Appendix D

Vector Fields and Their Lie Bracket

D. 1 Construction

In this appendix we recall the construction of the Lie algebra of vector fields.
D. 1 Example The tangent bundle $\pi_{M}: T M \rightarrow M$ is a vector bundle (bundle trivialisations are given by the canonical charts $T \varphi$). A smooth section of the tangent bundle is called (smooth) vector field and we write shorter $\mathcal{V}(M):=$ $\Gamma(T M)$ for the vector space of all vector fields.
D. 2 Example If $U \subseteq E$ in a locally convex space, we have $T U=U \times E$ and $\pi_{U}: U \times E \rightarrow U,(u, e) \mapsto u$. Thus a vector field of U can be written as $X=\left(X_{U}, X_{E}\right): U \rightarrow U \times E$ and we must have $X_{U}=\mathrm{id}_{U}$. Hence a vector field on U is uniquely determined by the smooth map $X_{E} \in C^{\infty}(U, E)$.
D. 3 If M is a manifold and $\left(\phi, U_{\phi}\right)$ a manifold chart, then we have an analogue of X_{E} on U_{ϕ} for $X \in \mathcal{V}(M)$: Clearly $T \phi \circ X \circ \phi^{-1}=\left(\mathrm{id}_{V_{\phi}}, X_{\phi}\right)$ for the smooth map $X_{\phi}:=d \phi \circ X \circ \phi^{-1}: V_{\phi} \rightarrow E$. We call X_{ϕ} the local representative of X or the principal part of X with respect to the chart ϕ.

For later use, consider a vector field $X \in \mathcal{V}(M)$ and a smooth function $f: M \rightarrow F$, where F is a locally convex space. Then we define a function $X . f \in C^{\infty}(M, F)$ via

$$
\begin{equation*}
X . f(m):=d f \circ X(m)=\mathrm{pr}_{2} \circ T f \circ X(m) . \tag{D.1}
\end{equation*}
$$

D. 4 Similar to C. 7 we topologise $\mathcal{V}(M)$: Pick an atlas \mathcal{A} of M whose charts we denote by $\varphi: U_{\varphi} \rightarrow V_{\varphi} \subseteq E_{\varphi}$. Then we declare the topology to be the initial topology with respect to the map

$$
\kappa: \mathcal{V}(M) \rightarrow \prod_{\varphi \in \mathcal{A}} C^{\infty}\left(V_{\varphi}, E_{\varphi}\right), \quad X \mapsto\left(X_{\varphi}\right)_{\varphi \in X},
$$

where the factors on the right-hand side carry the compact open C^{∞}-topology. In particular, this topology turns the vector fields into a locally convex space.

We will use the notion of integral curves and flows for vector fields, whence we recall the definition of these objects.
D. 5 Let $X \in \mathcal{V}(M)$. We say a C^{1}-curve $c:[a, b] \rightarrow M$ is an integral curve for X if for every $t \in[a, b]$ the curve satisfies $\dot{c}(t)=X(c(t))$.

If M is a Banach manifold, it follows from the theory of ordinary differential equations, Lang (1999, IV), that for every $m \in M$ there exists an integral curve c_{m} of X on some open interval $\left.J_{m}:=\right]-\varepsilon, \varepsilon\left[\right.$ such that $c_{m}(0)=m$. Moreover, the flow

$$
\mathrm{Fl}^{X}: \bigcup_{m \in M}\{m\} \times J_{m} \rightarrow M, \quad(m, t) \mapsto c_{m}(t)
$$

defines a continuous map on some open subset of $M \times \mathbb{R}$. If M is modelled on a locally convex space, the existence of integral curves and flows is not automatic; see Appendix A.6.
D. 6 Definition Let $f: M \rightarrow N$ be smooth. We call the vector fields $X \in$ $\mathcal{V}(M), Y \in \mathcal{V}(N) f$-related if $Y \circ f=T f \circ X$.
D. 7 Lemma Let M be a manifold modelled on a locally convex space E with atlas \mathcal{A}. Let $\left(X_{\phi}\right)_{\phi \in \mathcal{A}}$ be a family of smooth maps $X_{\phi}: V_{\phi} \rightarrow E$ such that every pair X_{ϕ}, X_{ψ} is $\psi \circ \phi^{-1}$ related on $\phi\left(U_{\psi} \cap U_{\phi}\right)$. Then there is a unique vector field $X \in \mathcal{V}(M)$ whose local representatives coincide with the X_{ϕ}.

Proof Define $X: M \rightarrow T M, p \mapsto T \phi^{-1}\left(\phi(p), X_{\phi}(\phi(p))\right)$ for $p \in U_{\phi}$. Since the maps X_{ϕ}, X_{ψ} are related by the change of charts on the overlap $U_{\phi} \cap U_{\psi}$, the mapping is well defined. By construction it is smooth and a vector field.
D. 8 For principal parts of vector fields X, Y on $U \cong E$ write $X_{E} \cdot Y_{E}(z):=$ $d Y_{E} \circ X(z):=d Y_{E}\left(z ; X_{E}(z)\right)$. Define

$$
[X, Y]:=X . Y-Y . X . \quad X, Y \in C^{\infty}(U, E)
$$

We will see in the following that the bracket of principal parts of vector fields gives rise to a Lie bracket of vector fields.
D. 9 Lemma Let $U \Subset E, V \Subset F$ be open in locally convex spaces and $f \in$ $C^{\infty}(U, V), X_{1}, X_{2} \in C^{\infty}(U, E)$ and $Y_{1}, Y_{2} \in C^{\infty}(V, F)$. Assume that X_{i} is f related to Y_{i} for $i=1,2$. Then $\left[X_{1}, X_{2}\right]$ is f-related to $\left[Y_{1}, Y_{2}\right]$.

Proof Using the chain rule, (1.7) and relatedness we obtain $i=1,2(x, v) \in U \times E$.

$$
\begin{equation*}
d f\left(x, d X_{i}(x ; v)\right)=d Y_{i}(f(x), d f(x ; v))-d^{2} f\left(x ; X_{i}(x), v\right) \tag{D.2}
\end{equation*}
$$

We use this relation together with relatedness to obtain

$$
\begin{aligned}
d f\left(x ;\left[X_{1}, X_{2}\right](x)\right)= & d f\left(x ; d X_{2}\left(x, X_{1}(x)\right)\right)-d f\left(x ; d X_{1}\left(x ; X_{2}(x)\right)\right) \\
= & d Y_{2}\left(f(x) ; d f\left(x ; X_{1}(x)\right)\right)-d^{2} f\left(x ; X_{2}(x), X_{1}(x)\right) \\
& -d Y_{1}\left(f(x) ; d f\left(x ; X_{2}(x)\right)\right)+d^{2} f\left(x ; X_{1}(x), X_{2}(x)\right) \\
= & d Y_{2}\left(f(x) ; Y_{1}(f(x))\right)-d Y_{1}\left(f(x) ; Y_{2}(f(x))\right) \\
= & {\left[Y_{1}, Y_{2}\right](f(x)), }
\end{aligned}
$$

where the second-order terms cancel by Schwarz' theorem.
Before we now establish the Lie algebra properties, let us recall a general definition useful for our purpose.
D. 10 Definition Let (A, \cdot) be an associative algebra. Then the linear mappings $L(A, A)$ form a Lie algebra under the commutator bracket $[\phi, \psi]:=$ $\phi \circ \psi-\psi \circ \phi$, Example 3.16 (where \circ is the usual composition of linear maps). A mapping $\phi \in L(A, A)$ is called derivation of the algebra A if it satisfies the Leibniz rule

$$
\phi(a \cdot b)=\phi(a) \cdot b+a \cdot \phi(b) \quad \text { for all } a, b \in A
$$

We denote by $\operatorname{der}(A)$ the set of all derivations of A and note that it forms a Lie subalgebra of $(L(A, A),[\cdot, \cdot])$. (As no topology is involved, this will, in general, not be a locally convex Lie algebra.)

For E a locally convex space, $U \Subset E$ and $X \in \mathcal{V}(U)$ define the Lie derivative

$$
\begin{equation*}
\mathcal{L}_{X}(f):=d f \circ X=d f\left(\operatorname{id}_{U}, X_{E}\right) \text { for } f \in C^{\infty}(U, \mathbb{R}) . \tag{D.3}
\end{equation*}
$$

By definition $\mathcal{L}_{X}(f)=X$. f in the special case that f is real valued. The reason for the new notation and name will become apparent from the following observations (see also Definition E.9): The pointwise multiplication turns $C^{\infty}(U, \mathbb{R})$ into an associative algebra. Then \mathcal{L}_{X} is linear in f. Thus

$$
\begin{equation*}
\mathcal{L}_{X}(f \cdot g)=\mathcal{L}_{X}(f) \cdot g+f \cdot \mathcal{L}_{X}(g) \tag{D.4}
\end{equation*}
$$

In other words, \mathcal{L}_{X} is a derivation of the algebra $C^{\infty}(U, \mathbb{R})$.
D. 11 Lemma Let $U \subseteq E$ in a locally convex space .
(a) $\mathcal{L}_{[X, Y]}=\mathcal{L}_{X} \circ \mathcal{L}_{Y}-\mathcal{L}_{Y} \circ \mathcal{L}_{X}$.
(b) The map $\mathcal{L}: C^{\infty}(U, E) \rightarrow \operatorname{der}\left(C^{\infty}(U, R)\right), X \mapsto \mathcal{L}_{X}$ is linear and injective.
(c) The map $[\cdot, \cdot]: C^{\infty}(U, E) \times C^{\infty}(U, E) \rightarrow C^{\infty}(U, E),(X, Y) \mapsto[X, Y]=$ $X . Y-Y . X$ turns the space $C^{\infty}(U, E)$ into a Lie algebra.

Proof (a) From (1.7) we deduce

$$
\mathcal{L}_{X}\left(\mathcal{L}_{Y}(f)\right)=d^{2} f(x ; Y(x), X(x))+d f(x ; d Y(x ; X(x))) .
$$

Also using the formula for X and Y interchanged, we see that the secondorder terms cancel by Schwarz' theorem and thus

$$
\left[\mathcal{L}_{X}, \mathcal{L}_{Y}\right](f)(x)=\mathcal{L}_{[X, Y]}(f)(x) .
$$

(b) \mathcal{L}_{X} is linear in X as $d f(x ; \cdot)$ is. Thus it suffices to prove that the kernel of \mathcal{L} is trivial. Let $X \in C^{\infty}(U, E)$ be a map with $X(x) \neq 0$ for some $x \in U$. By the Hahn-Banach theorem, 1.7, we find $\lambda \in E^{\prime}$ with $\lambda(X(x)) \neq 0$. Then $\mathcal{L}_{X}(\lambda)(x)=d \lambda(x, X(x))=\lambda(X(x)) \neq 0$ and thus $\mathcal{L}_{X} \neq 0$.
(c) Clearly $[\cdot, \cdot]$ is bilinear, whence $\left(C^{\infty}(U, E),[\cdot, \cdot]\right)$ is an algebra. Now $[X, X]=X . X-X . X=0$. Recall that in the Jacobi identity, the entries of the iterated Lie bracket are cyclically permuted. We write shorter $\sum_{\text {cycl }}[X,[Y, Z]]$ for this and thus have to check that this expression vanishes for all $X, Y, Z \in C^{\infty}(U, E)$. However,

$$
\mathcal{L}\left(\sum_{\text {cycl }}[X,[Y, Z]]\right)=\sum_{\text {cycl }}\left[\mathcal{L}_{X},\left[\mathcal{L}_{Y}, \mathcal{L}_{Z}\right]\right]=0
$$

where we have used linearity of \mathcal{L}, (a), (b) and the fact that the derivations form a Lie algebra. Since \mathcal{L} is injective by (b), we see that the Jacobi identity holds.

Finally, we show that the Lie bracket of vector fields is continuous if the space E is finite dimensional.
D. 12 Lemma Let E be a finite-dimensional space and U @ E. Then the Lie bracket

$$
[\cdot, \cdot]: C^{\infty}(U, E) \times C^{\infty}(U, E) \rightarrow C^{\infty}(U, E)
$$

is continuous. Hence $\left(C^{\infty}(U, E),[\cdot, \cdot]\right)$ is a locally convex Lie algebra.
Proof Note that $C^{\infty}(U, E)$ is a locally convex space with respect to the compact open C^{∞}-topology, Proposition 2.4. To establish continuity of the Lie bracket, we deduce from Lemma 2.10 that it suffices to establish continuity of the adjoint map

$$
p: C^{\infty}(U, E) \times C^{\infty}(U, E) \times U \rightarrow E, \quad(X, Y, u) \mapsto d Y(u ; X(u)) .
$$

Recall that the compact-open C^{∞}-topology is initial with respect to the mappings $d^{k}: C^{\infty}(U, E) \rightarrow C\left(U \times E^{k}, E\right)_{\text {c.0 }}, f \mapsto d^{k} f$. Hence the map $d: C^{\infty}(U, E) \rightarrow C(U \times E, E)$ is continuous. We can thus write the adjoint map as a composition of continuous mappings (see Lemma B.10, which uses the that U is locally compact, i.e. E finite dimensional) $p(f, g)=\operatorname{ev}(d(f), u$, $\mathrm{ev}(g, u)$), whence the Lie bracket is continuous.
D. 13 Corollary Let M be a finite-dimensional manifold.Then $(\mathcal{V}(M),[\cdot, \cdot])$ is a locally convex Lie algebra.

Proof That the vector fields form a Lie algebra is checked in Exercise 3.2.3. Recall from D. 4 that the vector fields were topologised as a subspace of a product of spaces of the form $C^{\infty}(U, E)$, where $U \subseteq M$. By construction of the Lie bracket of two vector fields, the bracket is given by a local formula on chart domains U. Hence it suffices to establish continuity of the local formula on the spaces $C^{\infty}(U, E)$. This was exactly the content of Lemma D.12.
D. 14 Remark In general, the Lie algebra of vector fields $\mathcal{V}(M)$ will not be a locally convex Lie algebra if M is an infinite-dimensional manifold. Indeed, it can be shown that Lemma D. 12 becomes false beyond the realm of Banach spaces. To see this, let $U \subseteq E$ be an open subset of a non-normable space. We consider the subalgebra

$$
\begin{aligned}
\mathcal{A} & =\left\{X_{A, b} \in C^{\infty}(U, E) \mid \text { for all } v \in E, X_{A, b}(v)\right. \\
& =A v+b, \text { for } A \in L(E, E), b \in E\}
\end{aligned}
$$

of affine vector fields. By construction we can identify $\mathcal{A} \cong L(E, E) \times E$. Here the subspace topology induced by the compact-open C^{∞}-topology of $C^{\infty}(U, E)$ on \mathcal{A} is the product topology, where E carries its natural locally convex topology and the space of continuous linear mappings $L(E, E)$ is endowed with the compact-open topology (i.e. the topology induced by the embedding $L(E, E) \subseteq C_{\text {c.o. }}(E, E)$). Indeed the latter fact is irrelevant for us; we are only interested in the fact that this topology turns $L(E, E)$ into a topological vector space. Now, the Lie bracket of $C^{\infty}(U, E)$ induces the Lie bracket

$$
\left[X_{A, b}, X_{C, d}\right](v)=(A \circ C-C \circ A)(v)+(A(d)-C(b))
$$

on the affine vector fields (these facts are left as Exercise D.1.3). To see that this Lie bracket is, in general, not continuous, it suffices to note that the evaluation map $L(E, E) \times E \rightarrow E,(A, v) \mapsto A(v)$ is discontinuous. For this we pick $0 \neq v \in E$ and consider the mapping

$$
\begin{equation*}
j: E^{\prime}=L(E, \mathbb{R}) \rightarrow L(E, E), \quad \lambda \mapsto(x \mapsto \lambda(x) \cdot v) \tag{D.5}
\end{equation*}
$$

If we endow the dual space E^{\prime} with the compact-open topology (again the subspace topology of $\left.E^{\prime} \subseteq C_{\text {c.o. }}(E, \mathbb{R})\right)$ then E^{\prime} becomes a topological vector space and j continuous. However, Proposition A. 19 shows that the evaluation $\operatorname{map} E^{\prime} \times E \rightarrow \mathbb{R}$ is discontinuous for every topological vector space E which is not normable. As j and scalar multiplication in E are continuous, this implies that the evaluation of $L(E, E)$ must be discontinuous if E is not normable. We deduce that the Lie bracket on $C^{\infty}(U, E)$ must be discontinuous if E is not normable. ${ }^{1}$

Exercises

D.1.1 Show that the construction of the topology for $\mathcal{V}(M)$ in D. 4 is just a special case of C.7.
D.1.2 Let A be an associative algebra. Show that the set of derivations $\operatorname{der}(A)$ (see Definition D.10) forms a Lie subalgebra of $(L(A, A),[\cdot, \cdot])$, where the bracket is given by the commutator bracket $[f, g]=f \circ g-g \circ f$ of linear maps.
D.1.3 We provide the missing details in Remark D.14. To this end let $U \subseteq E$ in a locally convex space and endow $C^{\infty}(U, E)$ with the compactopen topology (i.e. the topology induced by the embedding $L(E, E) \subseteq$ $C_{\text {c.o. }}(E, E)$). We consider the affine vector fields

$$
\begin{aligned}
\mathcal{A}=\left\{X_{A, b} \in C^{\infty}(U, E) \mid\right. & \text { for all } v \in E, X_{A, b}(v)=A v+b, \\
& \text { for } A \in L(E, E), b \in E\}
\end{aligned}
$$

and identify $\mathcal{A}=L(E, E) \times E$ (where $L(E, E)$ denote continuous linear maps). Show that:
(a) The subspace topology on \mathcal{A} is the product topology of the compact-open topology on $L(E, E)$ and the locally convex topology of E.
(b) The Lie bracket on $C^{\infty}(U, E)$ induces the Lie bracket

$$
\left[X_{A, b}, X_{C, d}\right]=(A \circ C-C \circ A)+(A(d)-C(b)) \text { on } \mathcal{A}
$$

(c) If we endow the dual space E^{\prime} with the compact-open topology (i.e. the subspace topology of $E^{\prime} \subseteq C_{\text {c.o. }}(E, \mathbb{R})$), then E^{\prime} is a topological vector space and the map j from (D.5) becomes continuous.

[^0]
[^0]: ${ }^{1}$ Even stronger, one can show that the evaluation must be discontinuous on $L(E, E)$ with the compact-open topology for all infinite-dimensional spaces E; see Neeb (2006, Remark I.5.3) for an exposition.

