AN ACTION OF THE SYMPLECTIC MODULAR GROUP

LOUIS SOLOMON*

To the memory of TADASI NAKAYAMA

1. Let V be a free Z-module of rank 2n. Let $G = \operatorname{Sp}(2n, \mathbb{Z})$ be the symplectic modular group and let \emptyset be the non-singular alternating bilinear form on V left invariant by G. Let $p \in \mathbb{Z}$ be a prime and let X be the set of all endomorphisms ξ of V such that

$\varPhi(\xi x, \xi y) = \oint \varPhi(x, y)$

for all $x, y \in V$. In the theory of transformation of theta functions [3] one encounters the natural action of G on X by left multiplication. The number of G orbits is known to be finite and the point of this note is a proof of the following

THEOREM. The number of orbits of X under G is $\prod_{i=1}^{n} (1 + p^{i})$

The case n = 2 is due to Hermite [2] and the case n = 3 to Weber [4] who compute explicit sets of representatives for the orbits in these cases. The idea in the present argument is to reduce the problem to a question about the finite symplectic group $\operatorname{Sp}(2n, \mathbf{F}_p)$. In the new situation Witt's theorem is available for counting purposes. The number $\prod_{i=1}^{n} (1+p^i)$ is the number of maximal totally isotropic subspaces of a 2n dimensional symplectic space over \mathbf{F}_p .

2. Let V be a free Z-module of rank 2n. Let $\emptyset: V \times V \to Z$ be a nonsingular alternating bilinear form on V. We assume that V has a basis v_1 , ..., v_{2n} such that the matrix of $\emptyset(v_i, v_j)$ is

$$J = \begin{pmatrix} 0 & I \\ -I & 0 \end{pmatrix}$$

where I is the identity matrix of degree n. We call v_1, \ldots, v_{2n} a symplectic basis for V. The symplectic modular group Sp(2n, Z) consists of all automor-

Received March 22, 1965.

 $[\]ast$ This work was supported in part by the National Science Foundation under grant GP 1452.

LOUIS SOLOMON

phisms τ of V such that $\vartheta(\tau x, \tau y) = \vartheta(x, y)$ for all $x, y \in V$. We let $\mathbf{F} = \mathbf{Z}/p\mathbf{Z}$ denote the field of p elements and set E = V/pV. We view E as vector space over \mathbf{F} . The form ϑ defines, by reduction mod p, a non-singular alternating bilinear form $\Psi: E \times E \to \mathbf{F}$. Similarly, an endomorphism of Hom_Z(V, V) defines an endomorphism of Hom_F(E, E). In this way we get a homomorphism of $\mathbf{Sp}(2n, \mathbf{Z})$ into the group $\mathbf{Sp}(2n, \mathbf{F})$ of all non-singular \mathbf{F} -linear transformations of E which preserve the form Ψ . A transvection

$$\tau: v \to v + a \Phi(v, w) w \quad w \in V, a \in \mathbb{Z}$$

of $\operatorname{Sp}(2n, \mathbb{Z})$ maps into a transvection of $\operatorname{Sp}(2n, \mathbb{F})$. Since every transvection in $\operatorname{Sp}(2n, \mathbb{F})$ may be obtained in this way by reduction mod p, and since the transvections generate $\operatorname{Sp}(2n, \mathbb{F})$ we see that the map $\operatorname{Sp}(2n, \mathbb{Z}) \to \operatorname{Sp}(2n, \mathbb{F})$ is an epimorphism. We use $x \to x^*$ as a notation for each of the reductions

$$\mathbf{Z} \rightarrow \mathbf{F}, \quad V \rightarrow E, \quad \mathbf{Sp}(2 n, \mathbf{Z}) \rightarrow \mathbf{Sp}(2 n, \mathbf{F})$$

modulo p. We use those facts about symplectic spaces over a field which center around Witt's theorem. These facts are proved in [1].

LEMMA 1. Let e_1, \ldots, e_{2n} be a symplectic basis for E. Then there exists a symplectic basis w_1, \ldots, w_{2n} for V such that $w_i^* = e_i$.

Proof. Let v_1, \ldots, v_{2n} be a symplectic basis for V. Then v_1^*, \ldots, v_{2n}^* is a symplectic basis for E. Define an F-linear transformation β of E by $\beta v_i^* = e_i$. Then $\beta \in \operatorname{Sp}(2n, \mathbf{F})$ and, since $\operatorname{Sp}(2n, \mathbf{Z})$ maps onto $\operatorname{Sp}(2n, \mathbf{F})$ we may choose $\alpha \in \operatorname{Sp}(2n, \mathbf{Z})$ with $\alpha^* = \beta$. Set $w_i = \alpha v_i$. Then w_1, \ldots, w_{2n} is a symplectic basis for V and $w_1^* = \alpha^* v_1^* = e_i$.

LEMMA 2. Let $\xi \in X$. Then $Ker \xi^*$ and $Im \xi^*$ are maximal totally isotropic subspaces of E.

Proof. If $a, b \in \text{Ker } \xi^*$ choose $x, y \in V$ with $x^* = a, y^* = b$. Then $\xi x, \xi y \in pV$ so $\xi x = px', \xi y = py'$ for some $x', y' \in V$. Then

$$p \Phi(x, y) = \Phi(\xi x, \xi y) = p^2 \Phi(x', y') \in p^2 \mathbb{Z}$$

so $\mathscr{O}(x, y) \in p\mathbb{Z}$ and $\mathscr{V}(a, b) = 0$. Thus Ker ξ^* is totally isotropic. Similarly, if $a, b \in \operatorname{Im} \xi^*$ write $a = \xi^* x^*$, $b = \xi^* y^*$ for some $x, y \in V$ and then

$$\Psi(a,b) = \Phi(\xi x, \xi y)^* = p^* \Phi(x, y)^* = 0$$

so that Im ξ^* is totally isotropic. We must prove that dim Ker $\xi^* = n = \dim \operatorname{Im} \xi^*$.

Let T be the matrix for ξ in the symplectic basis v_1, \ldots, v_{2n} . Since $\vartheta(\xi x, \xi y) = p \vartheta(x, y)$ we have $TJT^t = pJ$ where T^t denotes the transpose of T. Thus $(\det T)^2 = p^{2n}$ so $|\det \xi| = p^n$. Imbed V in the vector space $V \otimes \mathbf{Q}$ over the rational field \mathbf{Q} . Then ϑ extends to a form, denoted again ϑ , on $V \otimes \mathbf{Q}$ and ξ defines a linear transformation, denoted again ξ , of $V \otimes \mathbf{Q}$. Then $\vartheta(\xi x, \xi y) = p \vartheta(x, y)$ for all $x, y \in V \otimes \mathbf{Q}$. Since det $\xi \neq 0$, ξ is invertible, and for any $x, v \in V$ we have

$$\boldsymbol{\varPhi}(\boldsymbol{\xi}^{-1}\boldsymbol{p}\boldsymbol{x},\,\boldsymbol{v}) = \boldsymbol{\varPhi}(\boldsymbol{\xi}^{-1}\boldsymbol{p}\boldsymbol{x},\,\boldsymbol{\xi}^{-1}\boldsymbol{\xi}\boldsymbol{v}) = \boldsymbol{p}^{-1}\boldsymbol{\varPhi}(\boldsymbol{p}\boldsymbol{x},\,\boldsymbol{\xi}\boldsymbol{v}) = \boldsymbol{\varPhi}(\boldsymbol{x},\,\boldsymbol{\xi}\boldsymbol{v}) \in \mathbf{Z}$$

Now letting v range over a symplectic basis for V we see that $\xi^{-1}px \in V$. Thus $\xi^{-1}pV \subseteq V$, so $pV \subseteq \xi V$. Let $d_1, \ldots, d_{2n} \in \mathbb{Z}$ be the elementary divisors of ξ viewed as endomorphism of V, where we choose the d_i non-negative and such that d_{i+1} divides d_i . Choose \mathbb{Z} -bases x_1, \ldots, x_{2n} and y_1, \ldots, y_{2n} for Vso that $\xi x_i = d_i y_i$. Since $pV \subseteq \xi V$ we must have $py_i \in \mathbb{Z} d_i y_i$ so each d_i divides p. But $d_1, \ldots, d_{2n} = |\det \xi| = p^n$ so we have $d_1 = \cdots = d_n = p$ and $d_{n+1} = \cdots$ $\cdots = d_{2n} = 1$. Thus the elementary divisors of ξ^* are $d_1^* = \cdots = d_n^* = 0$ and $d_{n+1}^* = \cdots = d_{2n}^* = 1$. Thus ξ^* has rank n and hence dim Ker $\xi^* = n = \dim \operatorname{Im} \xi^*$. This proves the lemma.

LEMMA 3. Suppose $\xi, \eta \in X$. If $Ker \xi^* = Ker \eta^*$ then ξ and η are in the same orbit under G.

Proof. Lemma 2 tells us that $D = \operatorname{Ker} \xi^*$ is a maximal totally isotropic subspace of E. The theorem on Witt decomposition of symplectic spaces over a field asserts the existence of a maximal totally isotropic subspace D' of Esuch that E = D + D', direct sum. Furthermore there exist bases e_1, \ldots, e_n for D and e_{n+1}, \ldots, e_{2n} for D' such that e_1, \ldots, e_{2n} is a symplectic basis for E. Lemma 1 shows the existence of a symplectic basis w_1, \ldots, w_{2n} for V such that $w_i^* = e_i$. Define $\theta \in X$ by

$$\theta w_i = p w_i \quad i = 1, \ldots, n$$

 $\theta w_i = w_i \quad i = n+1, \ldots, 2 n$

Then Ker $\theta^* = D$. Since Im $\xi^* = \xi^* D'$ and Im $\theta^* = \theta^* D'$ we see from Lemma 2 that $\xi^* D'$ and $\theta^* D'$ are totally isotropic subspaces of E of the same dimension

67

LOUIS SOLOMON

n. Define a non singular F-linear transformation $\beta: \xi^*D' \to \theta^*D'$ by $\beta\xi^*e_i = \theta^*e_i$ for $i = n + 1, \ldots, 2n$. Since ξ^*D' and θ^*D' are totally isotropic, β is an isometry, and, by Witts theorem, may be extended to an element, denoted again β , of $\operatorname{Sp}(2n, \operatorname{F})$. Since both ξ^* and θ^* annihilate D we have $\beta\xi^*e_i = \theta^*e_i$ for all $i = 1, \ldots, 2n$ so $\beta\xi^* = \theta^*$. Choose $\alpha \in \operatorname{Sp}(2n, \mathbb{Z})$ with $\alpha^* = \beta$. Then $(\alpha\xi)^*$ $= \alpha^*\xi^* = \theta^*$. In particular $\alpha\xi w_i \in pV$ for $i = 1, \ldots, n$. Define $\sigma \in \operatorname{Hom}_{\mathbb{Z}}(V, V)$ by

$$\sigma w_i = \frac{1}{p} \alpha \xi w_i \qquad i = 1, \ldots, n$$

$$\sigma w_i = \alpha \xi w_i \qquad i = n + 1, \ldots, 2$$

n

Then $\alpha \xi = \sigma \theta$ so

$$\mathcal{D}(\sigma\theta x, \sigma\theta y) = \mathcal{D}(\alpha \xi x, \alpha \xi y) = \mathcal{D}\mathcal{D}(x, y) = \mathcal{D}(\theta x, \theta y)$$

for all $x, y \in V$. Since θV has finite index in V the bilinearity of θ implies $\theta(\sigma x, \sigma y) = \theta(x, y)$ for all $x, y \in V$. Now, as in the proof of Lemma 1, we conclude det $\sigma = 1$ so that $\sigma \in G$. Thus we have shown the existence of $\alpha, \sigma \in G$ with $\alpha \xi = \sigma \theta$. Similarly there exist $\beta, \tau \in G$ with $\beta \eta = \tau \theta$. Then $\eta = \beta^{-1} \tau \sigma^{-1} \alpha \xi$ so that ξ, η lie in the same orbit under G.

PROPOSITION. The map $\xi \to Ker \xi^*$ induces a one to one correspondence between orbits of X under G and maximal totally isotropic subspaces of E.

Proof. If $\xi, \eta \in X$ lie in the same orbit, say $\xi = \tau \eta$ with $\tau \in \mathbf{Sp}(2n, \mathbf{Z})$. Then $\xi^* = \tau^* \eta^*$. Since $\tau^* \in \mathbf{Sp}(2n, \mathbf{F})$ is non-singular we have Ker $\xi^* = \text{Ker } \eta^*$. Thus $\xi \to \text{Ker } \xi^*$ induces a map of orbits into the set of maximal totally isotropic subspaces of *E*. By Lemma 3 the map is one to one. To see that every maximal totally isotropic subspace *D* occurs as a kernel of some ξ^* , construct a Witt decomposition E = D + D' as in the proof of Lemma 3, and note that the element $\theta \in X$ satisfies $\text{Ker } \theta^* = D$. This completes the proof.

3. We have thus reduced the problem to computing the number t of maximal totally isotropic subspaces of a 2n dimensional symplectic space over **F**. The finite group Sp(2n, F) acts as a permutation group on the set of maximal totally isotropic subspaces of E. By Witt's theorem this permutation group is transitive, hence

$$t = |G : H|$$

where *H* is the group of all $\gamma \in \mathbf{Sp}(2n, \mathbf{F})$ which leave globally invariant a given maximal totally isotropic subspace *D*. The restriction map $\gamma \to \gamma | D$ defines a homomorphism of *H* into the full linear group $\mathbf{GL}(D) = \mathbf{GL}(n, \mathbf{F})$. By Witt's theorem this is an epimorphism. The kernel *K* consists of those elements of $\mathbf{Sp}(2n, \mathbf{F})$ which fix *D*. It is known, and it is easy to compute directly, that *K* is isomorphic to the additive group of $n \times n$ symmetric matrices over **F** so that *K* has order $|K| = p^{n(n+1)/2}$. Thus

$$t = |\mathbf{Sp}(2n, \mathbf{F})| |\mathbf{GL}(n, \mathbf{F})|^{-1} p^{-n(n+1)/2}$$

If we insert the known formulas

$$|\mathbf{Sp}(2\,n,\,\mathbf{F})| = p^{n^2} \prod_{i=1}^n (p^{2i} - 1)$$
$$|\mathbf{GL}(n,\,\mathbf{F})| = p^{n(n-1)/2} \prod_{i=1}^n (p^i - 1)$$

we find

$$t = \prod_{i=1}^{n} (1 + p^i)$$

This proves the theorem.

References

- [1] E. Artin, Geometric Algebra, Interscience, New York (1957).
- [2] C. Hermite, Sur la théorie de la transformation des fonctions abéliennes, Comptes Rendus 40 (1855), 249-254.
- [3] A. Krazer, Lehrbuch der Thetafunktionen, Teubner, Leipzig (1903).
- [4] H. Weber, Über die Transformationstheorie der Thetafunktionen, insbesondere derer von drei Veränderlichen, Annali di mat., Ser. 2, 9 (1879), 126-166.

The Rockefeller Institute,

New York 21, N.Y.