The Fefferman-Stein Type Inequalities for Strong and Directional Maximal Operators in the Plane

Hiroki Saito and Hitoshi Tanaka

Abstract

The Fefferman-Stein type inequalities for strong maximal operators and directional maximal operators are verified with an additional composition of the Hardy-Littlewood maximal operator in the plane.

1 Introduction

The purpose of this paper is to develop a theory of weights for strong maximal operators and directional maximal operators in the plane. We first fix some notation. By weights we will always mean non-negative and locally integrable functions on \mathbb{R}^{n}. Given a measurable set E and a weight $w, w(E)=\int_{E} w(x) d x,|E|$ denotes the Lebesgue measure of E and 1_{E} denotes the characteristic function of E. Let $0<p \leq \infty$ and w be a weight. We define the weighted Lebesgue space $L^{p}\left(\mathbb{R}^{n}, w\right)$ to be a Banach space equipped with the norm (or quasi norm)

$$
\|f\|_{L^{p}\left(\mathbb{R}^{n}, w\right)}=\left(\int_{\mathbb{R}^{n}}|f(x)|^{p} w(x) d x\right)^{1 / p} .
$$

For a locally integrable function f on \mathbb{R}^{n}, we define the Hardy-Littlewood maximal operator $\mathfrak{M}_{\mathcal{Q}}$ by

$$
\mathfrak{M}_{Q} f(x)=\sup _{Q \in \mathcal{Q}} 1_{Q}(x) f_{Q}|f(y)| d y
$$

where \mathcal{Q} is the set of all cubes in \mathbb{R}^{n} (with sides not necessarily parallel to the axes) and the barred integral $f_{Q} f(y) d y$ stands for the usual integral average of f over Q. For a locally integrable function f on \mathbb{R}^{n}, we define the strong maximal operator $\mathfrak{M}_{\mathcal{R}}$ by

$$
\mathfrak{M}_{\mathcal{R}} f(x)=\sup _{R \in \mathcal{R}} 1_{R}(x) f_{R}|f(y)| d y
$$

where \mathcal{R} is the set of all rectangles in \mathbb{R}^{n} with sides parallel to the coordinate axes.

[^0]Let $\mathfrak{T}: L^{p}\left(\mathbb{R}^{n}\right) \rightarrow L^{p}\left(\mathbb{R}^{n}\right), p>1$, be a sublinear operator. It is a fundamental problem in weight theory to determine some maximal operator $\mathfrak{M}_{\mathfrak{T}}$ capturing certain geometric characteristics of \mathfrak{T}, such that

$$
\begin{equation*}
\int_{\mathbb{R}^{n}}|\mathfrak{T} f(x)|^{p} w(x) d x \leq C \int_{\mathbb{R}^{n}}|f(x)|^{p} \mathfrak{M}_{\mathfrak{T}} w(x) d x \tag{1.1}
\end{equation*}
$$

holds for an arbitrary weight w. It is well known that

$$
\int_{\mathbb{R}^{n}} \mathfrak{M}_{Q} f(x)^{p} w(x) d x \leq C \int_{\mathbb{R}^{n}}|f(x)|^{p} \mathfrak{M}_{Q} w(x) d x
$$

holds for an arbitrary weight w and $p>1$, and further that

$$
\begin{equation*}
\sup _{t>0} t w\left(\left\{x \in \mathbb{R}^{n}: \mathfrak{M}_{Q} f(x)>t\right\}\right) \leq C \int_{\mathbb{R}^{n}}|f(x)| \mathfrak{M}_{Q} w(x) d x \tag{1.2}
\end{equation*}
$$

These are called the Fefferman-Stein inequalities and are toy models of (1.1) (see [3]).
Problem 1.1 ([4 p. 472]) Does the analogue of the Fefferman-Stein inequality hold for the strong maximal operator, i.e.,

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} \mathfrak{M}_{\mathcal{R}} f(x)^{p} w(x) d x \leq C \int_{\mathbb{R}^{n}}|f(x)|^{p} \mathfrak{M}_{\mathcal{R}} w(x) d x, \quad p>1, \tag{1.3}
\end{equation*}
$$

for arbitrary $w(x) \geq 0$?
Concerning Problem 1.1 it is known that (1.3) holds for all $p>1$ if $w \in A_{\infty}^{*}$; see [8] (also [11] 12]).

We say that w belongs to the class A_{p}^{*} whenever

$$
\begin{aligned}
& {[w]_{A_{p}^{*}}=\sup _{R \in \mathcal{R}} f_{R} w(x) d x\left(f_{R} w(x)^{-1 /(p-1)} d x\right)^{p-1}<\infty, \quad 1<p<\infty} \\
& {[w]_{A_{1}^{*}}=\sup _{R \in \mathcal{R}} \frac{f_{R} w(x) d x}{\operatorname{ess} \inf _{x \in R} w(x)}<\infty}
\end{aligned}
$$

It follows by Hölder's inequality that the A_{p}^{*} classes are increasing; that is, for $1 \leq p \leq$ $q<\infty$, we have $A_{p}^{*} \subset A_{q}^{*}$. Thus, one defines $A_{\infty}^{*}=\bigcup_{p>1} A_{p}^{*}$.

The endpoint behavior of $\mathfrak{M}_{\mathcal{R}}$ close to L^{1} is given by Mitsis [10] (for $n=2$) and Luque and Parissis [9] (for $n>2$); that is,

$$
\begin{aligned}
& w\left(\left\{x \in \mathbb{R}^{n}: \mathfrak{M}_{\mathcal{R}} f(x)>t\right\}\right) \leq \\
& \qquad C \int_{\mathbb{R}^{n}} \frac{|f(x)|}{t}\left(1+\left(\log ^{+} \frac{|f(x)|}{t}\right)^{n-1}\right) \mathfrak{M}_{\mathcal{R}} w(x) d x, \quad t>0
\end{aligned}
$$

holds for any $w \in A_{\infty}^{*}$, where $\log ^{+} t=\max (0, \log t)$.
In this paper we will establish the following concerning Problem 1.1
Theorem 1.2 Let w be any weight on \mathbb{R}^{2} and set $W=\mathfrak{M}_{\mathcal{R}} \mathfrak{M}_{Q} w$. Then

$$
\begin{aligned}
w\left(\left\{x \in \mathbb{R}^{2}: \mathfrak{M}_{\mathcal{R}} f(x)>t\right\}\right) \leq & \\
& C \int_{\mathbb{R}^{2}} \frac{|f(x)|}{t}\left(1+\log ^{+} \frac{|f(x)|}{t}\right) W(x) d x, \quad t>0
\end{aligned}
$$

holds, where the constant $C>0$ does not depend on w and f.
By interpolation, we have the following corollary.
Corollary 1.3 Let w be any weight on \mathbb{R}^{2} and set $W=\mathfrak{M}_{\mathcal{R}} \mathfrak{M}_{Q} w$. Then, for $p>1$, there exists a constant $C_{p}>0$ such that

$$
\left\|\mathfrak{M}_{\mathcal{R}} f\right\|_{L^{p}\left(\mathbb{R}^{2}, w\right)} \leq C_{p}\|f\|_{L^{p}\left(\mathbb{R}^{2}, W\right)}
$$

holds for all $f \in L^{p}\left(\mathbb{R}^{2}, W\right)$.
Let Σ be a set of unit vectors in \mathbb{R}^{2}, i.e., a subset of the unit circle S^{1}. Associated with Σ, we define \mathcal{B}_{Σ} to be the set of all rectangles in \mathbb{R}^{2} whose longest side is parallel to some vector in Σ. For a locally integrable function f on \mathbb{R}^{2}, we also define the directional maximal operator \mathfrak{M}_{Σ} associated with Σ as

$$
\mathfrak{M}_{\Sigma} f(x)=\sup _{R \in \mathcal{B}_{\Sigma}} 1_{R}(x) f_{R}|f(y)| d y .
$$

Many authors have studied this operator, (see [1, 2, 6, 7, 13, 14|), and Katz showed that \mathfrak{M}_{Σ} is bounded on $L^{2}\left(\mathbb{R}^{2}\right)$ with the operator norm $O(\log N)$ for any set Σ with cardinality N.

For fixed sufficiently large integer N, let

$$
\Sigma_{N}=\left\{\left(\cos \frac{2 \pi j}{N}, \sin \frac{2 \pi j}{N}\right): j=0,1, \ldots, N-1\right\}
$$

be the set of N uniformly spread directions on the circle S^{1}. In this paper we shall prove the following, which is a weighted version of the classical result due to Strömberg [14].

Theorem 1.4 Let $N>10$ and w be any weight on \mathbb{R}^{2}. Set $W=\mathfrak{M}_{\Sigma_{N}} \mathfrak{M}_{Q} w$. Then

$$
\begin{equation*}
\sup _{t>0} t w\left(\left\{x \in \mathbb{R}^{2}: \mathfrak{M}_{\Sigma_{N}} f(x)>t\right\}\right)^{1 / 2} \leq C(\log N)^{1 / 2}\|f\|_{L^{2}\left(\mathbb{R}^{2}, W\right)} \tag{1.4}
\end{equation*}
$$

holds for all $f \in L^{2}\left(\mathbb{R}^{2}, W\right)$, where the constant $C>0$ does not depend on w and f.
By interpolation, we have the following corollary.
Corollary 1.5 Let $N>10$ and w be any weight on \mathbb{R}^{2}. Set $W=\mathfrak{M}_{\Sigma_{N}} \mathfrak{M}_{Q} w$. Then, for $2<p<\infty$, there exists a constant $C_{p}>0$ such that

$$
\left\|\mathfrak{M}_{\Sigma_{N}} f\right\|_{L^{p}\left(\mathbb{R}^{2}, w\right)} \leq C_{p}(\log N)^{1 / p}\|f\|_{L^{p}\left(\mathbb{R}^{2}, W\right)}
$$

holds for all $f \in L^{p}\left(\mathbb{R}^{2}, W\right)$.
The letter C will be used for the positive finite constants that may change from one occurrence to another. Constants with subscripts, such as C_{1}, C_{2}, do not change in different occurrences.

2 Proof of Theorem 1.2

Our proof relies upon the refinement of the arguments in [10]. With a standard argument, we can assume that the basis \mathcal{R} is the set of all dyadic rectangles R (cartesian products of dyadic intervals) having long side pointing in the x_{1}-direction. We denote by $P_{i}, i=1,2$, the projection on the x_{i}-axis. Fix $t>0$ and assume given the finite collection of dyadic rectangles $\left\{R_{i}\right\}_{i=1}^{M} \subset \mathcal{R}$ such that

$$
\begin{equation*}
f_{R_{i}}|f(y)| d y>t, \quad i=1,2, \ldots, M . \tag{2.1}
\end{equation*}
$$

It suffices to estimate $w\left(\bigcup_{i=1}^{M} R_{i}\right)$ (see the next section for details).
First, relabeling if necessary, we can assume that the R_{i} are ordered so that their long sidelengths $\left|P_{1}\left(R_{i}\right)\right|$ decrease. We now give a selection procedure to find a subcollection $\left\{\widetilde{R}_{i}\right\}_{i=1}^{N} \subset\left\{R_{i}\right\}_{i=1}^{M}$.

Take $\widetilde{R}_{1}=R_{1}$ and let \widetilde{R}_{2} be the first rectangle R_{j} such that $\left|R_{j} \cap \widetilde{R}_{1}\right|<\frac{1}{3}\left|R_{j}\right|$. Suppose that we have now chosen the rectangles $\widetilde{R}_{1}, \widetilde{R}_{2}, \ldots, \widetilde{R}_{i-1}$. We select \widetilde{R}_{i} to be the first rectangle R_{j} occurring after \widetilde{R}_{i-1} so that $\left|\bigcup_{k=1}^{i-1} R_{j} \cap \widetilde{R}_{k}\right|<\frac{1}{3}\left|R_{j}\right|$. Thus, we see that

$$
\begin{equation*}
\left|\bigcup_{j=1}^{i-1} \widetilde{R}_{i} \cap \widetilde{R}_{j}\right|<\frac{1}{3}\left|\widetilde{R}_{i}\right|, \quad i=2,3, \ldots, N . \tag{2.2}
\end{equation*}
$$

We claim that

$$
\begin{equation*}
\bigcup_{i=1}^{M} R_{i} \subset\left\{x \in \mathbb{R}^{2}: \mathfrak{M}_{Q}\left[1_{\cup_{i=1}^{N} \widetilde{R}_{i}}\right](x) \geq \frac{1}{3}\right\} . \tag{2.3}
\end{equation*}
$$

Indeed, choose any point x inside a rectangle R_{j} that is not one of the selected rectangles \widetilde{R}_{i}. Then there exists a unique $K \leq N$ such that

$$
\left|\bigcup_{i=1}^{K} R_{j} \cap \widetilde{R}_{i}\right| \geq \frac{1}{3}\left|R_{j}\right| .
$$

Since, $\left|P_{1}\left(R_{j}\right)\right| \leq\left|P_{1}\left(\widetilde{R}_{i}\right)\right|$ for $i=1,2, \ldots, K$, we have

$$
P_{1}\left(R_{j}\right) \cap P_{1}\left(\widetilde{R}_{i}\right)=P_{1}\left(R_{j}\right) \text { when } R_{j} \cap \widetilde{R}_{i} \neq \varnothing \text {, }
$$

where we have used the dyadic structure;
(2.4) If both I and J are the dyadic interval, then $I \cap J \in\{I, J, \varnothing\}$.

Thus,

$$
\bigcup_{i=1}^{K} R_{j} \cap \widetilde{R}_{i}=\bigcup_{i=1}^{K} P_{1}\left(R_{j}\right) \times\left(P_{2}\left(R_{j}\right) \cap P_{2}\left(\widetilde{R}_{i}\right)\right)=P_{1}\left(R_{j}\right) \times \bigcup_{i=1}^{K} P_{2}\left(R_{j}\right) \cap P_{2}\left(\widetilde{R}_{i}\right) .
$$

Hence,

$$
\left|\bigcup_{i=1}^{K} P_{2}\left(R_{j}\right) \cap P_{2}\left(\widetilde{R}_{i}\right)\right| \geq \frac{1}{3}\left|P_{2}\left(R_{j}\right)\right|
$$

Thanks to the fact that $\left|P_{2}\left(R_{j}\right)\right| \leq\left|P_{1}\left(R_{j}\right)\right| \leq\left|P_{1}\left(\widetilde{R}_{i}\right)\right|$, this implies that

$$
\left|\bigcup_{i=1}^{K} Q \cap \widetilde{R}_{i}\right| \geq \frac{1}{3}|Q|,
$$

where Q is a unique dyadic cube containing x and having the side length $\left|P_{2}\left(R_{j}\right)\right|$. This proves 2.3.

It follows from (2.3) and (1.2) that

$$
\begin{aligned}
w\left(\bigcup_{i=1}^{M} R_{i}\right) & \leq w\left(\left\{x \in \mathbb{R}^{2}: \mathfrak{M}_{Q}\left[1_{\bigcup_{i=1}^{N} \widetilde{R}_{i}}\right](x) \geq \frac{1}{3}\right\}\right) \\
& \leq C U\left(\bigcup_{i=1}^{N} \widetilde{R}_{i}\right) \leq C \sum_{i=1}^{N} U\left(\widetilde{R}_{i}\right)
\end{aligned}
$$

where $U=\mathfrak{M}_{Q} w$. We shall evaluate the quantity

$$
(\mathrm{i})=\sum_{i=1}^{N} U\left(\widetilde{R}_{i}\right)
$$

Let $\mu_{U}(x)$ be the weighted multiplicity function associated with the family $\left\{\widetilde{R}_{i}\right\}$; that is,

$$
\mu_{U}(x)=\sum_{i=1}^{N} \frac{U\left(\widetilde{R}_{i}\right)}{\left|\widetilde{R}_{i}\right|} 1_{\widetilde{R}_{i}}(x) .
$$

By 2.1), choosing δ_{0} small enough determined later,

$$
\begin{aligned}
(\mathrm{i}) & \leq \sum_{i=1}^{N} \frac{U\left(\widetilde{R}_{i}\right)}{\left|\widetilde{R}_{i}\right|} \int_{\widetilde{R}_{i}} \frac{|f(y)|}{t} d y \\
& =\delta_{0} \int_{\mathbb{R}^{2}} \mu_{U}(x) W(x)^{-1} \cdot \frac{|f(x)|}{\delta_{0} t} \cdot W(x) d x .
\end{aligned}
$$

Using the elementary inequality

$$
a b \leq\left(e^{a}-1\right)+b\left(1+\log ^{+} b\right), \quad a, b \geq 0,
$$

we get

$$
\begin{aligned}
(\mathrm{i}) \leq & \delta_{0} \int_{\mathbb{R}^{2}}\left(\exp \left(\mu_{U}(x) W(x)^{-1}\right)-1\right) W(x) d x \\
& +\delta_{0} \int_{\mathbb{R}^{2}} \frac{|f(x)|}{\delta_{0} t}\left(1+\log ^{+} \frac{|f(x)|}{\delta_{0} t}\right) W(x) d x \\
\leq & \delta_{0} \int_{\mathbb{R}^{2}}\left(\exp \left(\mu_{U}(x) W(x)^{-1}\right)-1\right) W(x) d x \\
& +\left(1-\log \delta_{0}\right) \int_{\mathbb{R}^{2}} \frac{|f(x)|}{t}\left(1+\log ^{+} \frac{|f(x)|}{t}\right) W(x) d x
\end{aligned}
$$

We have to evaluate the quantity

$$
\text { (ii) }=\int_{\mathbb{R}^{2}}\left(\exp \left(\mu_{U}(x) W(x)^{-1}\right)-1\right) W(x) d x
$$

We expand the exponential in a Taylor series. Then

$$
\begin{aligned}
(\mathrm{ii}) & =\sum_{k=1}^{\infty} \frac{1}{k!} \int_{\mathbb{R}^{2}}\left(\mu_{U}(x) W(x)^{-1}\right)^{k} W(x) d x \\
& =\sum_{k=1}^{\infty} \frac{1}{k!} \int_{\mathbb{R}^{2}} \mu_{U}(x)^{k} W(x)^{1-k} d x .
\end{aligned}
$$

Fix $k \geq 2$. We use an elementary inequality

$$
\left(\sum_{i=1}^{\infty} a_{i}\right)^{k} \leq k \sum_{i=1}^{\infty} a_{i}\left(\sum_{j=1}^{i} a_{j}\right)^{k-1},
$$

where $\left\{a_{i}\right\}_{i=1}^{\infty}$ is a sequence of summable nonnegative reals. Then

$$
\begin{aligned}
& \int_{\mathbb{R}^{2}} \mu_{U}(x)^{k} W(x)^{1-k} d x \\
& \quad \leq k \sum_{i=1}^{N} \frac{U\left(\widetilde{R}_{i}\right)}{\left|\widetilde{R}_{i}\right|} \int_{\widetilde{R}_{i}}\left(\sum_{j=1}^{i} \frac{U\left(\widetilde{R}_{j}\right)}{\left|\widetilde{R}_{j}\right|} 1_{\widetilde{R}_{j}}(x)\right)^{k-1} W(x)^{1-k} d x \\
& \quad \leq k \sum_{i=1}^{N} \frac{U\left(\widetilde{R}_{i}\right)}{\left|\widetilde{R}_{i}\right|} \int_{\widetilde{R}_{i}}\left(\sum_{j=1}^{i} 1_{\widetilde{R}_{j}}(x)\right)^{k-1} d x,
\end{aligned}
$$

where we have used

$$
\sum_{j=1}^{i} \frac{U\left(\widetilde{R}_{j}\right)}{\left|\widetilde{R}_{j}\right|} 1_{\widetilde{R}_{j}}(x) \leq\left(\sum_{j=1}^{i} 1_{\widetilde{R}_{j}}(x)\right) W(x) .
$$

We claim that, for $n=1,2, \ldots, N$,

$$
\begin{equation*}
\left|X_{i, n}\right| \leq 3^{1-n}\left|\widetilde{R}_{i}\right| \tag{2.5}
\end{equation*}
$$

where

$$
X_{i, n}=\left\{x \in \widetilde{R}_{i}: \sum_{j=1}^{i} 1_{\widetilde{R}_{j}}(x) \geq n\right\} .
$$

Indeed, first we notice that, for any k and j with $N \geq k>j \geq 1$, if $\widetilde{R}_{k} \cap \widetilde{R}_{j} \neq \varnothing$, then

$$
\widetilde{R}_{k} \cap \widetilde{R}_{j}=P_{1}\left(\widetilde{R}_{k}\right) \times P_{2}\left(\widetilde{R}_{j}\right),
$$

because we have $P_{1}\left(\widetilde{R}_{k}\right) \subset P_{1}\left(\widetilde{R}_{j}\right)$ and, by 2.2$),\left|P_{2}\left(\widetilde{R}_{k}\right) \cap P_{2}\left(\widetilde{R}_{j}\right)\right|<\frac{1}{3}\left|P_{2}\left(\widetilde{R}_{k}\right)\right|$. With this in mind, we can observe the following.

There exists a set of dyadic intervals $\left\{I_{j k}\right\}$ with $j=1,2, \ldots, n$ and $k=1,2, \ldots, K_{j}$ that satisfies the following:

- the dyadic intervals $I_{j k}$ are pairwise disjoint for varying k;
- for each $I_{j k}, j>1$, there exists a unique $I_{(j-1) l} \nsupseteq I_{j k}$;
- for each $I_{j k}$ there exists a unique number $i_{j k} \leq i$ such that $I_{j k}=P_{2}\left(\widetilde{R}_{i_{j k}}\right)$;
- $P_{2}\left(X_{i, 1}\right)=I_{11}, P_{2}\left(X_{i, 2}\right)=\bigcup_{k=1}^{K_{2}} I_{2 k}, \ldots, P_{2}\left(X_{i, j}\right)=\bigcup_{k=1}^{K_{j}} I_{j k}, \ldots, P_{2}\left(X_{i, n}\right)=$ $\cup_{k=1}^{K_{n}} I_{n k}$;
- if $I_{j k} \subset I_{(j-1) l}$, then $i_{j k}<i_{(j-1) l}$ and $\widetilde{R}_{i_{(j-1) l}} \cap \widetilde{R}_{i_{j k}} \neq \varnothing$.

It follows from the last relation and 2.2 that

$$
3 \sum_{k=1}^{K_{j}}\left|I_{j k}\right|<\sum_{k=1}^{K_{j-1}}\left|I_{(j-1) k}\right|, \quad j=2,3, \ldots, n .
$$

This gives us that

$$
3^{n-1} \sum_{k=1}^{K_{n}}\left|I_{n k}\right|<\left|I_{11}\right|
$$

which yields (2.5).

It follows from (2.5) that

$$
\begin{aligned}
\frac{U\left(\widetilde{R}_{i}\right)}{\left|\widetilde{R}_{i}\right|} \int_{\widetilde{R}_{i}}\left(\sum_{j=1}^{i} 1_{\widetilde{R}_{j}}(x)\right)^{k-1} d x & \leq \frac{U\left(\widetilde{R}_{i}\right)}{\left|\widetilde{R}_{i}\right|} \sum_{n=1}^{N} n^{k-1}\left|X_{i, n-1}\right| \\
& \leq U\left(\widetilde{R}_{i}\right) \sum_{n=1}^{N} n^{k-1} 3^{2-n}
\end{aligned}
$$

Altogether, the quantity (ii) can be majorized by

$$
\text { (i) } \times\left[1+\sum_{k=2}^{\infty} \frac{1}{(k-1)!} \sum_{n=1}^{N} n^{k-1} 3^{2-n}\right]
$$

There holds

$$
\sum_{k=2}^{\infty} \frac{1}{(k-1)!} \sum_{n=1}^{N} n^{k-1} 3^{2-n} \leq 9 \sum_{n=1}^{\infty}\left(\frac{e}{3}\right)^{n}=: C_{0}
$$

If we choose δ_{0} so that $\delta_{0}\left(1+C_{0}\right)=\frac{1}{2}$, we obtain

$$
\text { (i) } \leq C \int_{\mathbb{R}^{2}} \frac{|f(x)|}{t}\left(1+\log ^{+} \frac{|f(x)|}{t}\right) W(x) d x
$$

This completes the proof.
Remark Since our proof relies only upon the dyadic structure 2.4, it can be applied the basis \mathcal{R} of the form the set of all rectangles in \mathbb{R}^{n} whose sides are parallel to the coordinate axes and that are congruent to the rectangle $(0, a)^{n-1} \times(0, b)$ with varying $a, b>0$.

3 Proof of Theorem 1.4

We follow the argument in [5. Chapter 10, Theorem 10.3.5]. To avoid problems with antipodal points, it is convenient to split Σ_{N} as the union of eight sets, in each of which the angle between any two vectors does not exceed $\pi / 4$. It suffices therefore to obtain (1.4) for each such subset of Σ_{N}. Let us fix one such subset of Σ_{N}, which we call Σ_{N}^{1}.

To prove (1.4), we fix $t>0$ and start with a compact subset K of the set $\left\{x \in \mathbb{R}^{2}: \mathfrak{M}_{\Sigma_{N}^{1}} f(x)>t\right\}$. Then for every $x \in K$, there exists an open rectangle R_{x} that contains x and whose longest side is parallel to a vector in Σ_{N}^{1}. By compactness of K, there exists a finite subfamily $\left\{R_{\alpha}\right\}_{\alpha \in \mathcal{A}}$ of the family $\left\{R_{x}\right\}_{x \in K}$ such that

$$
\begin{equation*}
f_{R_{\alpha}}|f(y)| d y>t \tag{3.1}
\end{equation*}
$$

for all $\alpha \in \mathcal{A}$ and such that the union of the R_{α} 's covers K.
In the sequel we denote by θ_{α} the angle between the x_{1}-axis and the vector pointing in the longer direction of R_{α} for any $\alpha \in \mathcal{A}$. We also denote by l_{α} the shorter side of R_{α} and by L_{α} the longer side of R_{α} for any $\alpha \in \mathcal{A}$.

We shall select the subfamily $\left\{R_{\beta}\right\}_{\beta \in \mathcal{B}}$ as follows. Without loss of generality, we can assume that $\mathcal{A}=\{1,2, \ldots, \ell\}$ with $L_{j} \geq L_{j+1}$ for all $j=1,2, \ldots, \ell-1$. Let $\beta_{1}=1$ and choose β_{2} to be the first number in $\left\{\beta_{1}+1, \beta_{1}+2, \ldots, \ell\right\}$ such that

$$
\left|R_{\beta_{1}} \cap R_{\beta_{2}}\right| \leq \frac{1}{2}\left|R_{\beta_{2}}\right|
$$

We next choose β_{3} to be the first number in $\left\{\beta_{2}+1, \beta_{2}+2, \ldots, \ell\right\}$ such that

$$
\left|R_{\beta_{1}} \cap R_{\beta_{3}}\right|+\left|R_{\beta_{2}} \cap R_{\beta_{3}}\right| \leq \frac{1}{2}\left|R_{\beta_{3}}\right| .
$$

Suppose we have chosen the numbers $\beta_{1}, \beta_{2}, \ldots, \beta_{j-1}$. Then we choose β_{j} to be the first number in $\left\{\beta_{j-1}+1, \beta_{j-1}+2, \ldots, \ell\right\}$ such that

$$
\begin{equation*}
\sum_{k=1}^{j-1}\left|R_{\beta_{k}} \cap R_{\beta_{j}}\right| \leq \frac{1}{2}\left|R_{\beta_{j}}\right| . \tag{3.2}
\end{equation*}
$$

Since the set \mathcal{A} is finite, this selection stops after m steps.
Define $\mathcal{B}=\left\{\beta_{1}, \beta_{2}, \ldots, \beta_{m}\right\}$ and let

$$
Y(x)=\sum_{\beta \in \mathcal{B}} 1_{\left(R_{\beta}\right)^{*}}(x)
$$

where $\left(R_{\beta}\right)^{*}$ is the rectangle R_{β} expanded 5 times in both directions.
We claim that

$$
\begin{equation*}
w(K) \leq w\left(\bigcup_{\alpha \in \mathcal{A}} R_{\alpha}\right) \leq C(\log N) \int_{\mathbb{R}^{2}} Y(x) U(x) d x \tag{3.3}
\end{equation*}
$$

where $U(x)=\mathfrak{M}_{\mathrm{Q}} w(x)$. To verify this claim, we need the following lemma.
We set $\omega_{k}=\frac{2 \pi 2^{k}}{N}$ for $k \in \mathbb{Z}^{+}$and $\omega_{0}=0$. We let $M=\left[\frac{\log (N / 8)}{\log 2}\right]$.
Lemma 3.1 ([5, Lemma 10.3.6]) Let R_{α} be a rectangle in the family $\left\{R_{\alpha}\right\}_{\alpha \in \mathcal{A}}$ and let $0 \leq k<M$. Suppose that $\beta \in \mathcal{B}$ is such that $\omega_{k} \leq\left|\theta_{\alpha}-\theta_{\beta}\right|<\omega_{k+1}$ and such that $L_{\beta} \geq L_{\alpha}$. Let $s_{\alpha}=8 \max \left(l_{\alpha}, \omega_{k} L_{\alpha}\right)$. For an arbitrary $x \in R_{\alpha}$, let Q be a square centered at x with sides of length s_{α} parallel to the sides of R_{α}. Then we have

$$
\frac{\left|R_{\beta} \cap R_{\alpha}\right|}{\left|R_{\alpha}\right|} \leq 32 \frac{\left|\left(R_{\beta}\right)^{*} \cap Q\right|}{|Q|} .
$$

We shall prove (3.3). By (1.2) it suffices to show that

$$
\begin{equation*}
\bigcup_{\alpha \in \mathcal{A}} R_{\alpha} \subset\left\{x \in \mathbb{R}^{2}: \mathfrak{M}_{Q} Y(x)>\frac{C}{\log N}\right\} . \tag{3.4}
\end{equation*}
$$

Since we may assume that $C /(\log N)<1$, the set $\bigcup_{\beta \in \mathcal{B}} R_{\beta}$ is contained in the set of the right hand side of (3.4). So, we fix $\alpha \in \mathcal{A} \backslash \mathcal{B}$. Then the rectangle R_{α} was not selected in the selection procedure.

By the construction and (3.2), we see that there exists j such that

$$
\sum_{k=1}^{j}\left|R_{\beta_{k}} \cap R_{\alpha}\right|>\frac{1}{2}\left|R_{\alpha}\right|
$$

and such that $L_{\beta_{k}} \geq L_{\alpha}$ for all $k=1,2, \ldots, j$.

Let $\mathcal{B}_{j}=\left\{\beta_{1}, \beta_{2}, \ldots, \beta_{j}\right\}$. It follows from Lemma 3.1 that

$$
\begin{aligned}
\frac{1}{2}<\sum_{\beta \in \mathcal{B}_{j}} \frac{\left|R_{\beta} \cap R_{\alpha}\right|}{\left|R_{\alpha}\right|} & =\sum_{k=0}^{M} \sum_{\substack{\beta \in \mathcal{B}_{j}: \\
\omega_{k} \leq\left|\theta_{\alpha}-\theta_{\beta}\right|<\omega_{k+1}}} \frac{\left|R_{\beta} \cap R_{\alpha}\right|}{\left|R_{\alpha}\right|} \\
& \leq 32 \sum_{k=0}^{M} \sum_{\substack{\beta \in \mathcal{B}_{j}: \\
\omega_{k} \leq\left|\theta_{\alpha}-\theta_{\beta}\right|<\omega_{k+1}}} \frac{\left|\left(R_{\beta}\right)^{*} \cap Q_{k}\right|}{\left|Q_{k}\right|},
\end{aligned}
$$

where Q_{k} is a square determined by Lemma 3.1 with an arbitrary $x \in R_{\alpha}$. Since we have $M \leq C(\log N)$ and

$$
\sum_{\substack{\beta \in \mathcal{B}_{j}: \\ \omega_{k} \leq\left|\theta_{\alpha}-\theta_{\beta}\right|<\omega_{k+1}}} \frac{\left|\left(R_{\beta}\right)^{*} \cap Q_{k}\right|}{\left|Q_{k}\right|} \leq C \mathfrak{M}_{Q} Y(x) \text { for all } x \in R_{\alpha}
$$

we obtain

$$
\mathfrak{M}_{Q} Y(x)>\frac{C}{\log N} \text { for all } x \in R_{\alpha}
$$

which implies (3.4) and, hence, (3.3).
We now evaluate

$$
\text { (i) }=\int_{\mathbb{R}^{2}} Y(x) U(x) d x=\sum_{\beta \in \mathcal{B}} U\left(\left(R_{\beta}\right)^{*}\right)
$$

By 3.1) and Hölder's inequality we have

$$
\begin{aligned}
(\mathrm{i}) & \leq \frac{1}{t} \sum_{\beta \in \mathcal{B}} U\left(\left(R_{\beta}\right)^{*}\right) f_{R_{\beta}}|f(y)| d y \\
& =\frac{1}{t} \int_{\mathbb{R}^{2}}\left(\sum_{\beta \in \mathcal{B}} \frac{U\left(\left(R_{\beta}\right)^{*}\right)}{\left|R_{\beta}\right|} 1_{R_{\beta}}(y)\right)|f(y)| d y \\
& \leq \frac{1}{t}\left(\int_{\mathbb{R}^{2}}\left(\sum_{\beta \in \mathcal{B}} \frac{U\left(\left(R_{\beta}\right)^{*}\right)}{\left|R_{\beta}\right|} 1_{R_{\beta}}(y)\right)^{2} W(y)^{-1} d y\right)^{1 / 2}\|f\|_{L^{2}\left(\mathbb{R}^{2}, W\right)} .
\end{aligned}
$$

Further, we have

$$
\begin{aligned}
(\text { ii })= & \int_{\mathbb{R}^{2}}\left(\sum_{\beta \in \mathcal{B}} \frac{U\left(\left(R_{\beta}\right)^{*}\right)}{\left|R_{\beta}\right|} 1_{R_{\beta}}(y)\right)^{2} W(y)^{-1} d y \\
= & \sum_{j=1}^{m}\left(\frac{U\left(\left(R_{\beta_{j}}\right)^{*}\right)}{\left|R_{\beta_{j}}\right|}\right)^{2} \int_{R_{\beta_{j}}} W(y)^{-1} d y \\
& +2 \sum_{j=1}^{m} \frac{U\left(\left(R_{\beta_{j}}\right)^{*}\right)}{\left|R_{\beta_{j}}\right|} \sum_{k=1}^{j-1} \frac{U\left(\left(R_{\beta_{k}}\right)^{*}\right)}{\left|R_{\beta_{k}}\right|} \int_{R_{\beta_{k}} \cap R_{\beta_{j}}} W(y)^{-1} d y .
\end{aligned}
$$

We notice that, for any $y \in R_{\beta_{k}} \cap R_{\beta_{j}}$

$$
W(y) \geq \frac{U\left(\left(R_{\beta_{k}}\right)^{*}\right)}{\left|\left(R_{\beta_{k}}\right)^{*}\right|}=\frac{U\left(\left(R_{\beta_{k}}\right)^{*}\right)}{25\left|R_{\beta_{k}}\right|}
$$

This yields

$$
\begin{aligned}
\text { (ii) } & \leq 25 \sum_{j=1}^{m} U\left(\left(R_{\beta_{j}}\right)^{*}\right)+50 \sum_{j=1}^{m} \frac{U\left(\left(R_{\beta_{j}}\right)^{*}\right)}{\left|R_{\beta_{j}}\right|} \sum_{k=1}^{j-1}\left|R_{\beta_{k}} \cap R_{\beta_{j}}\right| \\
& \leq 50 \sum_{\beta \in \mathcal{B}} U\left(\left(R_{\beta_{j}}\right)^{*}\right),
\end{aligned}
$$

where we have used (3.2). Altogether, we obtain (i) $\leq \frac{C}{t^{2}}\|f\|_{L^{2}\left(\mathbb{R}^{2}, W\right)}^{2}$, which yields, by (3.3),

$$
w(K) \leq \frac{C(\log N)}{t^{2}}\|f\|_{L^{2}\left(\mathbb{R}^{2}, W\right)}^{2} .
$$

Since K was an arbitrary compact subset of $\left\{x \in \mathbb{R}^{2}: \mathfrak{M}_{\Sigma_{N}^{1}} f(x)>t\right\}$, the same estimate is valid for the latter set, and we finish the proof.

References

[1] A. Alfonseca, F. Soria, and A. Vargas, A remark on maximal operators along directions in \mathbb{R}^{2}. Math. Res. Lett. 10(2003), no. 1, 41-49. http://dx.doi.org/10.4310/MRL.2003.v10.n1.a5
[2] ——An almost-orthogonality principle in L^{2} for directional maximal functions. In: Harmonic analysis at Mount Holyoke (South Hadley, MA, 2001), Contemp. Math., 320, American Mathematical Society, Providence, RI, 2003, pp. 1-7. http://dx.doi.org/10.1090/conm/320/05594
[3] C. Fefferman and E. M. Stein, Some maximal inequalities. Amer. J. Math. 93(1971), no. 1, 107-115. http://dx.doi.org/10.2307/2373450
[4] J. García-Cuerva and J. L. Rubio de Francia, Weighted norm inequalities and related topics. North-Holland Mathematics Studies, 116, North-Holland, Amsterdam, 1985.
[5] L. Grafakos, Modern Fourier analysis. Second ed., Graduate Texts in Mathematics, 20, Springer, New York, 2008. doi10-1007/978-0-387-09434-2
[6] N. H. Katz, Maximal operators over arbitrary sets of directions. Duke Math. J. 97(1999), no. 1, 67-79. http://dx.doi.org/10.1215/S0012-7094-99-09702-8
[7] _, Remarks on maximal operators over arbitrary sets of directions. Bull. London Math. Soc. 31(1999), no. 6, 700-710. http://dx.doi.org/10.1112/S0024609399005949
[8] K.-C. Lin, Harmonic analysis on the bidisc. Ph.D. Thesis, University of California, Los Angeles, 1984.
[9] T. Luque and I. Parissis, The endpoint Fefferman-Stein inequality for the strong maximal function. J. Funct. Anal. 266(2014), no. 1, 199-212. http://dx.doi.org/10.1016/j.jfa.2013.09.028
[10] T. Mitsis, The weighted weak type inequality for the strong maximal function. J. Fourier Anal. Appl. 12(2006), no. 6, 645-652. http://dx.doi.org/10.1007/s00041-005-5060-3
[11] C. Pérez, Weighted norm inequalities for general maximal operators. In: Conference on Mathematical Analysis (El Escorial, 1989), Publ. Mat. 35(1991), no. 1, 169-186. http://dx.doi.org/10.5565/PUBLMAT_35191_07
[12] \longrightarrow A remark on weighted inequalities for general maximal operators. Proc. Amer. Math. Soc. 119(1993), no. 4, 1121-1126. http://dx.doi.org/10.2307/2159974
[13] H. Saito and H. Tanaka, Directional maximal operators and radial weights on the plane. Bull. Aust. Math. Soc. 89(2014), no 3, 397-414. http://dx.doi.org/10.1017/S0004972713000804
[14] J. O. Strömberg, Maximal functions associated to rectangles with uniformly distributed directions. Ann. Math. (2), 107(1978), no. 2, 399-402. http://dx.doi.org/10.2307/1971122

Academic support center, Kogakuin University, 2665-1, Nakanomachi, Hachioji-shi Tokyo, 192-0015, Japan
e-mail: j1107703@gmail.com
Research and Support Center on Higher Education for the hearing and Visually Impaired, National University Corporation Tsukuba University of Technology, Kasuga 4-12-7, Tsukuba City, Ibaraki, 305-8521 Japan
e-mail: htanaka@k.tsukuba-tech.ac.jp

[^0]: Received by the editors November 6, 2016; revised April 6, 2017.
 Published electronically May 23, 2017.
 Author H. S. is supported by Grant-in-Aid for Young Scientists (B) (15K17551), the Japan Society for the Promotion of Science. Author H. T. is supported by Grant-in-Aid for Scientific Research (C) (15K04918), the Japan Society for the Promotion of Science.

 AMS subject classification: 42B25, 42B35.
 Keywords: directional maximal operator, Fefferman-Stein type inequality, Hardy-Littlewood maximal operator, strong maximal operator.

