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The Fefferman–Stein Type Inequalities for
Strong and Directional Maximal Operators
in the Plane

Hiroki Saito andHitoshi Tanaka

Abstract. _e Feòerman–Stein type inequalities for strongmaximal operators and directional max-
imal operators are veriûed with an additional composition of theHardy–Littlewoodmaximal oper-
ator in the plane.

1 Introduction

_e purpose of this paper is to develop a theory of weights for strong maximal op-
erators and directional maximal operators in the plane. We ûrst ûx some notation.
By weights we will always mean non-negative and locally integrable functions on
Rn . Given a measurable set E and a weight w, w(E) = ∫E w(x) dx, ∣E∣ denotes the
Lebesguemeasure of E and 1E denotes the characteristic function of E. Let 0 < p ≤∞
andw be a weight. We deûne the weighted Lebesgue space Lp(Rn ,w) to be a Banach
space equipped with the norm (or quasi norm)

∥ f ∥Lp(Rn ,w) = (∫
Rn

∣ f (x)∣pw(x) dx)
1/p

.

For a locally integrable function f on Rn , we deûne the Hardy–Littlewood maximal
operator MQ by

MQ f (x) = sup
Q∈Q

1Q(x)−∫
Q
∣ f (y)∣ dy,

where Q is the set of all cubes in Rn (with sides not necessarily parallel to the axes)
and the barred integral −∫Q f (y) dy stands for the usual integral average of f over Q.
For a locally integrable function f onRn ,we deûne the strongmaximal operatorMR

by

MR f (x) = sup
R∈R

1R(x)−∫
R
∣ f (y)∣ dy,

where R is the set of all rectangles in Rn with sides parallel to the coordinate axes.
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Let T∶ Lp(Rn) → Lp(Rn), p > 1, be a sublinear operator. It is a fundamental
problem inweight theory to determine somemaximal operatorMT capturing certain
geometric characteristics of T, such that

(1.1) ∫
Rn

∣T f (x)∣pw(x) dx ≤ C ∫
Rn

∣ f (x)∣pMTw(x) dx

holds for an arbitrary weight w. It is well known that

∫
Rn

MQ f (x)pw(x) dx ≤ C ∫
Rn

∣ f (x)∣pMQw(x) dx

holds for an arbitrary weight w and p > 1, and further that

(1.2) sup
t>0

tw({x ∈ Rn
∶MQ f (x) > t}) ≤ C ∫

Rn
∣ f (x)∣MQw(x) dx .

_ese are called the Feòerman–Stein inequalities and are toymodels of (1.1) (see [3]).

Problem 1.1 ([4, p. 472]) Does the analogue of the Feòerman–Stein inequality hold
for the strong maximal operator, i.e.,

(1.3) ∫
Rn

MR f (x)pw(x) dx ≤ C ∫
Rn

∣ f (x)∣pMRw(x) dx , p > 1,

for arbitrary w(x) ≥ 0?

Concerning Problem 1.1, it is known that (1.3) holds for all p > 1 if w ∈ A∗∞; see [8]
(also [11, 12]).

We say that w belongs to the class A∗p whenever

[w]A∗p = sup
R∈R

−∫
R
w(x) dx(−∫

R
w(x)−1/(p−1) dx)

p−1
<∞, 1 < p <∞,

[w]A∗1 = sup
R∈R

−∫R w(x) dx
ess inf x∈R w(x)

<∞.

It follows by Hölder’s inequality that the A∗p classes are increasing; that is, for 1 ≤ p ≤
q <∞, we have A∗p ⊂ A∗q . _us, one deûnes A∗∞ = ⋃p>1 A∗p .

_e endpoint behavior of MR close to L1 is given by Mitsis [10] (for n = 2) and
Luque and Parissis [9] (for n > 2); that is,

w({x ∈ Rn
∶MR f (x) > t}) ≤

C ∫
Rn

∣ f (x)∣
t

( 1 + ( log+
∣ f (x)∣

t
)

n−1
)MRw(x) dx , t > 0,

holds for any w ∈ A∗∞, where log+ t = max(0, log t).
In this paper we will establish the following concerning Problem 1.1.

_eorem 1.2 Let w be any weight on R2 and set W =MRMQw. _en

w({x ∈ R2
∶MR f (x) > t}) ≤

C ∫
R2

∣ f (x)∣
t

( 1 + log+
∣ f (x)∣

t
)W(x) dx , t > 0,
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_e Feòerman–Stein Type Inequalities 193

holds, where the constant C > 0 does not depend on w and f .

By interpolation, we have the following corollary.

Corollary 1.3 Let w be any weight on R2 and set W = MRMQw. _en, for p > 1,
there exists a constant Cp > 0 such that

∥MR f ∥Lp(R2 ,w) ≤ Cp∥ f ∥Lp(R2 ,W)

holds for all f ∈ Lp(R2 ,W).

Let Σ be a set of unit vectors in R2, i.e., a subset of the unit circle S1. Associated
with Σ, we deûneBΣ to be the set of all rectangles inR2 whose longest side is parallel
to some vector in Σ. For a locally integrable function f on R2, we also deûne the
directional maximal operator MΣ associated with Σ as

MΣ f (x) = sup
R∈BΣ

1R(x)−∫
R
∣ f (y)∣ dy.

Many authors have studied this operator, (see [1,2,6,7, 13, 14]), and Katz showed that
MΣ is bounded on L2(R2) with the operator norm O(logN) for any set Σ with car-
dinality N .
For ûxed suõciently large integer N , let

ΣN = {(cos
2π j
N
, sin

2π j
N

) ∶ j = 0, 1, . . . ,N − 1}

be the set of N uniformly spread directions on the circle S1. In this paper we shall
prove the following, which is a weighted version of the classical result due to Ström-
berg [14].

_eorem 1.4 Let N > 10 and w be any weight on R2. Set W =MΣNMQw. _en

(1.4) sup
t>0

tw({x ∈ R2
∶MΣN f (x) > t}) 1/2

≤ C(logN)
1/2

∥ f ∥L2(R2 ,W)

holds for all f ∈ L2(R2 ,W), where the constant C > 0 does not depend on w and f .

By interpolation, we have the following corollary.

Corollary 1.5 Let N > 10 and w be any weight on R2. Set W = MΣNMQw. _en,
for 2 < p <∞, there exists a constant Cp > 0 such that

∥MΣN f ∥Lp(R2 ,w) ≤ Cp(logN)
1/p

∥ f ∥Lp(R2 ,W)

holds for all f ∈ Lp(R2 ,W).

_e letter C will be used for the positive ûnite constants that may change from one
occurrence to another. Constants with subscripts, such as C1, C2, do not change in
diòerent occurrences.
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2 Proof of Theorem 1.2

Our proof relies upon the reûnement of the arguments in [10]. With a standard argu-
ment, we can assume that the basis R is the set of all dyadic rectangles R (cartesian
products of dyadic intervals) having long side pointing in the x1-direction. We de-
note by Pi , i = 1, 2, the projection on the x i-axis. Fix t > 0 and assume given the ûnite
collection of dyadic rectangles {R i}

M
i=1 ⊂ R such that

(2.1) −∫
R i

∣ f (y)∣ dy > t, i = 1, 2, . . . ,M .

It suõces to estimate w(⋃
M
i=1 R i) (see the next section for details).

First, relabeling if necessary, we can assume that the R i are ordered so that their
long sidelengths ∣P1(R i)∣ decrease. We now give a selection procedure to ûnd a sub-
collection {R̃ i}

N
i=1 ⊂ {R i}

M
i=1.

Take R̃1 = R1 and let R̃2 be the ûrst rectangle R j such that ∣R j∩ R̃1∣ <
1
3 ∣R j ∣. Suppose

that we have now chosen the rectangles R̃1 , R̃2 , . . . , R̃ i−1. We select R̃ i to be the ûrst
rectangle R j occurring a�er R̃ i−1 so that ∣⋃i−1

k=1 R j ∩ R̃k ∣ <
1
3 ∣R j ∣. _us, we see that

(2.2) ∣
i−1
⋃
j=1

R̃ i ∩ R̃ j ∣ <
1
3
∣R̃ i ∣, i = 2, 3, . . . ,N .

We claim that

(2.3)
M
⋃
i=1

R i ⊂ {x ∈ R2
∶MQ[1⋃N

i=1 R̃ i
](x) ≥ 1

3
} .

Indeed, choose any point x inside a rectangle R j that is not one of the selected rect-
angles R̃ i . _en there exists a unique K ≤ N such that

∣
K
⋃
i=1

R j ∩ R̃ i ∣ ≥
1
3
∣R j ∣.

Since, ∣P1(R j)∣ ≤ ∣P1(R̃ i)∣ for i = 1, 2, . . . ,K, we have

P1(R j) ∩ P1(R̃ i) = P1(R j) when R j ∩ R̃ i /= ∅,

where we have used the dyadic structure;

(2.4) If both I and J are the dyadic interval, then I ∩ J ∈ {I, J ,∅}.

_us,
K
⋃
i=1

R j ∩ R̃ i =
K
⋃
i=1

P1(R j) × (P2(R j) ∩ P2(R̃ i)) = P1(R j) ×
K
⋃
i=1

P2(R j) ∩ P2(R̃ i).

Hence,

∣
K
⋃
i=1

P2(R j) ∩ P2(R̃ i)∣ ≥
1
3
∣P2(R j)∣.

_anks to the fact that ∣P2(R j)∣ ≤ ∣P1(R j)∣ ≤ ∣P1(R̃ i)∣, this implies that

∣
K
⋃
i=1

Q ∩ R̃ i ∣ ≥
1
3
∣Q∣,

where Q is a unique dyadic cube containing x and having the side length ∣P2(R j)∣.
_is proves (2.3).
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It follows from (2.3) and (1.2) that

w(
M
⋃
i=1

R i) ≤ w({x ∈ R2
∶MQ[1⋃N

i=1 R̃ i
](x) ≥ 1

3
})

≤ CU(
N
⋃
i=1

R̃ i) ≤ C
N
∑
i=1

U(R̃ i),

where U =MQw. We shall evaluate the quantity

(i) =
N

∑
i=1

U(R̃ i).

Let µU(x) be the weighted multiplicity function associated with the family {R̃ i};
that is,

µU(x) =
N
∑
i=1

U(R̃ i)

∣R̃ i ∣
1R̃ i

(x).

By (2.1), choosing δ0 small enough determined later,

(i) ≤
N

∑
i=1

U(R̃ i)

∣R̃ i ∣
∫

R̃ i

∣ f (y)∣
t

dy

= δ0 ∫
R2

µU(x)W(x)−1
⋅
∣ f (x)∣
δ0 t

⋅W(x) dx .

Using the elementary inequality

ab ≤ (ea − 1) + b(1 + log+ b), a, b ≥ 0,

we get

(i) ≤ δ0 ∫
R2

(exp(µU(x)W(x)−1
) − 1)W(x) dx

+ δ0 ∫
R2

∣ f (x)∣
δ0 t

( 1 + log+
∣ f (x)∣
δ0 t

)W(x) dx

≤ δ0 ∫
R2

(exp(µU(x)W(x)−1
) − 1)W(x) dx

+ (1 − log δ0)∫
R2

∣ f (x)∣
t

( 1 + log+
∣ f (x)∣

t
)W(x) dx .

We have to evaluate the quantity

(ii) = ∫
R2

(exp(µU(x)W(x)−1
) − 1)W(x) dx .

We expand the exponential in a Taylor series. _en

(ii) =
∞
∑
k=1

1
k! ∫R2

(µU(x)W(x)−1
)
kW(x) dx

=
∞
∑
k=1

1
k! ∫R2

µU(x)kW(x)1−k dx .

Fix k ≥ 2. We use an elementary inequality

(
∞
∑
i=1
a i)

k
≤ k

∞
∑
i=1
a i(

i
∑
j=1
a j)

k−1
,
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where {a i}
∞
i=1 is a sequence of summable nonnegative reals. _en

∫
R2

µU(x)kW(x)1−k dx

≤ k
N
∑
i=1

U(R̃ i)

∣R̃ i ∣
∫

R̃ i
(

i
∑
j=1

U(R̃ j)

∣R̃ j ∣
1R̃ j

(x))
k−1

W(x)1−k dx

≤ k
N
∑
i=1

U(R̃ i)

∣R̃ i ∣
∫

R̃ i
(

i
∑
j=1

1R̃ j
(x))

k−1
dx ,

where we have used

i
∑
j=1

U(R̃ j)

∣R̃ j ∣
1R̃ j

(x) ≤ (
i
∑
j=1

1R̃ j
(x))W(x).

We claim that, for n = 1, 2, . . . ,N ,

(2.5) ∣X i ,n ∣ ≤ 31−n
∣R̃ i ∣,

where

X i ,n = {x ∈ R̃ i ∶
i
∑
j=1

1R̃ j
(x) ≥ n} .

Indeed, ûrst we notice that, for any k and j with N ≥ k > j ≥ 1, if R̃k ∩ R̃ j /= ∅, then

R̃k ∩ R̃ j = P1(R̃k) × P2(R̃ j),

because we have P1(R̃k) ⊂ P1(R̃ j) and, by (2.2), ∣P2(R̃k)∩ P2(R̃ j)∣ <
1
3 ∣P2(R̃k)∣. With

this in mind, we can observe the following.
_ere exists a set of dyadic intervals {I j k} with j = 1, 2, . . . , n and k = 1, 2, . . . ,K j

that satisûes the following:
● the dyadic intervals I j k are pairwise disjoint for varying k;
● for each I j k , j > 1, there exists a unique I( j−1) l ⊋ I j k ;
● for each I j k there exists a unique number i j k ≤ i such that I j k = P2(R̃ i j k);
● P2(X i ,1) = I1 1, P2(X i ,2) = ⋃

K2
k=1 I2 k , . . . , P2(X i , j) = ⋃

K j
k=1 I j k , . . . , P2(X i ,n) =

⋃
Kn
k=1 In k ;

● if I j k ⊂ I( j−1) l , then i j k < i( j−1) l and R̃ i( j−1) l ∩ R̃ i j k /= ∅.

It follows from the last relation and (2.2) that

3
K j

∑
k=1

∣I j k ∣ <
K j−1

∑
k=1

∣I( j−1) k ∣, j = 2, 3, . . . , n.

_is gives us that

3n−1
Kn

∑
k=1

∣In k ∣ < ∣I1 1∣,

which yields (2.5).
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It follows from (2.5) that

U(R̃ i)

∣R̃ i ∣
∫

R̃ i
(

i
∑
j=1

1R̃ j
(x))

k−1
dx ≤ U(R̃ i)

∣R̃ i ∣

N
∑
n=1

nk−1
∣X i ,n−1∣

≤ U(R̃ i)
N
∑
n=1

nk−132−n .

Altogether, the quantity (ii) can bemajorized by

(i) × [ 1 +
∞
∑
k=2

1
(k − 1)!

N
∑
n=1

nk−132−n
] .

_ere holds
∞
∑
k=2

1
(k − 1)!

N
∑
n=1

nk−132−n
≤ 9

∞
∑
n=1

(
e
3
)

n
=∶ C0 .

If we choose δ0 so that δ0(1 + C0) =
1
2 , we obtain

(i) ≤ C ∫
R2

∣ f (x)∣
t

( 1 + log+
∣ f (x)∣

t
)W(x) dx .

_is completes the proof.

Remark Since our proof relies only upon the dyadic structure (2.4), it can be ap-
plied the basis R of the form the set of all rectangles in Rn whose sides are parallel
to the coordinate axes and that are congruent to the rectangle (0, a)n−1 × (0, b) with
varying a, b > 0.

3 Proof of Theorem 1.4

We follow the argument in [5, Chapter 10, _eorem 10.3.5]. To avoid problems with
antipodal points, it is convenient to split ΣN as the union of eight sets, in each ofwhich
the angle between any two vectors does not exceed π/4. It suõces therefore to obtain
(1.4) for each such subset of ΣN . Let us ûx one such subset of ΣN , which we call Σ1

N .
To prove (1.4), we ûx t > 0 and start with a compact subset K of the set

{x ∈ R2 ∶MΣ1
N
f (x) > t}. _en for every x ∈ K, there exists an open rectangle Rx

that contains x and whose longest side is parallel to a vector in Σ1
N . By compactness

of K, there exists a ûnite subfamily {Rα}α∈A of the family {Rx}x∈K such that

(3.1) −∫
Rα

∣ f (y)∣ dy > t

for all α ∈ A and such that the union of the Rα ’s covers K.
In the sequelwe denote by θα the angle between the x1-axis and the vector pointing

in the longer direction of Rα for any α ∈ A. We also denote by lα the shorter side of
Rα and by Lα the longer side of Rα for any α ∈ A.

We shall select the subfamily {Rβ}β∈B as follows. Without loss of generality, we
can assume that A = {1, 2, . . . , ℓ} with L j ≥ L j+1 for all j = 1, 2, . . . , ℓ − 1. Let β1 = 1
and choose β2 to be the ûrst number in {β1 + 1, β1 + 2, . . . , ℓ} such that

∣Rβ1 ∩ Rβ2 ∣ ≤
1
2
∣Rβ2 ∣.
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We next choose β3 to be the ûrst number in {β2 + 1, β2 + 2, . . . , ℓ} such that

∣Rβ1 ∩ Rβ3 ∣ + ∣Rβ2 ∩ Rβ3 ∣ ≤
1
2
∣Rβ3 ∣.

Suppose we have chosen the numbers β1 , β2 , . . . , β j−1. _en we choose β j to be the
ûrst number in {β j−1 + 1, β j−1 + 2, . . . , ℓ} such that

(3.2)
j−1

∑
k=1

∣Rβk ∩ Rβ j ∣ ≤
1
2
∣Rβ j ∣.

Since the set A is ûnite, this selection stops a�er m steps.
DeûneB = {β1 , β2 , . . . , βm} and let

Y(x) = ∑
β∈B

1(Rβ)∗(x),

where (Rβ)∗ is the rectangle Rβ expanded 5 times in both directions.
We claim that

(3.3) w(K) ≤ w( ⋃
α∈A

Rα) ≤ C(logN)∫
R2

Y(x)U(x) dx ,

where U(x) =MQw(x). To verify this claim, we need the following lemma.
We set ωk =

2π2k
N for k ∈ Z+ and ω0 = 0. We let M = [

log(N/8)
log 2 ].

Lemma 3.1 ([5, Lemma 10.3.6]) Let Rα be a rectangle in the family {Rα}α∈A and
let 0 ≤ k < M. Suppose that β ∈ B is such that ωk ≤ ∣θα − θβ ∣ < ωk+1 and such that
Lβ ≥ Lα . Let sα = 8max(lα ,ωkLα). For an arbitrary x ∈ Rα , let Q be a square centered
at x with sides of length sα parallel to the sides of Rα . _en we have

∣Rβ ∩ Rα ∣
∣Rα ∣

≤ 32
∣(Rβ)∗ ∩ Q∣

∣Q∣
.

We shall prove (3.3). By (1.2) it suõces to show that

(3.4) ⋃
α∈A

Rα ⊂ {x ∈ R2
∶MQY(x) > C

logN
} .

Since we may assume that C/(logN) < 1, the set ⋃β∈B Rβ is contained in the set of
the right hand side of (3.4). So, we ûx α ∈ A ∖ B. _en the rectangle Rα was not
selected in the selection procedure.
By the construction and (3.2), we see that there exists j such that

j
∑
k=1

∣Rβk ∩ Rα ∣ >
1
2
∣Rα ∣

and such that Lβk ≥ Lα for all k = 1, 2, . . . , j.
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Let B j = {β1 , β2 , . . . , β j}. It follows from Lemma 3.1 that

1
2
< ∑
β∈B j

∣Rβ ∩ Rα ∣
∣Rα ∣

=
M

∑
k=0

∑
β∈B j ∶

ωk≤∣θα−θβ ∣<ωk+1

∣Rβ ∩ Rα ∣
∣Rα ∣

≤ 32
M

∑
k=0

∑
β∈B j ∶

ωk≤∣θα−θβ ∣<ωk+1

∣(Rβ)∗ ∩ Qk ∣

∣Qk ∣
,

where Qk is a square determined by Lemma 3.1 with an arbitrary x ∈ Rα . Since we
have M ≤ C(logN) and

∑
β∈B j ∶

ωk≤∣θα−θβ ∣<ωk+1

∣(Rβ)∗ ∩ Qk ∣

∣Qk ∣
≤ CMQY(x) for all x ∈ Rα ,

we obtain

MQY(x) > C
logN

for all x ∈ Rα ,

which implies (3.4) and, hence, (3.3).
We now evaluate

(i) = ∫
R2

Y(x)U(x) dx = ∑
β∈B

U((Rβ)∗).

By (3.1) andHölder’s inequality we have

(i) ≤
1
t ∑β∈B

U((Rβ)∗)−∫
Rβ

∣ f (y)∣ dy

=
1
t ∫R2

( ∑
β∈B

U((Rβ)∗)
∣Rβ ∣

1Rβ(y)) ∣ f (y)∣ dy

≤
1
t
(∫

R2
( ∑
β∈B

U((Rβ)∗)
∣Rβ ∣

1Rβ(y))
2
W(y)−1 dy)

1/2

∥ f ∥L2(R2 ,W) .

Further, we have

(ii) = ∫
R2

( ∑
β∈B

U((Rβ)∗)
∣Rβ ∣

1Rβ(y))
2
W(y)−1 dy

=
m

∑
j=1

(
U((Rβ j)

∗)

∣Rβ j ∣
)

2

∫
Rβ j

W(y)−1 dy

+ 2
m
∑
j=1

U((Rβ j)
∗)

∣Rβ j ∣

j−1
∑
k=1

U((Rβk)∗)
∣Rβk ∣

∫
Rβk∩Rβ j

W(y)−1 dy.

We notice that, for any y ∈ Rβk ∩ Rβ j

W(y) ≥
U((Rβk)∗)
∣(Rβk)∗∣

=
U((Rβk)∗)

25∣Rβk ∣
.
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_is yields

(ii) ≤ 25
m
∑
j=1

U((Rβ j)
∗) + 50

m
∑
j=1

U((Rβ j)
∗)

∣Rβ j ∣

j−1
∑
k=1

∣Rβk ∩ Rβ j ∣

≤ 50 ∑
β∈B

U((Rβ j)
∗) ,

where we have used (3.2). Altogether, we obtain (i) ≤ C
t2 ∥ f ∥

2
L2(R2 ,W) , which yields, by

(3.3),

w(K) ≤
C(logN)

t2
∥ f ∥2

L2(R2 ,W) .

Since K was an arbitrary compact subset of {x ∈ R2 ∶ MΣ1
N
f (x) > t}, the same

estimate is valid for the latter set, and we ûnish the proof.
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