule and MR a right R-module.

(1) If MR is FR-pure-injective, then Y{omR{sFR, MR) is an S-pure-injective right

S-module.

(2) If MR is FR
n-pure-injective for any index set I, then HomR(sFR, MR) is a

cotorsion right S-module.

PROOF. (1) Let Ks be a pure submodule of Ss. We can consider the right R-
module K <g>s F as a pure submodule in the right /?-module S ®s F. Since MR is
F/rpure-injective and S <g>s F = FR, we obtain the exact sequence

HomR(S ®s FR, MR) -+ HomR{K ®s FR, MR) -+ 0,

which gives rise to the exactness of the sequence

s , HomR(sFR, MR)) -> Woms(Ks, HomR(sFR, MR)) - • 0.

Thus Won\R{sFR, MR) is an S-pure-injective right S-module.
(2) If MR is F^'-purc-injective for any index set / , then, by the proof of (1),

HomR(sFR, MR) is an S(/)-pure-injective right S-module for any index set / . So (2)
follows from Proposition 3.2. •

COROLLARY 3.16. Let MR be a right R-module with endomorphism ring S.

(1) If MR is quasi-pure-injective, then Ss is a quasi-pure-injective right S-module.
(2) If MR is MR'J* -pure-injective for any index set I, then S is a right cotorsion ring.

In particular, S = End(MR) is a right cotorsion ring for any flat cotorsion right
R-module M.
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Recall that a ring R is said to be I-finite [19] if R has no infinite set of nonzero
orthogonal idempotents.

LEMMA 3.17. Let R be a ring. If the class of R-pure-injective right R-modules is
closed under direct sums, then

(1) for any ascending chain Ix c /2 c /3 c • • • of right ideals with Utli h pure in
R, there is an n with /„+, = /„, i = 1, 2 , . . . ;
(2) R is I-finite.

PROOF. (1) Let I{ c /2 c /3 c . . . be an ascending chain of right ideals with

/ = Ut l i h P u r e m ^- Define a homomorphism

k=\

for a e I. By hypothesis, (Bj?=lC(R/Ik) is /?-pure-injective. So there exists x e
®f=xC{R/Ik) such that / ( a ) = xa = (a + /*)£!, for any a el.

Let A; = (x\, x2, • •., xn, 0 , . . . ) . Then a + In+k = 0 for any a e / and k > 1. Thus
/ = /n+1 = /n+2 = • • •, as desired.

(2) By (1) and [1, Exercise 19.11(1)], R satisfies ACC (ascending chain condition)
on pure right ideals. Thus R satisfies ACC on right direct summands, and hence R is
/-finite by [14, Proposition 6.59]. •

For any ring R, it is easy to see that every cyclic flat right R -module is projective
if and only if every right /?-module is /?-pure-injective (see Proposition 3.3). So we
have the following result (see, for example, [20, Lemma 4.5]).

COROLLARY 3.18. Ifevery cyclic flat right R-module is projective, then R is I-finite.
The converse holds when R is a right or left PP ring.

PROOF. The result follows from Lemma 3.17, [14, Proposition 6.59 and Theo-
rem 7.55], and [26, Proposition 9]. •

THEOREM 3.19. If R is a right cotorsion ring, then the following are equiva-
lent:

(1) The class of R-pure-injective right R-modules is closed under direct sums.
(2) Every right R-module is R-pure-injective.
(3) R is a semiperfect ring.
(4) R is I-finite.
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PROOF. (2) implies (1) is trivial. (1) implies (4) follows from Lemma 3.17.
(3) implies (2). Since R is semiperfect, every cyclic flat right /^-module is projective

by [14, Exercise 21, page 161] or [20, Example 3.7]. Hence (2) follows.
(4) implies (3). Since R is /-finite, RR = h ffi h © • • • © / « such that /, is

indecomposable and /, = etR, e\ = et, i = 1 , . . . , n, by [14, Proposition 6.60].
Let Si = End(/,). Then 5/ is a right cotorsion ring by Corollary 3.16, since each /,
is a flat cotorsion right /^-module, i = 1, . . . , n. In addition, 0 and 1 are the only
idempotents in S, since /, is indecomposable. It follows that 5, is local by [2,
Corollary 7]. Each e,/?e, = 5,, i = 1 , . . . , n. Consequently, R is a semiperfect ring
by [1, Theorem 27.6]. •

Recall that a ring R is a right perfect ring if and only if every right R -module is
cotorsion, by [25, Proposition 3.3.1]. Thus we have the following result.

THEOREM 3.20. Let R be a ring. Then the following are equivalent:

(1) R is a right perfect ring.
(2) R is a right cotorsion ring with J(R) right T-nilpotent, and the class ofR-pure-

injective right R-modules is closed under direct sums.
(3) The class of cotorsion right R-modules is closed under direct sums.
(4) Every right R-module has a cotorsion (pre)cover.

Moreover, ifR satisfies Soc(RR) <eRR, then the above conditions are also equivalent
to:
(5) R is a right cotorsion ring and satisfies ACC for chains of annihilators of the

form rR(ai) c rR(a2ax) c rR(a3a2ax) £••-.

PROOF. (1) if and only if (2) follows from Theorem 3.19.
(1) implies (4) is trivial, (4) implies (3) follows from [22, Proposition 1], and (3)

implies (1) holds by [3, Theorem 19].
(1) implies (5) follows from [4, Corollary 25].
(5) implies (1). By [26, Proposition 9], every cyclic flat right /^-module is projective.

Therefore R is a semiperfect ring by Corollary 3.18 and Theorem 3.19. So it is enough
to show that J(R) is right T-nilpotent.

Now let d\, a2, a^,... be an infinite sequence in J(R). Then we get a chain

rR(a{) c rR(a2ai) c rR{aza2ax) c • • • .

Thus there exists n e N such that rR{anan-\ • • -a\) = rR(an+ian • • -a\) by (4), and

hence (anan_i • • • a\)R Pi rR{an+\) = 0. On the other hand, noting that

J(R)<lR(Soc(RR)<Zr(R)
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by Soc(RR) <e RR, we have an+1 € Zr(R). Thus rR(an+x) <e RR, and so
an---a{ = 0, which implies that / ( /?) is right T-nilpotent. This completes the
proof. •

COROLLARY 3.21. Let R be a commutative ring. Then the following are equiva-

lent:

(1) R is a perfect ring.

(2) R is a cotorsion ring with essential socle and satisfies ACCfor chains ofanni-
hilators of the form annR(a!) c anns(a2<2i) Q. ann«(a3a2ai) c • • •.

PROOF. This follows from [1, Theorem 28.4] and Theorem 3.20. D

LEMMA 3.22. Let M be a projective right R-module. Then the following are
equivalent:

(1) Every quotient module of any injective R-module is M-pure-injective.
(2) Every quotient module of any M-pure-injective right R-module is M-pure-

injective.
(3) Every pure submodule of M is projective.

PROOF. (2) implies (1) is trivial.

The proof of (1) implies (3) implies (2) is similar to that of (1) if and only if (3) in
Theorem 2.5. •

THEOREM 3.23. Let R be a ring. Then the following are equivalent:

(1) Every quotient module of any injective right R-module is cotorsion.
(2) Every quotient module of any cotorsion right R-module is cotorsion.
(3) Every pure submodule module of any projective right R-module is projective.
(4) All flat right R-modules are of projective dimension at most 1.
(5) Ext\(M, N) = Ofor all flat right R-modules M and N.
(6) Exti(M, A0 = Ofor all flat right R-modules M, N and j > 2.

PROOF. (1) if and only if (2) if and only if (3) follow from Lemma 3.22.
(4) implies (3). Let M be a projective right /?-module and N a pure submodule of

M. Then 0 ->• N ->• M -+ M/N ->• 0 is exact. Note that M/N is flat, and hence the
projective dimension of M/N is less than or equal to 1, by (4). Thus N is projective.

(3) implies (4). Let M be any flat right /?-module. There exists an exact sequence
0 -+ N —> P —»A/->0 with P projective. Note that N is a pure submodule of P,
so N is projective. It follows that the projective dimension of M is at most 1.

(4) implies (5) implies (6) are trivial.
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(6) implies (4). Let M be any flat right /^-module and N any right /?-module. Then
there is an exact sequence

0 > K »• F(N) -^-* N »• 0,

with K cotorsion, which induces the exactness of sequence

Ext* (M, F(N)) -»• Ext* (M, N) -+ Ext^M, K).

Note that Ext* (M, F(N)) = 0, by (6), and Ext3
s(M, K) = 0, by the proof of [25,

Proposition 3.1.2]. So Ext* (M, N) = 0 and (4) follows. •

REMARK 3.24. The equivalences of (1) through (4) in the previous theorem have
recently been proven for commutative domains ([15, Theorem 3.2]).

4. A new generalization of V-rings

We start with the following definition.

DEFINITION 4.1. A ring R is called a right pure-V -ring if every simple right R-
module is i?-pure-injective.

REMARK 4.2. (1) It is obvious that the class of right pure-V-rings contains right
V-rings and right perfect rings. In general, a right pure-V-ring need not be a right
V-ring (for example, Z). If R is a von Neumann regular ring, then R is a right V-ring
if and only if R is a right pure-V-ring if and only if every simple right R-module is
cotorsion.
(2) [16, Lemma 2.14] shows that every simple ft-module over a commutative ring

R is cotorsion. So commutative rings are pure-V-rings. However, simple /^-modules
over a noncommutative ring R need not be cotorsion. For example, we can choose R
to be a von Neumann regular ring, which is not a right V-ring (see [11]).

A ring is called semilocal if R/J(R) is a semisimple Artinian ring.

PROPOSITION 4.3. Any semilocal ring R is a left and right pure-V-ring.

PROOF. By the Wedderburn-Artin Theorem and [12, Proposition 9.3.4], for any
simple right i?-module M with endomorphism ring 5, SM is a finite dimensional
vector space. Thus M is E-pure-injective by [13, Lemma 4.3] and therefore cotorsion.
So R is a right pure-V-ring. Similarly, R is a left pure-V-ring. D
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Let / be a right ideal of R. Following [17], /* stands for the intersection of all
maximal right ideals of R containing / . Yue Chi Ming proved that R is a right V-ring
if and only if, for any maximal submodule K of an essential right ideal P, K* ^ P*
(see [17, Theorem 3]). Next we give a corresponding characterization of a right
pure-V-ring.

THEOREM 4.4. Let R be a ring. Then the following are equivalent:

(1) R is a right pure- V-ring.
(2) If K is a maximal submodule of a pure right ideal P of R, then K* ^ P*.

PROOF. (1) implies (2). Suppose that there exist a pure right ideal P and a maximal
submodule K of P such that K* = P*. Then P/K is simple. By (1), there exists
/ : / ? - > P/K, which extends the canonical projection n : P —»• P/K. Letg = /!/>•.
Then K c ker(g) c P* = K*. Therefore (ker(g))* = P* = K* (for K** = AT*). On
the other hand, ker(/) is a maximal right ideal of R with ker(/) C\ P* = ker(g). Thus
(ker(g))* c ker(/), and hence P* = (ker(g))* = ker(g), which implies that g = 0,
and so P/K = 0, a contradiction.

(2) implies (1). Suppose that M is any simple right /?-module. Let / be any pure
right ideal, and a : I -> M any homomorphism. We show that a can be extended
toR.

If a = 0, this is trivial.
If a j£ 0, then ker(a) is a maximal submodule of / , and so (ker(a))* ^ /* by (2).

Thus there exists a maximal right ideal K of R such that ker(a) c K and / ^ K. So
R = K + I. Let r e R. Then there exist k e K and t e I such that r = k + t. Now
we define /3 : R —> M via r i—>• a(t). Note that K D / = ker(a). It is easy to verify
that $ is well-defined. Clearly, /S extends a. •

COROLLARY 4.5. Let Rbea right pure-V-ring and I* < e RR. Then I = I*.

PROOF. Suppose that / ^ /*. Since /* is finitely generated, / is contained in a
maximal submodule M of /*, by [1, Theorem 2.8]. Thus M* ^ /* by Theorem 4.4.
However, /* c M* c /*, a contradiction. •

PROPOSITION 4.6. Let Rbea right SF ring.

(1) If J(M) = Ofor any flat right R-module M, then every simple right R-module
is cotorsion.
(2) IfJ(M) = Ofor any cyclic flat right R-module M, then R is a right pure-V -ring.

PROOF. (1). Let K be any pure submodule of any flat right /^-module N, and S any
simple right /?-module. It is enough to show that every homomorphism / : K —> S

https://doi.org/10.1017/S1446788700015858 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700015858


242 Lixin Mao and Nanqing Ding [18]

can be extended to M. This is trivial if / = 0. So we may assume / ^ 0. Since
S = K/ ker(/) and S is flat, ker(/) is a pure submodule of K. Thus ker(/) is a pure
submodule of N since K is pure in N. By hypothesis, 7(Af/ker(/)) = 0, which
implies that ker(/) is an intersection of maximal submodules of N. Let x € K and
x g ker(/). Then there exists a maximal submodule H of N such that ker(/) c H
and x i H. Therefore N = H + K. Note that H D K = ker(/), so we can extend /
to g : N - • S by defining g(h + k) = f(k) for any h e H and any k e K.

(2) follows from the proof of (1). •
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