
Appendix D

Vector Fields and Their Lie Bracket

D.1 Construction

In this appendix we recall the construction of the Lie algebra of vector fields.

D.1 Example The tangent bundle πM : T M → M is a vector bundle (bundle
trivialisations are given by the canonical charts Tϕ). A smooth section of the
tangent bundle is called (smooth) vector field and we write shorter V (M) �
Γ(T M) for the vector space of all vector fields.

D.2 Example If U ⊆◦ E in a locally convex space, we have TU = U × E
and πU : U × E → U , (u,e) �→ u. Thus a vector field of U can be written as
X = (XU ,XE ) : U → U ×E and we must have XU = idU . Hence a vector field
on U is uniquely determined by the smooth map XE ∈ C∞(U,E).

D.3 If M is a manifold and (φ,Uφ ) a manifold chart, then we have an ana-
logue of XE on Uφ for X ∈ V (M): Clearly Tφ ◦ X ◦ φ−1 = (idVφ ,Xφ ) for the
smooth map Xφ � dφ ◦ X ◦ φ−1 : Vφ → E. We call Xφ the local representative
of X or the principal part of Xwith respect to the chart φ.

For later use, consider a vector field X ∈ V (M) and a smooth function
f : M → F, where F is a locally convex space. Then we define a function
X. f ∈ C∞(M,F) via

X. f (m) � df ◦ X (m) = pr2 ◦ T f ◦ X (m). (D.1)

D.4 Similar to C.7 we topologiseV (M): Pick an atlas A of M whose charts
we denote by ϕ : Uϕ → Vϕ ⊆ Eϕ . Then we declare the topology to be the
initial topology with respect to the map

κ : V (M) →
∏

ϕ∈A
C∞(Vϕ ,Eϕ ), X �→ (Xϕ )ϕ∈X ,
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226 Vector Fields and Their Lie Bracket

where the factors on the right-hand side carry the compact open C∞-topology.
In particular, this topology turns the vector fields into a locally convex space.

We will use the notion of integral curves and flows for vector fields, whence
we recall the definition of these objects.

D.5 Let X ∈ V (M). We say a C1-curve c : [a,b] → M is an integral curve
for X if for every t ∈ [a,b] the curve satisfies ċ(t) = X (c(t)).

If M is a Banach manifold, it follows from the theory of ordinary differential
equations, Lang (1999, IV), that for every m ∈ M there exists an integral curve
cm of X on some open interval Jm �] − ε,ε[ such that cm (0) = m. Moreover,
the flow

FlX :
⋃

m∈M
{m} × Jm → M, (m, t) �→ cm (t)

defines a continuous map on some open subset of M × R. If M is modelled
on a locally convex space, the existence of integral curves and flows is not
automatic; see Appendix A.6.

D.6 Definition Let f : M → N be smooth. We call the vector fields X ∈
V (M),Y ∈ V (N ) f -related if Y ◦ f = T f ◦ X .

D.7 Lemma Let M be a manifold modelled on a locally convex space E with
atlas A. Let (Xφ )φ∈A be a family of smooth maps Xφ : Vφ → E such that
every pair Xφ ,Xψ is ψ ◦ φ−1 related on φ(Uψ ∩ Uφ ). Then there is a unique
vector field X ∈ V (M) whose local representatives coincide with the Xφ .

Proof Define X : M → T M , p �→ Tφ−1(φ(p),Xφ (φ(p))) for p ∈ Uφ . Since
the maps Xφ ,Xψ are related by the change of charts on the overlap Uφ∩Uψ , the
mapping is well defined. By construction it is smooth and a vector field. �

D.8 For principal parts of vector fields X,Y on U ⊆◦ E write XE .YE (z) �
dYE ◦ X (z) � dYE (z; XE (z)). Define

[ X,Y ] � X.Y − Y.X. X,Y ∈ C∞(U,E).

We will see in the following that the bracket of principal parts of vector fields
gives rise to a Lie bracket of vector fields.

D.9 Lemma Let U ⊆◦ E, V ⊆◦ F be open in locally convex spaces and f ∈
C∞(U,V ), X1,X2 ∈ C∞(U,E) and Y1,Y2 ∈ C∞(V,F). Assume that Xi is f -
related to Yi for i = 1,2. Then [ X1,X2 ] is f -related to [Y1,Y2 ].

Proof Using the chain rule, (1.7) and relatedness we obtain i=1,2(x,v)∈U×E.
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df (x,dXi (x; v)) = dYi ( f (x),df (x; v))−d2 f (x; Xi (x),v), (D.2)

We use this relation together with relatedness to obtain

df (x; [ X1,X2 ](x)) = df (x; dX2(x,X1(x))) − df (x; dX1(x; X2(x)))

= dY2( f (x); df (x; X1(x))) − d2 f (x; X2(x),X1(x))

− dY1( f (x); df (x; X2(x))) + d2 f (x; X1(x),X2(x))

= dY2( f (x);Y1( f (x))) − dY1( f (x);Y2( f (x)))

= [Y1,Y2 ]( f (x)),

where the second-order terms cancel by Schwarz’ theorem. �

Before we now establish the Lie algebra properties, let us recall a general
definition useful for our purpose.

D.10 Definition Let (A, ·) be an associative algebra. Then the linear map-
pings L(A, A) form a Lie algebra under the commutator bracket [φ,ψ ] �
φ ◦ψ −ψ ◦ φ, Example 3.16 (where ◦ is the usual composition of linear maps).
A mapping φ ∈ L(A, A) is called derivation of the algebra A if it satisfies the
Leibniz rule

φ(a · b) = φ(a) · b + a · φ(b) for all a,b ∈ A.

We denote by der(A) the set of all derivations of A and note that it forms a
Lie subalgebra of (L(A, A), [ · , · ]). (As no topology is involved, this will, in
general, not be a locally convex Lie algebra.)

For E a locally convex space, U ⊆◦ E and X ∈ V (U) define the Lie deriva-
tive

LX ( f ) � df ◦ X = df (idU ,XE ) for f ∈ C∞(U,R). (D.3)

By definitionLX ( f ) = X. f in the special case that f is real valued. The reason
for the new notation and name will become apparent from the following obser-
vations (see also Definition E.9): The pointwise multiplication turns C∞(U,R)
into an associative algebra. Then LX is linear in f . Thus

LX ( f · g) = LX ( f ) · g + f · LX (g). (D.4)

In other words, LX is a derivation of the algebra C∞(U,R).

D.11 Lemma Let U ⊆◦ E in a locally convex space.

(a) L[ X,Y ] = LX ◦ LY − LY ◦ LX .

(b) The map L : C∞(U,E) → der(C∞(U,R)), X �→ LX is linear and injective.
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228 Vector Fields and Their Lie Bracket

(c) The map [ · , · ] : C∞(U,E) × C∞(U,E) → C∞(U,E), (X,Y ) �→ [ X,Y ] =
X .Y − Y . X turns the space C∞(U,E) into a Lie algebra.

Proof (a) From (1.7) we deduce

LX (LY ( f )) = d2 f (x;Y (x),X (x)) + df (x; dY (x; X (x))).

Also using the formula for X and Y interchanged, we see that the second-
order terms cancel by Schwarz’ theorem and thus

[LX ,LY ]( f )(x) = L[ X,Y ] ( f )(x).

(b) LX is linear in X as df (x; ·) is. Thus it suffices to prove that the kernel of
L is trivial. Let X ∈ C∞(U,E) be a map with X (x) � 0 for some x ∈ U . By
the Hahn–Banach theorem, 1.7, we find λ ∈ E ′ with λ(X (x)) � 0. Then
LX (λ)(x) = dλ(x,X (x)) = λ(X (x)) � 0 and thus LX � 0.

(c) Clearly [ · , · ] is bilinear, whence (C∞(U,E), [ · , · ]) is an algebra. Now
[ X,X ] = X.X − X.X = 0. Recall that in the Jacobi identity, the en-
tries of the iterated Lie bracket are cyclically permuted. We write shorter∑

cycl[ X, [Y, Z ]] for this and thus have to check that this expression van-
ishes for all X,Y, Z ∈ C∞(U,E). However,

L �
�



∑

cycl

[ X, [Y, Z ]]�
�

�

=
∑

cycl

[LX , [LY ,LZ ]] = 0,

where we have used linearity of L, (a), (b) and the fact that the deriva-
tions form a Lie algebra. Since L is injective by (b), we see that the Jacobi
identity holds. �

Finally, we show that the Lie bracket of vector fields is continuous if the
space E is finite dimensional.

D.12 Lemma Let E be a finite-dimensional space and U ⊆◦ E. Then the Lie
bracket

[ · , · ] : C∞(U,E) × C∞(U,E) → C∞(U,E)

is continuous. Hence (C∞(U,E), [ · , · ]) is a locally convex Lie algebra.

Proof Note that C∞(U,E) is a locally convex space with respect to the com-
pact open C∞-topology, Proposition 2.4. To establish continuity of the Lie
bracket, we deduce from Lemma 2.10 that it suffices to establish continuity
of the adjoint map

p : C∞(U,E) × C∞(U,E) ×U → E, (X,Y,u) �→ dY (u; X (u)).
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Recall that the compact-open C∞-topology is initial with respect to the
mappings dk : C∞(U,E) → C(U × Ek ,E)c.o, f �→ dk f . Hence the map
d : C∞(U,E) → C(U × E,E) is continuous. We can thus write the adjoint
map as a composition of continuous mappings (see Lemma B.10, which uses
the that U is locally compact, i.e. E finite dimensional) p( f ,g) = ev(d( f ),u,
ev(g,u)), whence the Lie bracket is continuous. �

D.13 Corollary Let M be a finite-dimensional manifold. Then (V (M), [ · , · ])
is a locally convex Lie algebra.

Proof That the vector fields form a Lie algebra is checked in Exercise 3.2.3.
Recall from D.4 that the vector fields were topologised as a subspace of a
product of spaces of the form C∞(U,E), where U ⊆◦ M . By construction of
the Lie bracket of two vector fields, the bracket is given by a local formula on
chart domains U . Hence it suffices to establish continuity of the local formula
on the spaces C∞(U,E). This was exactly the content of Lemma D.12. �

D.14 Remark In general, the Lie algebra of vector fields V (M) will not be
a locally convex Lie algebra if M is an infinite-dimensional manifold. Indeed,
it can be shown that Lemma D.12 becomes false beyond the realm of Banach
spaces. To see this, let U ⊆◦ E be an open subset of a non-normable space. We
consider the subalgebra

A = {XA,b ∈ C∞(U,E) | for all v ∈ E, XA,b (v)

= Av + b, for A ∈ L(E,E),b ∈ E}

of affine vector fields. By construction we can identify A � L(E,E) × E.
Here the subspace topology induced by the compact-open C∞-topology of
C∞(U,E) onA is the product topology, where E carries its natural locally con-
vex topology and the space of continuous linear mappings L(E,E) is endowed
with the compact-open topology (i.e. the topology induced by the embedding
L(E,E) ⊆ Cc.o. (E,E)). Indeed the latter fact is irrelevant for us; we are only
interested in the fact that this topology turns L(E,E) into a topological vector
space. Now, the Lie bracket of C∞(U,E) induces the Lie bracket

[ XA,b ,XC,d ](v) = (A ◦ C − C ◦ A)(v) + (A(d) − C(b))

on the affine vector fields (these facts are left as Exercise D.1.3). To see that this
Lie bracket is, in general, not continuous, it suffices to note that the evaluation
map L(E,E) × E → E, (A,v) �→ A(v) is discontinuous. For this we pick
0 � v ∈ E and consider the mapping

j : E ′ = L(E,R) → L(E,E), λ �→ (x �→ λ(x) · v). (D.5)
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230 Vector Fields and Their Lie Bracket

If we endow the dual space E ′ with the compact-open topology (again the
subspace topology of E ′ ⊆ Cc.o. (E,R)) then E ′ becomes a topological vector
space and j continuous. However, Proposition A.19 shows that the evaluation
map E ′×E → R is discontinuous for every topological vector space E which is
not normable. As j and scalar multiplication in E are continuous, this implies
that the evaluation of L(E,E) must be discontinuous if E is not normable. We
deduce that the Lie bracket on C∞(U,E) must be discontinuous if E is not
normable.1

Exercises

D.1.1 Show that the construction of the topology for V (M) in D.4 is just a
special case of C.7.

D.1.2 Let A be an associative algebra. Show that the set of derivations der(A)
(see Definition D.10) forms a Lie subalgebra of (L(A, A), [ · , · ]), where
the bracket is given by the commutator bracket [ f ,g ] = f ◦ g − g ◦ f
of linear maps.

D.1.3 We provide the missing details in Remark D.14. To this end let U ⊆◦ E
in a locally convex space and endow C∞(U,E) with the compact-
open topology (i.e. the topology induced by the embedding L(E,E) ⊆
Cc.o. (E,E)). We consider the affine vector fields

A = {XA,b ∈ C∞(U,E) | for all v ∈ E, XA,b (v) = Av + b,

for A ∈ L(E,E), b ∈ E}

and identify A = L(E,E) × E (where L(E,E) denote continuous
linear maps). Show that:

(a) The subspace topology on A is the product topology of the
compact-open topology on L(E,E) and the locally convex topol-
ogy of E.

(b) The Lie bracket on C∞(U,E) induces the Lie bracket

[ XA,b ,XC,d ] = (A ◦ C − C ◦ A) + (A(d) − C(b)) on A.

(c) If we endow the dual space E ′ with the compact-open topol-
ogy (i.e. the subspace topology of E ′ ⊆ Cc.o. (E,R)), then E ′ is
a topological vector space and the map j from (D.5) becomes
continuous.

1 Even stronger, one can show that the evaluation must be discontinuous on L(E, E ) with the
compact-open topology for all infinite-dimensional spaces E; see Neeb (2006, Remark I.5.3)
for an exposition.
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