
THE K-PRODUCT OF ARITHMETIC FUNCTIONS 

A. A. GIOIA 

1. Introduction. In this note we introduce a natural generalization of the 
ordinary convolution of arithmetic functions: I f /and g are arithmetic functions, 

( f X g ) W = £/(<*)«(&)£((<»,&)) 
ab=n 

defines the K-product of /and g. If the kernel K(n) = E(n) = 1, the if-product 
is the ordinary convolution Y*d\nf(d)g(n/d)', if K(n) = e(n) = [1/w], then the 
if-product is the unitary product ^2f(d)g(n/d)1 summed over d\n, (d, n/d) = 1 
(1, 2). We give in Theorem 1 a characterization of all associative kernels, i.e., 
kernels for which the corresponding if-product is associative. 

In the latter half of this paper we study multiplicative functions under the 
if-product. It is shown that under certain conditions the function e(n) (defined 
above) is the identity for the if-product, a multiplicative function has a 
multiplicative inverse, and the if-product of multiplicative functions is multi­
plicative. Finally, we derive some general identities involving multiplicative 
functions defined in terms of the if-product. 

2. The associative kernels. 

THEOREM 1. The K-product is associative if and only if either K(n) = 0 or 
K (n) is of the form 

!

0} ifm^n, 

K(m) f i K*(Z*), ifm\n, 
Qb\\n 

where m is the smallest integer such that K(m) ^ 0, and K*(n) = K(mn)/K(m) 
is a multiplicative function having values K*(pa) = 1 for all a if p\m, and if 
q\m, K*(qa) = 0 or K*(qB(<») according asa<B(q)ora> B(q),for B(q) a 
positive integer or oo. 

Proof. Since 

((fXg)Xh)(n) = D f(a)g(b)h(c)K((a,b))K((ab,c)) 
abc=n 

and 

(fX (gXh))(n) = £ f(a)g(b)h(c)K((a,bc))K((b,c)), 
abc=n 
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it is clear that the if-product is associative if and only if 

(1) if ((a, b))K((ab, c)) = if ((a, bc))K((b, c)) for all a, b, c. 

First, suppose if is a given function satisfying (1), and K is not identically 
zero. Let m be the smallest integer such that K(m) ^ 0. If n is any integer 
and K(n) ^ 0, take a = ra, b = n, c = mn in (1). We have 

K({m,n))K{mn) = K(m)K(n). 

The right side is not zero, so K((m, n)) ?± 0. By definition of m, then, 
m < (m, n). But (w, n)\m, so n is a multiple of m. Thus, if K (n) ^ 0, then 
m\n, or as stated in the theorem K(n) = 0 if m \ n. 

We consider now the function if*(n) = K(mn)/K(m). Clearly if*(l) = 1. 
Let (r, s) = 1, and replace a by ras, 6 by mrr and c by mrs in (1) : 

K(m)K(mrs) = K(mr)K(ms). 

Dividing both sides by (if(ra))2, we have K*(rs) = if* (V)if* (s), so if* is 
multiplicative. 

NOTE. If if (1) = 1, then K(n) = if*(w) is multiplicative, so if (1) = 1 is 
necessary and sufficient for K(n) to be multiplicative. 

In view of the multiplicativity of if*, it suffices to find if* at the prime 
powers. Let N be a positive integer, a any prime, and x, y, z integers such that 
0 < x < y < z. Take a = Nqx, b = Nqv, c = Nqz. Then (1) yields 

(2) K(Nqx)K(Nqminix+v^) = K(Nqx)K{Nqv)< 0 < x < y < z. 

Suppose q is any prime divisor of ra. In (2), take N = ra/g, x = y = 1, 
and z — 2. We have if (ra) if (rag) = if (ra)if (ra), and since if (ra) 7̂  0, 
if (rag) = Kirn) or if*(g) = 1. Assume that K*(q<) = 1, / > 0. In (2), take 
N = m, x=y=t, z=t + l to get 

K(rnqt)K(mqt+1) = K^mq^Kimq1). 

Dividing both sides by (if (ra))2 and applying the inductive assumption, we 
obtain if*(g<+1) = if*(g<) = 1. This proves that K*(qa) = 1 for all a, if gjra. 

Consider now if*(ga) for prime g, q\m. If k*(qa) = 0 for a = 1, 2, . . . , 
define -5(g) = °°, and if K*(qa) 9^ 0 for some positive a, define i?(g) to be 
the least such a. Obviously if B(q) = » for every g -f ra, the function if* has 
been completely determined. If there is a prime q such that i?(<z) < °° > put 
N = m, z = x + 1, x =3 / = i?(g) in (2). Dividing by (Kim))2, we get 

(3) if*(g*)if*(gB+1) = if*(gB)if*(g*), S s £(g). 

Since if*(gs) ^ 0, by definition of B, if*(gB+1) = if*(gB). Continuing by 
induction, we obtain 

K*(qB) = if*(gB+1) = if*(g*+2) = 
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Together with the previous results, this shows that 

!

1, for all b > 0 if q\m} 

0, if g ^ m a n d b < B(q), 
K*(qB(v), if g | m and 6 > 5(g) . 

Suppose n is any multiple of m. Then n can be written uniquely as 

n = ma I~I qb, a > 1, 
Q°\\n 
q\m 

and 

2C(») = KW&im*-1 I I 2&) = K^K*^-1) IT -K*(fi6) 

= X(m) I t **(<Z*). 

This completes the first part of the proof. 
It remains to show that every such function satisfies (1). Suppose a, b, c are 

any positive integers. If m fails to divide (a, 6, c), then at least one factor on 
each side of (1) vanishes. If (a, b, c) has an exact divisor qb, q\m, with 
0 < b < B(q), then again at least one factor on each side of (1) vanishes, so 
we may assume that K((a, b, c)) ^ 0. Then 

K((a,b))K((ab,c))= (K{m)f J l **(s*) Jl K*(qb) 
Q Ha,b) q\\(ab,c) 
q\m q\m 

= {K{m)f IT K*(qB^) U K*(qB(^) 
q\(a,b) q\(ab,c) 

= {K{m)f f i K*(qB(<,)) n -K*(2B(S)) 

= (^(^))2 n K*(q») n **(«*) 
<Z IKa .&c) ff IK&.c) 

The proof is complete. 

In the balance of this paper we consider only i^-products with associative 
kernels. 

3. Evidently K(l) ^ 0 is necessary and sufficient for the X-product 
operation to have the identity 

e (n) ( W D , if * = i 
^ n ) - \ o, i f » > i f 

and in particular if K(l) = 1, the identity is e(n). If K{1) ^ 0 and / is any 
arithmetic function, the inverse / - 1 (if is exists) is defined b y / X f~l = eK. 

THEOREM 2. If K(l) =^ o, the inverse f-1 exists if and only if f(l) ^ 0. 

Proof. If K{1) ?± 0 and f~l exists, then (/ X t1) (1) = e*(l), or 
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/ ( l ) / - 1 ^ ( 1 ) = 1/K(1), so / ( l ) * 0. Conversely, if K(l) * 0 a n d / ( l ) ^ 0, 
then the defining relation/ X f~l = £R can be used to construct / - 1 by induc­
t i o n : / - 1 ^ ) = 1//(1)(Z(1))2, and ilf-^n) has been constructed for i < n < c, 
then 

/_1(c + 1 } = f(i)K(i) a£+J{a)rl{b)K{{a'b))-
&<c+l 

COROLLARY (Inversion Formula). / / K(l) 9e 0, then M* = £ _ 1 exists, and 
for any functions f and g, f X E = g if and only if f = g X v*. 

THEOREM 3. The inverse of a multiplicative function is multiplicative if and 
only if K (n) is multiplicative. 

Proof. As noted earlier, K (1) = 1 is equivalent to K(n) being multiplicative. 
Thus, assume that K(l) = 1 and suppose that / is multiplicative. Then 
/ ( l ) = 1 and /-!(1) = 1//(1)(X(1))2 = 1. Suppose we have shown that 
f~-l(mn) = f~l{m)f~l(n) whenever (m, n) = 1 and 1 < mn < rs. If (r, 5) = 1, 
then 

e( r 5) = ]T f(ab)r\rs/ab)K((ab,rs/ab)), 
a \r 
b\s 

0 = { E / ( « ) f 1 W a ) X ( ( a , f / a ) ) } { £ f(b)r\s/b)K((b, s/b)) ' 

+ /(l)r1(r5)JRC(l) - {f(l)r\r)K(l)}{f(l)r\s)K(l)}, 

0 = e(r)e(s) + / "» (« ) - ^ ( r ) / " 1 ^ ) . 

Since rs > 1, at least one of e(r), e(s) is zero, and we have/_1(rs) = / _ 1 W/_1(^). 
Conversely, suppose the multiplicativity of / implies that of / _ 1 , so that 

/ ( I ) = / " 1 ( l ) = 1. Then (fXf-l)(D = eK(l), or f(l)f~^l)K(l) = 1/K(1), 
and K(l) = 1. 

THEOREM 4. The K-product of two multiplicative functions is multiplicative if 
and only if K(n) is multiplicative. 

Proof. The necessity is immediate if we consider the X-product at w = 1. 
To prove that the condition is sufficient, assume that K{1) = 1, / and g are 
multiplicative, and (m, n) = 1. Then 

( / X g ) W = Z f(ab)g(mn/ab)K((ab,mn/ab)) 
a \m 
6 I» 

= Z f(ab)g(mn/ab)K((a,m/a)(b,n/b)) 

= Z /(a)/(&k(m/a)g(n/&)Z((a,m/a))X((&,n/6)) 

E / ( a )g (m/a )K((a ,m/a ) )}{ £ f(b)g(n/b)K((b,n/b))\ 
a\m J ^ &'w J 

= (fXg)(m)-(fXg)(n). 
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We now confine our attention to operations with multiplicative kernels. 
Suppose I(n) is a multiplicative function which is never zero. Recall that 

DEFINITION. For positive integers m and n, 

. , v (I(m) ifm\n, 
A{n,m) = \ v i. i \ 

and 

B(n}m) = A{n,m) X / W . 

By applying the inversion formula on the latter definition, we have 

A(n,m) = £ B(n,a)K((a,b)). 
ab=m 

The function A(n,m) is multiplicative in m\ that is, if (r, s) = 1, then 
A (n, r)A (n, s) = A(n, rs). If r\n and s\n, this result follows by the multi-
plicativity of I(n), and if at least one of r, s does not divide n, then rs does not 
divide n, and both A(n, r)A(n} s) and A(n, rs) vanish. By Theorem 3, M* is 
multiplicative, and it follows by Theorem 4 that B (n, m) is multiplicative in m. 

Notice that 5 ( 1 , m) =J2 dlnA(l,d)fjL*(m/d)K((d,m/d)) = A(l,l)fjL*(m)K(l) 
= jLt*(m). 

4. In this section we develop some identities using the functions introduced 
above. For this purpose we require the following lemma. 

LEMMA. If K{m) = 0 (1) and fi* (m) = 0(1), then for fixed nB(n1m) = 0(1). 

Proof. Suppose \K(m)\ < Mx and |M*(*»)| < M2. Then 

\B(n,m)\ = | X) A(n,d)v*(m/d)K((d,m/d)) 

Y, I(d)tx*{m/d)K({d,m/d)) 
d\m 
d\n 

< M1M2M(n)r(n)i 

where M(n) = maxd |n | /(d)| is independent of m. 

DEFINITION. If K(n) = 0(1), i is a positive integer, and s is real (s > 1), then 

w = i n 

Remark. For any s > 1, f (i, s) = 0(1) uniformly in i if K(n) = 0(1). 

Let F(x, y) denote any function of two real variables. If n is a positive 
integer and x is real (x > n), then 
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A(n,t)F(p,n/t) (4) T,F(a,b)=Z 

= E ^77?—E B(n,d)K«d,t/d)) 
t<x -* VJ t\d 

= E B(n,d) £ ^ ( f a ^ W " / ^ ) . 

THEOREM 5.IfK(n) = 0(1), M*0) = 0(1), then 
OO 

«~s E Ha-W = E B(n,d)Ç(d,s)d-s, s > 1. 

Proof. In (4), take F(#, ;y) = /(x)^ s , 5 > 1. Then 

(5) E ^»&* = " s E S(w, d) E ^ ( (c , d))(cd)~\ x>n. 
ab=n dKx cKx/d 

But the inner sum on the right is equal to 

j : K«c,d))(cdy°= "£ K((c,d))(cd)-S- £ K((c,d))(cd)-S 

c<x/d c=l c=[x/d] + l 

= Ud, s)d~s + 0 ( J " <T'y"'̂ ) 

= f (d, s)rf-s + oaAfx8-1). 
Substituting this into (5), we obtain: 

« ~ S E I(fl)&5= E B(n,d){t(d,s)d- + (Kl/dx-1)} 
ab=n d^x 

= E B(n, d)t(d, s)d~s + Odlogx)/^-1), 
dKx 

by the lemma. Now let x —» °° and the proof is complete. 

Among the special cases of Theorem 5 is the following well-known result 
(4, p. 184). 

COROLLARY (Ramanujan). If s > 1, then 

oo 

n1-V,_i(») = f (s) E cd(n)d~% 
d=i 

where Ç(s) is the Riemann zeta function and cd(n) is Ramanujan''s trigonometric 
sum. 

Proof. Take K = E and I(n) = n. Then the i£-product is the ordinary 
convolution and /x* is the Môbius function, so the boundedness hypotheses 
are satisfied. Moreover, f (n, s) is the Riemann zeta function when K = E. 
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Finally, by (3, p. 237) 

B(n,d) = X) A(n,a)n(d/a) = X) a>n(d/a) = cd(n). 
a\d a\d 

a \n 

Since B(l,m) = n*(m), taking n = 1 in the above theorem, we obtain: 

COROLLARY. If K{n) = 0(1) and M * W = 0(1), JÂew 

00 

i = £ /i*(d)r(d f5)d-, 5 > i . 

THEOREM 6. If K(n) = 0(1), M * M = 0(1), ^ > 1, awrf ^ is prime, then 

oo 

2 : I(a)a-sK((a, p)) = £ B(n,d)âTsK{{d,p))!;{dp, s). 
ab=n d=l 

Proof. In (4), take F(x, y) = I(x)x~~sK((x, p)). Then 

£ /(flOa-XCCc/O) = Z B(n,d) £ X((c ,d) )£( («* .£) ) («0~ ' . 
a&=w d<z c*Cx/d 

But i£((c, d))K((cd, p)) = K((c, dp))K((d, p)) by (1). After this substitution 
the arguments are similar to those in the proof of Theorem 5. 

An interesting special case arises if K(p) = 0. Then, since K(l) = 1, the 
right side is the series J^B(n, d)Ç(dp, s)d~s, summed over d, (d, p) = 1. And 
if I = E, the left side is n~s X) ds, summed over d\n and (d, p) = 1. 

I am very grateful to my teacher and friend, Professor M. V. Subbarao, of 
the University of Alberta, for his guidance. 
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