H. Morikawa

Nagoya Math. J.
Vol. 96 (1984), 113-126

A DECOMPOSITION THEOREM ON DIFFERENTIAL POLYNOMIALS OF THETA FUNCTIONS

HISASI MORIKAWA

Let $\tau=\left(\tau_{i j}\right)$ be a symmetric complex $g \times g$ matrix with the positive definite imaginary part. A theta function of level n means an entire function $f(z)$ in g complex variables $z=\left(z_{1}, \cdots, z_{g}\right)$ satisfying the difference relations:

$$
f(z+\hat{b}+b \tau)=\exp \left(-\pi n \sqrt{-1}\left(b \tau^{t} b+2 z^{t} b\right)\right) f(z), \quad\left((\hat{b}, b) \in Z^{g} \times Z^{g}\right)
$$

Denoting by $\Theta_{0}^{(n)}$ the vector space of theta functions of level n, we get the graded algebra of theta functions;

$$
\Theta_{0}=\sum_{n \geq 1} \Theta_{0}^{(n)}
$$

Theta series

$$
\begin{gathered}
\vartheta^{(n)}\left[\begin{array}{c}
a / n \\
0
\end{array}\right](\tau \mid z)=\sum_{\ell \in \boldsymbol{Z}^{g}} \exp \left(\pi n \sqrt{-1}\left(\left(\ell+\frac{a}{n}\right) \tau^{t}\left(\ell+\frac{a}{n}\right)+2 z^{t}\left(\ell+\frac{a}{n}\right)\right)\right), \\
\left(a \in \boldsymbol{Z}^{g} / n \boldsymbol{Z}^{g}\right)
\end{gathered}
$$

form a canonical basis of $\Theta_{0}^{(n)}$, and thus

$$
\operatorname{dim} \Theta_{0}^{(n)}=n^{g}
$$

In the present article we shall prove the following decomposition theorem:

The algebra of differential polynomials of theta functions has a canonical linear basis

$$
\left\{\left.\left(\frac{\partial}{\partial z}\right)^{j} \vartheta^{(n)}\left[\begin{array}{c}
a / n \\
0
\end{array}\right](\tau \mid z) \right\rvert\, j \in Z_{z 0}^{g}, a \in Z^{g} / n Z, n \geq 1\right\}
$$

i.e. any differential polynomial is uniquely expressed as a linear combination of $(\partial / \partial z)^{j} \vartheta^{(n)}\left[\begin{array}{c}a / n \\ 0\end{array}\right](\tau \mid z),\left(j \in \boldsymbol{Z}_{\geq 0}^{g}, a \in \boldsymbol{Z}^{g} / n \boldsymbol{Z}^{g}, n \geq 1\right)$ with constant

Received November 14, 1983.
coefficients depending on τ. More precisely we have the explicit expressions of the components of the decomposition.

The key is a very similar idea as making transvectants in the classical invariant theory, however the Lie algebra is Heisenberg Lie algebra instead of $s \ell_{2}$. The algebra Θ_{0} of theta functions is embedded in a graded algebra Θ of auxiliary theta functions in $2 g$ complex variables $(u, z)=$ ($u_{1}, \cdots, u_{g}, z_{1}, \cdots, z_{g}$) with the following properties,
1° A realization $\left\langle\mathscr{E}, \mathscr{D}_{1}, \cdots, \mathscr{D}_{g}, \Delta_{1}, \cdots, \Delta_{g}\right\rangle$ of Heisenberg Lie algebra acts on Θ as derivations,
$2^{\circ} \Theta_{0}$ is the subalgebra consisting of all the elements φ such that $\mathscr{D}_{i} \varphi=0(1 \leq i \leq g)$,
$3^{\circ} \quad\left\{\left.\Delta^{j} \vartheta^{(n)}\left[\begin{array}{c}a / n \\ 0\end{array}\right](\tau \mid z) \right\rvert\, j \in \boldsymbol{Z}_{\geq 0}^{g}, a \in \boldsymbol{Z}^{g} / n \boldsymbol{Z}^{g}, n \geq 1\right\}$ is a canonical linear basis of Θ,
4° The mapping

$$
\Delta^{j} \vartheta^{(n)}\left[\begin{array}{c}
a / n \\
0
\end{array}\right](\tau \mid z) \longrightarrow\left(\frac{\partial}{\partial z}\right)^{j} \vartheta^{(n)}\left[\begin{array}{c}
a / n \\
0
\end{array}\right](\tau \mid z), \quad\left(j \in Z_{z 0}^{g}, a \in Z^{g} / n Z^{g}, n \geq 1\right)
$$

induces an algebra isomorphism of Θ onto the algebra of differential polynomials of theta functions.

We shall also characterize differential polynomials of theta functions which are theta functions.

The associative law for the structure constants of

$$
C\left[\cdots,\left(\frac{\partial}{\partial z}\right)^{j} \vartheta^{(n)}\left[\begin{array}{c}
a / n \\
0
\end{array}\right](\tau \mid z), \cdots\right]
$$

with respect to the basis must be very important relations between

$$
\left\{\left.\left(\frac{\partial}{\partial z}\right)^{j} \vartheta^{(n)}\left[\begin{array}{c}
a / n \\
0
\end{array}\right]\left(\tau \left\lvert\, \frac{\hat{a}}{n}\right.\right) \right\rvert\, j \in Z_{20}^{g} ; a, \hat{a} \in Z^{g} / n Z^{g} ; n \geq 1\right\} .
$$

Notations.

$$
\begin{gathered}
\boldsymbol{Z}_{20}=\{\text { non-negative integers }\}, \boldsymbol{Z}_{20}^{g}=\left\{j=\left(j_{1}, \cdots, j_{g}\right) \mid j_{i} \in Z_{>0}\right\}, \\
j \pm \varepsilon_{i}=\left(j_{1}, \cdots, j_{i-1}, j_{i} \pm 1, j_{i+1}, \cdots, j_{g}\right), j!=j_{1}!\cdots j_{g}!, \\
\binom{j}{p}=\binom{j_{1}}{p_{1}} \cdots\binom{j_{g}}{p_{g}},\binom{j}{k^{(1)}, \cdots, k^{(r)}}=\binom{j_{1}}{k_{1}^{(1)}, \cdots, k_{1}^{(r)}} \cdots\binom{j_{g}}{k_{g}^{(1)}, \cdots, k_{g}^{(r)}}, \\
|j|=j_{1}+\cdots+j_{g}, u=\left(u_{1}, \cdots, u_{g}\right), z=\left(z_{1}, \cdots, z_{g}\right), u^{j}=u_{1}^{j_{1}} \cdots u_{g}^{j_{g}}, \\
z^{j}=z_{1}^{j_{1}}, \cdots, z_{g}^{j_{g}}, \\
\left(\frac{\partial}{\partial u}\right)^{j}=\left(\frac{\partial}{\partial u_{1}}\right)^{j_{1}} \cdots\left(\frac{\partial}{\partial u_{g}}\right)^{j_{g}},\left(\frac{\partial}{\partial z}\right)^{j}=\left(\frac{\partial}{\partial z_{1}}\right)^{j_{1}} \cdots\left(\frac{\partial}{\partial z_{g}}\right)^{j_{g}},
\end{gathered}
$$

$$
\left(2 \pi n \sqrt{-1} u+\frac{\partial}{\partial u}\right)^{j}=\left(2 \pi n \sqrt{-1} u_{1}+\frac{\partial}{\partial z_{1}}\right)^{j_{1}} \cdots\left(2 \pi n \sqrt{-1} u_{g}+\frac{\partial}{\partial z_{g}}\right)^{j_{g}}
$$

§1. Auxiliary theta functions

1.1. An auxiliary theta function of level n means a function $\varphi(u, z)$ in $2 g$ complex variables $(u, z)=\left(u_{1}, \cdots, u_{g}, z_{1}, \cdots, z_{g}\right)$ such that
$1^{\circ} \varphi(u, z)$ is a polynomial in $u=\left(u_{1}, \cdots, u_{g}\right)$ whose coefficients are entire functions in $z=\left(z_{1}, \cdots, z_{g}\right)$,
$2^{\circ} \varphi(u+b, z+\hat{b}+b \tau)=\exp \left(-\pi n \sqrt{-1}\left(b \tau^{t} b+2 z^{t} b\right)\right) \varphi(u, z),((\hat{b}, b) \in$ $\boldsymbol{Z}^{g} \times \boldsymbol{Z}^{g}$).

Denoting by $\Theta^{(n)}$ the vector space of auxiliary theta functions of level n, we obtain a graded algebra

$$
\Theta=\sum_{n \geq 1} \Theta^{(n)}
$$

of auxiliary theta functions, which contains the graded algebra Θ_{0} of theta functions as the subalgebra of polynomials of degree zero in u. Auxiliary theta series are also defined as follows,

$$
\begin{align*}
& \vartheta_{j}^{(n)}\left[\begin{array}{c}
a / n \\
0
\end{array}\right](\tau \mid u, z) \\
& =(2 \pi n \sqrt{-1})^{|j|} \sum_{\ell \in Z^{g}}\left(u+\ell+\frac{a}{n}\right)^{j} \tag{1.1}\\
& \quad \cdot \exp \pi n \sqrt{-1}\left(\left(\ell+\frac{a}{n}\right) \tau^{t}\left(\ell+\frac{a}{n}\right)+2 z^{t}\left(\ell+\frac{a}{n}\right)\right) \\
& \quad\left(j \in Z_{z 00}^{g}, a \in Z^{g} / n Z^{g}, n \geq 1\right) .
\end{align*}
$$

Lemma 1.1.

$$
\begin{gather*}
\vartheta_{j}^{(n)}\left[\begin{array}{c}
a / n \\
0
\end{array}\right](\tau \mid u, z)=\left(2 \pi n \sqrt{-1} u+\frac{\partial}{\partial z}\right)^{j} \vartheta^{(n)}\left[\begin{array}{c}
a / n \\
0
\end{array}\right](\tau \mid z), \tag{1.2}\\
\vartheta_{j}^{(n)}\left[\begin{array}{c}
a / n \\
0
\end{array}\right](\tau \mid u+b, z+\hat{b}+b \tau) \\
=\exp \left(-\pi n \sqrt{-1}\left(b \tau^{t} b+2 z^{t} b\right)\right) \vartheta_{j}^{(n)}\left[\begin{array}{c}
a / n \\
0
\end{array}\right](\tau \mid u, z) \tag{1.3}\\
\left.\quad(\hat{b}, b) \in Z^{g} \times Z^{g}\right) .
\end{gather*}
$$

Proof. For a, b, \hat{b} in Z^{g} we have

$$
\begin{aligned}
& \left(2 \pi n \sqrt{-1} u+\frac{\partial}{\partial z}\right)^{j} \exp \left(\pi n \sqrt{-1}\left(\left(\ell+\frac{a}{n}\right) \tau^{t}\left(\ell+\frac{a}{n}\right)+2 z^{t}\left(\ell+\frac{a}{n}\right)\right)\right) \\
& =(2 \pi n \sqrt{-1})^{|j|}\left(u+\ell+\frac{a}{n}\right)^{j} \\
& \quad \exp \left(\pi n \sqrt{-1}\left(\left(\ell+\frac{a}{n}\right) \tau^{t}\left(\ell+\frac{a}{n}\right)+2 z\left(\ell+\frac{a}{n}\right)\right)\right), \\
& \left(u+\ell+b+\frac{a}{n}\right)^{j} \\
& \quad \cdot \exp \left(\pi n \sqrt{-1}\left(\left(\ell+b+\frac{a}{n}\right) \tau^{t}\left(\ell+b+\frac{a}{b}\right)+2 z^{t}\left(\ell+b+\frac{a}{n}\right)\right)\right) \\
& =\exp \left(\pi n \sqrt{-1}\left(b \tau^{t} b+2 z^{t} b\right)\left(u+\ell+b+\frac{a}{n}\right)^{j}\right. \\
& \quad \cdot \exp \left(\pi n \sqrt { - 1 } \left(\left(\ell+\frac{a}{n}\right) \tau^{t}\left(\ell+\frac{a}{n}\right) \tau^{t}\left(\ell+\frac{a}{n}\right)\right.\right. \\
& \left.\left.\quad+2(z+\hat{b}+b \tau)\left(\ell+\frac{a}{n}\right)\right)\right) .
\end{aligned}
$$

Hence, making the sum with respect to $\ell \in \boldsymbol{Z}^{g}$, we obtain (1.2), (1.3).
Theorem 1.1. $\left\{\left.\vartheta_{j}^{(n)}\left[\begin{array}{c}a / n \\ 0\end{array}\right](\tau \mid u, z) \right\rvert\, j \in Z_{Z 0}^{g}, a \in \boldsymbol{Z}^{g} / n \boldsymbol{Z}^{g}\right\}$ is a basis of the space Θ^{n} of auxiliary theta functions of level n.

Proof. By virtue of Lemma $1.1 \vartheta_{j}^{(n)}\left[\begin{array}{c}a / n \\ 0\end{array}\right](\tau \mid u, z)\left(j \in Z_{Z_{0}^{g}}^{g}, a \in Z^{g} / n Z^{g}\right)$ belong to $\Theta^{(n)}$, and obviously they are linearly independent. Let $\varphi(u, z)$ $=\sum_{j} u^{j} f_{j}(z)$ be an element of $\Theta^{(n)}$, and let $u^{k} f_{k}(z)$ be one of terms with maximal degree k in u. Then, comparing the coefficients of u^{k} in the both sides of

$$
\sum_{j}(u+b)^{j} f_{j}(z+\hat{b}+b \tau)=\exp \left(-\pi n \sqrt{-1}\left(b \tau^{t} b+2 z^{t} b\right)\right) \sum_{j} u^{j} f_{j}(z),
$$

we have

$$
f_{k}(z+\hat{b}+b \tau)=\exp \left(-\pi n \sqrt{-1}\left(b \tau^{t} b+2 z^{t} b\right)\right) f_{k}(z) .
$$

This means that there exists a system $\left(\alpha_{a}\right)_{a \in \boldsymbol{Z}^{g} / n Z^{g}}$ of constants such that

$$
f_{k}(z)=\sum_{a} \alpha_{a} \vartheta^{(n)}\left[\begin{array}{c}
a / n \\
0
\end{array}\right](\tau \mid z),
$$

and thus

$$
\varphi(u, z)-\sum_{a} \alpha_{a} \vartheta_{k}^{(n)}\left[\begin{array}{c}
a / n \\
0
\end{array}\right](\tau \mid u, z)
$$

is an element in $\Theta^{(n)}$ without u^{k}-term and all the new terms are of lower degree than k in u. Proceeding this process successively, we can express $\varphi(u, z)$ as a linear sum of $\vartheta_{j}^{(n)}\left[\begin{array}{c}a / n \\ 0\end{array}\right](\tau \mid u, z)\left(j \in Z_{z 0}^{g}, a \in \boldsymbol{Z}^{g} / n Z^{g}\right)$.
1.2. Denoting the projection operators by

$$
\sigma^{(n)}: \Theta \longrightarrow \Theta^{(n)}, \quad(n \geq 1)
$$

we define differential operators

$$
\begin{aligned}
& \mathscr{E}=\sum_{n \geq 1} n \sigma^{(n)}, \\
& \mathscr{D}_{i}=\sum_{n \geq 1} \frac{1}{2 \pi \sqrt{-1}} \frac{\partial}{\partial u_{i}} \circ \sigma^{(n)}, \\
& \Delta_{i}=\sum_{n \geq 1}\left(2 \pi n \sqrt{-1} u_{i}+\frac{\partial}{\partial z_{i}}\right) \circ \sigma^{(n)}, \\
& \mathscr{D}^{j}=\mathscr{D}_{1}^{j_{1}} \cdots \mathscr{D}_{8}^{j_{g}}, \quad \Delta_{1}^{j_{1}} \cdots \Delta_{g}^{j_{g}} .
\end{aligned}
$$

Proposition 1.1.

$$
\begin{align*}
& \mathscr{D}_{i} \vartheta_{j}^{(n)}\left[\begin{array}{c}
a / n \\
0
\end{array}\right](\tau \mid u, z)=n j_{i} \vartheta_{j-\epsilon_{i}}^{(n)}\left[\begin{array}{c}
a / n \\
0
\end{array}\right](\tau \mid u, z), \tag{1.4}\\
& \Delta_{i} \vartheta_{j}^{(n)}\left[\begin{array}{c}
a / n \\
0
\end{array}\right](\tau \mid u, z)=\vartheta_{j+\varepsilon_{i}}^{(n)}\left[\begin{array}{c}
a / n \\
0
\end{array}\right](\tau \mid u, z), \tag{1.5}
\end{align*}
$$

$$
\vartheta_{j}^{(n)}\left[\begin{array}{c}
a / n \\
0
\end{array}\right](\tau \mid u, z)=\Delta^{j} \vartheta^{(n)}\left[\begin{array}{c}
a / n \\
0
\end{array}\right](\tau \mid z)
$$

$$
\frac{1}{p!} \mathscr{D}^{p} \vartheta_{j}^{(n)}\left[\begin{array}{c}
a / n \\
0
\end{array}\right](\tau \mid u, z)=\binom{j}{p} n^{|p|} \vartheta_{j-p}^{(n)}\left[\begin{array}{c}
a / n \\
0
\end{array}\right](\tau \mid u, z)
$$

$$
\frac{1}{j!} \mathscr{D}^{j} \vartheta_{j}^{(n)}\left[\begin{array}{c}
a / n \\
0
\end{array}\right](\tau \mid u, z)=n^{|j|} \vartheta^{(n)}\left[\begin{array}{c}
a \mid n \\
0
\end{array}\right](\tau \mid z)
$$

$$
\left(j, p \in Z_{\geq 0,}^{g}, j \geq p, a \in Z^{g} / n Z^{g}, n \geq 1\right)
$$

Proof. From the expression

$$
\vartheta_{j}^{(n)}\left[\begin{array}{c}
a / n \\
0
\end{array}\right](\tau \mid u, z)=\left(2 \pi n \sqrt{-1} u+\frac{\partial}{\partial z}\right)^{j} \vartheta^{(n)}\left[\begin{array}{c}
a / n \\
0
\end{array}\right](\tau \mid z)
$$

it follows (1.4), (1.5), (1.6). Applying (1.4) and (1.5) successively, we have (1.7), (1.8).

Proposition 1.2. $\mathscr{E}, \mathscr{D}_{1}, \cdots, \mathscr{D}_{g}, \Delta_{1}, \cdots, \Delta_{g}$ are derivations of Θ such that

$$
\begin{align*}
& {\left[\mathscr{E}, \mathscr{D}_{i}\right]=\left[\mathscr{E}, \Delta_{i}\right]=\left[\mathscr{D}_{i}, \mathscr{D}_{j}\right]=\left[\Delta_{i}, \Delta_{j}\right]=0,} \tag{1.9}\\
& {\left[\mathscr{D}_{i}, \Delta_{i^{\prime}}\right]=\left\{\begin{array}{ll}
\mathscr{E} & \left(i=i^{\prime}\right) \\
0 & \left(i \neq i^{\prime}\right)
\end{array} \quad\left(1 \leq i, i^{\prime}, j \leq g\right) .\right.}
\end{align*}
$$

Proof. By virtue of Proposition $1.2 \mathscr{E}, \mathscr{D}_{1}, \cdots, \mathscr{D}_{g}, \Delta_{1}, \cdots, \Delta_{g}$, map Θ into itself. Since $\Theta=\sum_{n \geq 1} \Theta^{(n)}$ is a graded algebra, $\mathscr{E}, \mathscr{D}_{1}, \cdots, \mathscr{D}_{g}$, $\Delta_{1}, \cdots, \Delta_{g}$ are derivations of Θ. By simple calculation we have (1.9).

Proposition 1.2 states $\left\langle\mathscr{E}, \mathscr{D}_{1}, \cdots, \mathscr{D}_{g}, \Delta_{1}, \cdots, \Delta_{g}\right\rangle$ is a realization of Heisenberg Lie algebra acting on Θ as derivations.

Proposition 1.3. The graded algebra of theta functions is the subalgebra consisting of all the elements φ such that $\mathscr{D}_{i} \varphi=0(1 \leq i \leq g)$.

Proof. Each ϕ in Θ_{0} contains no u_{i} and

$$
\mathscr{D}_{i}=\sum_{n \geq 1} \frac{1}{2 \pi \sqrt{-1}} \frac{\partial}{\partial u_{i}} \circ \sigma^{(n)} \quad(1 \leq i \leq g),
$$

hence we have $\mathscr{D}_{i} \varphi=0(1 \leq i \leq g)$. Conversely, assume

$$
\mathscr{D}_{i}\left(\sum \alpha_{j, a / n, n} \vartheta_{j}^{(n)}\left[\begin{array}{c}
a / n \\
0
\end{array}\right](\tau \mid u, z)\right)=0 \quad(1 \leq i \leq g) .
$$

Then it follows

$$
\sum n j_{i} \alpha_{j, a / n, n} \vartheta_{j-s_{i}}^{(n)}\left[\begin{array}{c}
a / n \\
0
\end{array}\right](\tau \mid u, z)=0 \quad(1 \leq i \leq g)
$$

This means $\alpha_{j, a / n, n}=0$ for $j \neq 0$.

§ 2. Projection operators

2.1. In order to express the projection operators

$$
\sigma_{j}^{(n)}: \Theta \longrightarrow \Delta^{j} \Theta_{0}^{(n)} \quad\left(j \in Z_{Z 0}^{g}, n \geq 1\right),
$$

we need a lemma.
Lemma 2.1.

$$
\left(\sum_{p \leq k} \frac{(-1)^{|p|}}{p!} n^{-|p|} \Delta^{p} \mathscr{D}^{p}\right) \vartheta_{k}^{(n)}\left[\begin{array}{c}
a / n \tag{2.1}\\
0
\end{array}\right](\tau \mid u, z)=\left\{\begin{array}{cc}
\vartheta^{(n)}\left[\begin{array}{c}
a / n \\
0
\end{array}\right](\tau \mid z) & (k=0) \\
0 & (k \neq 0)
\end{array}\right.
$$

$$
\begin{gather*}
\left(\Delta^{j}\left(\sum_{p} \frac{(-1)^{|p|}}{p!} n^{-|p|} \Delta^{p} \mathscr{D}^{p}\right) \frac{1}{j!} n^{-|j|} \mathscr{D}^{j}\right) \vartheta_{k}^{(n)}\left[\begin{array}{c}
a / n \\
0
\end{array}\right](\tau \mid u, z) \\
\quad=\left\{\begin{array}{cc}
\vartheta_{j}^{(n)}\left[\begin{array}{c}
a / n \\
0
\end{array}\right](\tau \mid u, z) & (k=j) \\
0 & (k \neq j)
\end{array},\right. \tag{2.2}\\
\left(j, k \in Z_{Z 0,}^{g},\right. \\
\left.a \in Z^{g} / n Z^{g}, n \geq 1\right) .
\end{gather*}
$$

Proof. From (1.4), (1.5), (1.6), (1.7) it follows

$$
\begin{aligned}
& \left(\sum_{p} \frac{(-1)^{|p|}}{p!} n^{-|p|} \Delta^{p} \mathscr{D}^{p}\right) \vartheta_{k}^{(n)}\left[\begin{array}{c}
a / n \\
0
\end{array}\right](\tau \mid u, z) \\
& =\sum_{p \leq k}(-1)^{|p|}\binom{k}{p} \Delta^{p} \vartheta_{k-p}^{(n)}\left[\begin{array}{c}
a / n \\
0
\end{array}\right](\tau \mid u, z) \\
& =\left(\sum_{p \leq k_{1}}(-1)^{|p|}\binom{k}{p}\right) \cdot \vartheta_{k}^{(n)}\left[\begin{array}{c}
a / n \\
0
\end{array}\right](\tau \mid u, z) \\
& =\left\{\begin{array}{cc}
\vartheta^{(n)}\left[\begin{array}{c}
a / n \\
0
\end{array}\right](\tau \mid z) & (k=0) \\
0 & (k \neq 0)
\end{array},\right. \\
& \left(\Delta^{j}\left(\sum_{p} \frac{(-1)^{|p|}}{p!} n^{-|p|} \Delta^{p} \mathscr{D}^{p}\right) \frac{1}{j!} n^{-|j|} \mathscr{D}^{j}\right) \vartheta_{k}^{(n)}\left[\begin{array}{c}
a / n \\
0
\end{array}\right](\tau \mid u, z) \\
& =\Delta^{j}\left(\sum_{p} \frac{(-1)^{|p|}}{p!} n^{-|p|} \Delta^{p} \mathscr{D}^{p}\right)\binom{k}{j} \vartheta_{k-j}^{(n)}\left[\begin{array}{c}
a / n \\
0
\end{array}\right](\tau \mid u, z) \\
& =\binom{k}{j} \Delta^{j}\left(\sum_{p} \frac{(-1)^{|p|}}{p!} n^{-|p|} \Delta^{p} \mathscr{D}^{p}\right) \vartheta_{k-j}^{(n)}\left[\begin{array}{c}
a / n \\
0
\end{array}\right](\tau \mid u, z) \\
& = \begin{cases}\Delta^{j} \vartheta^{(n)}\left[\begin{array}{c}
a / n \\
0
\end{array}\right](\tau \mid z)=\vartheta_{j}^{(n)}\left[\begin{array}{c}
a / n \\
0
\end{array}\right](\tau \mid u, z) & (j=k) \\
0 & (j \neq k)\end{cases}
\end{aligned}
$$

Theorem 2.1. Θ has the direct sum decomposition

$$
\begin{equation*}
\Theta=\sum_{i \in Z_{Z 0}^{g}} \Delta^{j} \Theta_{0}=\sum_{n \geq 1} \sum_{j \in Z_{\geq 0}^{g}} \Delta^{j} \Theta_{0}^{(n)} \tag{2.3}
\end{equation*}
$$

such that Δ^{j} induces a vector space isomorphism of $\Theta_{0}^{(n)}$ onto $\Delta^{j} \Theta_{0}^{(n)}$. The projection operators

$$
\boldsymbol{\sigma}_{j}^{(n)}: \Theta \longrightarrow \Delta^{j} \Theta_{0}^{(n)}
$$

are given by

$$
\begin{gather*}
\sigma_{j}^{(n)}=\Delta^{j}\left(\sum_{p} \frac{(-1)^{|p|}}{p!} n^{-|p|} \Delta^{p} \mathscr{D}^{p}\right) \frac{1}{j!} n^{-|j|} \mathscr{D}^{j} \circ \sigma^{(n)} \tag{2.4}\\
\left(j \in \dot{Z}_{\geq 0}^{g}, n \geq 1\right) .
\end{gather*}
$$

Proof. The first part of the assertion is a direct consequence of the fact: $\left\{\vartheta_{j}^{(n)}\left[\begin{array}{c}a / n \\ 0\end{array}\right](\tau \mid u, z)\left|j \in \boldsymbol{Z}_{z 0}^{g}, \quad a \in \boldsymbol{Z}^{g}\right| n \boldsymbol{Z}^{g}, \quad n \geq 1\right\},\left\{\left.\vartheta_{j}^{(n)}\left[\begin{array}{c}a / n \\ 0\end{array}\right](\tau \mid u, z) \right\rvert\, a \in\right.$ $\left.\boldsymbol{Z}^{g} / n \boldsymbol{Z}^{g}\right\}$ and $\left\{\left.\vartheta^{(n)}\left[\begin{array}{c}a / n \\ 0\end{array}\right](\tau \mid z) \right\rvert\, a \in Z^{g} / n Z^{g}\right\}$ are the basis of $\Theta, \Delta^{j} \Theta_{0}^{(n)}$ and $\Theta_{0}^{(n)}$, respectively. The expression (2.4) is a direct consequence of (2.2).

Corollary. The inverse mapping of $\Delta^{j}: \Theta_{0}^{(n)} \rightarrow \Delta^{j} \Theta_{0}^{(n)}$ is given by

$$
\begin{equation*}
\left(\sum_{p} \frac{(-1)^{|p|}}{p!} n^{-|p|} \Delta^{p} \mathscr{D}^{p}\right) \frac{1}{j!} n^{-|j|} \mathscr{D}^{j} \quad\left(j \in Z_{\geq 0}^{g}, n \geq 1\right) \tag{2.5}
\end{equation*}
$$

Proof. Since the mapping

$$
\vartheta^{(n)}\left[\begin{array}{c}
a / n \\
0
\end{array}\right](\tau \mid z) \longrightarrow \Delta^{j} \vartheta^{(n)}\left[\begin{array}{c}
a / n \\
0
\end{array}\right](\tau \mid z)=\vartheta_{j}^{(n)}\left[\begin{array}{c}
a / n \\
0
\end{array}\right](\tau \mid u, z)
$$

is a bijection, (2.4) implies (2.5).
§3. Decomposition theorem on differential polynomials of theta functions
3.1. First let us prove the algebra isomorphic theorem:

Theorem 3.1. The replacement

$$
\Delta^{j} \varphi(z) \longrightarrow\left(\frac{\partial}{\partial z}\right)^{j} \varphi(z) \quad\left(j \in Z_{\geq 0}^{g}, \varphi \in \Theta_{0}\right)
$$

induces a Θ_{0}-algebra isomorphism of Θ onto the algebra

$$
C\left[\cdots,\left(\frac{\partial}{\partial z}\right)^{j} \vartheta^{(n)}\left[\begin{array}{c}
a / n \\
0
\end{array}\right](\tau \mid z), \cdots\right]
$$

of differential polynomials of theta functions, namely

$$
\begin{aligned}
& 1^{\circ} G\left(\cdots, \Delta^{j} \vartheta^{(n)}\left[\begin{array}{c}
a / n \\
0
\end{array}\right](\tau \mid z), \cdots\right)=0, \\
& \text { if and only if } G\left(\cdots,\left(\frac{\partial}{\partial z}\right)^{j} \vartheta^{(n)}\left[\begin{array}{c}
a / n \\
0
\end{array}\right](\tau \mid z), \cdots\right)=0, \\
& 2^{\circ} \quad G\left(\cdots, \Delta^{j} \vartheta^{(n)}\left[\begin{array}{c}
a / n \\
0
\end{array}\right](\tau \mid z), \cdots\right)=G\left(\cdots,\left(\frac{\partial}{\partial z}\right)^{j} \vartheta^{(n)}\left[\begin{array}{c}
a / n \\
0
\end{array}\right](\tau \mid z), \cdots\right) \\
& \text { if and only if } G\left(\cdots,\left(\frac{\partial}{\partial z}\right)^{j} \vartheta^{(n)}\left[\begin{array}{c}
a / n \\
0
\end{array}\right](\tau \mid z), \cdots\right) \in \Theta_{0} .
\end{aligned}
$$

Proof. It is enough to assume $G\left(\cdots, \Delta^{j} \vartheta^{(n)}\left[\begin{array}{c}a / n \\ 0\end{array}\right](\tau \mid u, z), \cdots\right)$ belongs
to $\Theta^{(m)}$ with some m. If $G\left(\cdots, \Delta^{j} \vartheta^{(n)}\left[\begin{array}{c}a / n \\ 0\end{array}\right](\tau \mid z), \cdots\right)=0$, then putting $u=0$, we obtain $G\left(\cdots,\left(\frac{\partial}{\partial z}\right)^{j} \vartheta^{(n)}\left[\begin{array}{c}a / n \\ 0\end{array}\right](\tau \mid z), \cdots\right)=0$. By virtue of the direct decomposition theorem we may put

$$
G\left(\cdots, \Delta^{j} \vartheta^{(n)}\left[\begin{array}{c}
a / n \\
0
\end{array}\right](\tau \mid z), \cdots\right)=\sum_{h} \Delta^{n} \phi_{h}(z)
$$

with $\phi_{h} \in \Theta_{0}^{(m)}$. If we assume $G\left(\cdots,\left(\frac{\partial}{\partial z}\right)^{j} \vartheta^{(n)}\left[\begin{array}{c}a / n \\ 0\end{array}\right](\tau \mid z), \cdots\right)=0$, then we have

$$
\begin{aligned}
\sum_{h}\left(\frac{\partial}{\partial z}\right)^{h} \phi_{h}(z) & =G\left(\cdots, \Delta^{j} \vartheta^{(n)}\left[\begin{array}{c}
a / n \\
0
\end{array}\right](\tau \mid z), \cdots\right)_{\mid u=0} \\
& =G\left(\cdots,\left(\frac{\partial}{\partial z}\right)^{j} \vartheta^{(n)}\left[\begin{array}{c}
a / n \\
0
\end{array}\right](\tau \mid z), \cdots\right)=0 .
\end{aligned}
$$

Therefore it is enough to show $\phi_{h}(z)=0$ under the condition

$$
\sum_{h}\left(\frac{\partial}{\partial z}\right)^{h} \phi_{h}(z)=0 \quad \text { and } \quad \phi_{h}(z) \in \Theta_{0}^{(m)} .
$$

For each $b \in \boldsymbol{Z}^{g}$ it follows

$$
\begin{aligned}
& \phi_{h}(z+b \tau)=\exp (-\left.\pi m \sqrt{-1}\left(b \tau^{t} b+2 z^{t} b\right)\right) \phi_{h}(z), \\
& \begin{aligned}
\sum_{h}\left(\frac{\partial}{\partial z}\right)^{h} \phi_{h}(z+b \tau)= & \sum_{h}\left(\frac{\partial}{\partial z}\right)^{h}\left(\exp \left(-\pi m \sqrt{-1}\left(b \tau^{t} b+2 z^{t} b\right)\right) \phi_{h}(z)\right) \\
= & \exp \left(-\pi m \sqrt{-1}\left(b \tau^{t} b+2 z^{t} b\right)\right) \sum_{h} \sum_{p}\binom{h}{p} \\
& \cdot(-2 \pi m \sqrt{-b})^{p}\left(\frac{\partial}{\partial z}\right)^{h-p} \phi^{h}(z) \quad\left(b \in Z^{g}\right)
\end{aligned}
\end{aligned}
$$

and thus

$$
\text { (*) } \quad \sum_{h} \sum_{p}\binom{h}{p}(-2 \pi m \sqrt{-1} b)^{p}\left(\frac{\partial}{\partial z}\right)^{h-p} \phi_{h}(z)=0 \quad\left(b \in Z^{g}\right) .
$$

Let h_{0} be one of maximal h in the above sum. Then, the coefficients of $b^{h_{0}}$ in the polynomial relation (*) in b is given by $(-2 \pi m \sqrt{-1})^{\left|n_{0}\right|} \phi_{h_{0}}(z)$, hence we may conclude $\phi_{h_{0}}(z)=0$. Proceeding this process successively we have $\phi_{h}(z)=0$, i.e. $G\left(\cdots, \Delta^{j} \vartheta^{(n)}\left[\begin{array}{c}a / n \\ 0\end{array}\right](\tau \mid z), \cdots\right)=0$. Since $G(\cdots$, $\left.\Delta^{j} \vartheta^{(n)}\left[\begin{array}{c}a / n \\ 0\end{array}\right](\tau \mid z), \cdots\right)$ belongs to $\Theta^{(m)}$, assuming

$$
G\left(\cdots, \Delta^{j} \vartheta^{(n)}\left[\begin{array}{c}
a / n \\
0
\end{array}\right](\tau \mid z), \cdots\right)=G\left(\cdots,\left(\frac{\partial}{\partial z}\right)^{j} \vartheta^{(n)}\left[\begin{array}{c}
a / n \\
0
\end{array}\right](\tau \mid z), \cdots\right),
$$

we have

$$
\begin{aligned}
& G\left(\cdots,\left(\frac{\partial}{\partial z}\right)^{j} \vartheta^{(n)}\left[\begin{array}{c}
a / n \\
0
\end{array}\right](\tau \mid z), \cdots\right)_{\mid z \rightarrow z+\hat{\delta}+b \tau} \\
& \quad=G\left(\cdots, \Delta^{j} \vartheta^{(n)}\left[\begin{array}{c}
a / n \\
0
\end{array}\right](\tau \mid z), \cdots\right)_{1(u, z)-(u+b, z+\hat{\delta}+b \tau)} \\
& \quad=\exp \left(-\pi m \sqrt{-1}\left(b \tau^{t} b+2 z^{t} b\right)\right) G\left(\cdots, \Delta^{j} \vartheta^{(n)}\left[\begin{array}{c}
a / n \\
0
\end{array}\right](\tau \mid z), \cdots\right) \\
& \quad=\exp \left(-\pi m \sqrt{-1}\left(b \tau^{t} b+2 z^{t} b\right)\right) G\left(\cdots,\left(\frac{\partial}{\partial z}\right)^{j} \vartheta^{(n)}\left[\begin{array}{c}
a / n \\
0
\end{array}\right](\tau \mid z), \cdots\right)
\end{aligned}
$$

i.e.

$$
G\left(\cdots,\left(\frac{\partial}{\partial z}\right)^{j} \vartheta^{(n)}\left[\begin{array}{c}
a / n \\
0
\end{array}\right](\tau \mid z), \cdots\right) \in \Theta_{0}^{(m)} .
$$

Conversely, if

$$
G\left(\cdots,\left(\frac{\partial}{\partial z}\right)^{j} \vartheta^{(n)}\left[\begin{array}{c}
a / n \\
0
\end{array}\right](\tau \mid z), \cdots\right) \in \Theta_{0}^{(m)}
$$

then applying 1° for

$$
\begin{aligned}
& F\left(\cdots, \Delta^{j} \vartheta^{(n)}\left[\begin{array}{c}
a / n \\
0
\end{array}\right](\tau \mid z), \cdots\right) \\
& \quad=G\left(\cdots, \Delta^{j} \vartheta^{(n)}\left[\begin{array}{c}
a / n \\
0
\end{array}\right](\tau \mid z), \cdots\right)-G\left(\cdots,\left(\frac{\partial}{\partial z}\right)^{j} \vartheta^{(n)}\left[\begin{array}{c}
a / n \\
0
\end{array}\right](\tau \mid z), \cdots\right)
\end{aligned}
$$

we obtain

$$
F\left(\cdots, \Delta^{j} \vartheta^{(n)}\left[\begin{array}{c}
a / n \\
0
\end{array}\right](\tau \mid z), \cdots\right)=0
$$

i.e.

$$
G\left(\cdots, \Delta^{j} \vartheta^{(n)}\left[\begin{array}{c}
a / n \\
0
\end{array}\right](\tau \mid z), \cdots\right)=G\left(\cdots,\binom{\partial}{\partial z}^{j} \vartheta^{(n)}\left[\begin{array}{c}
a / n \\
n
\end{array}\right](\tau \mid z), \cdots\right)
$$

Combining Theorem 2.1 and Theorem 3.1 we obtain the decomposition theorem.

Theorem 3.2. The algebra $C\left[\cdots,\left(\frac{\partial}{\partial z}\right)^{j} \vartheta^{(n)}\left[\begin{array}{c}a / n \\ 0\end{array}\right](\tau \mid z), \cdots\right]$ of differential polynomials of theta functions has a canonical linear basis

$$
\left\{\left.\left(\frac{\partial}{\partial z}\right)^{j} \vartheta^{(n)}\left[\begin{array}{c}
a / n \tag{3.1}\\
0
\end{array}\right](\tau \mid z) \right\rvert\, j \in Z_{\geq 0}^{g}, a \in Z^{g} / n Z^{g}, n \geq 1\right\}
$$

namely differential polynomials of theta functions are uniquely expressed as linear combinations of (3.1) with constant coefficients depending on τ.
3.2. In order to express the decomposition of differential polynomials of theta functions explicitly, we introduce differential polynomials in Y_{1}, \cdots, Y_{r}

$$
\begin{align*}
& F_{j}^{\left.\left(n_{1} 1\right), \cdots, \ldots, n_{r}\right)}\left(r_{;} ; n,\left(Y_{1}, \cdots, Y_{r} \mid z\right)\right. \\
& =\frac{1}{h!\left(n_{1}+\cdots+n_{r}\right)^{|n|}} \sum_{p} \frac{(-1)^{|p|}}{p!}\left(\frac{1}{n_{1}+\cdots+n_{r}} \frac{\partial}{\partial z}\right)^{p} \\
& \cdot\left\{\sum_{\substack{(1) \\
k^{(1)}+\cdots\left(\dot{c}+k^{(r)}=p+h \\
k(\alpha)\right.}}\left(\frac{p+h}{k^{(1)}, \cdots, k^{(r)}}\right) \frac{1}{\left(j^{(1)}-k^{(1)}\right)!} \cdots \frac{1}{\left(j^{(1)}-k^{(r)}\right)!}\right. \tag{3.2}\\
& \left.\cdot\left(\frac{1}{n_{1}} \frac{\partial}{\partial z}\right)^{j(1)-k^{(1)}} Y_{1} \cdots\left(\frac{1}{n_{r}} \frac{\partial}{\partial z}\right)^{j(r)-k^{(r)}} Y_{r}\right\} \\
& \left(j^{(1)}, \cdots, j^{(r)}, h \in Z_{20}^{g}, n_{1}, \cdots, n_{r} \geq 1\right) .
\end{align*}
$$

Theorem 3.3. For theta functions $\varphi_{\alpha}(z) \in \Theta_{0}^{\left(n_{\alpha}\right)}(1 \leq \alpha \leq r) F_{\left.j(1), \ldots, n_{r}\right)}^{\left(n_{j}(r) ; h\right.}$ $\times\left(\varphi_{1}, \cdots, \varphi_{r} \mid \boldsymbol{z}\right),\left(j^{(1)}, \cdots, j^{(r)}, h \in \boldsymbol{Z}_{Z_{0}}^{g}\right)$ are theta functions of level $n_{1}+\cdots$ $+n_{r}$ such that

$$
\begin{align*}
& \frac{1}{j^{(1)}!\cdots j^{(r)}!}\left(\frac{1}{n_{1}} \frac{\partial}{\partial z}\right)^{j^{(1)}} \varphi_{1}(z) \cdots\left(\frac{1}{n_{r}} \frac{\partial}{\partial z}\right)^{j(r)} \varphi_{r}(z) \\
& =\sum_{n \leq j^{(1)}\left(+\cdots+j^{(r)}\right.}\left(\frac{\partial}{\partial z}\right)^{n} F_{j^{(n 11), \cdots, n_{r}(r) ; h}(}\left(\varphi_{1}, \cdots, \varphi_{r} \mid z\right) \tag{3.3}\\
& =\sum_{c} \lambda_{\left(j^{(1)}, \ldots, j^{(r) ;} ; n\right), c /\left(n_{1}+\cdots+n_{r}\right)}\left(\varphi_{1}, \cdots, \varphi_{r}\right)\left(\frac{\partial}{\partial z}\right)^{n} \vartheta^{\left(n_{1}+\cdots+n_{r}\right)} \\
& \quad \cdot\left[\begin{array}{c}
c /\left(n_{1}+\cdots+n_{r}\right) \\
0
\end{array}\right](\tau \mid z),
\end{align*}
$$

where

$$
\begin{aligned}
& \lambda_{\left(j^{(1)}, \ldots, j^{(r)} ; h\right), c /\left(n_{1}+\cdots+n_{r}\right)}\left(\varphi_{1}, \cdots, \varphi_{r}\right) \\
&= \frac{1}{\left(n_{1}+\cdots+n_{r}\right)^{g}} \sum_{\bar{c} \in \mathbf{Z}^{\boldsymbol{g} /\left(n_{1}+\cdots+n_{r}\right) \mathbf{Z}}} \exp \frac{2 \pi \sqrt{-1} \hat{c}^{t} c}{n_{1}+\cdots+n_{r}} \\
& \cdot \vartheta^{\left(n_{1}+\cdots+n_{r}\right)}\left[\begin{array}{c}
c /\left(n_{1}+\cdots+n_{r}\right) \\
0
\end{array}\right](\tau \mid 0)^{-1} F_{\left.j_{1}(1), \cdots, n_{r}\right) ; h}^{\left(n_{r}, h\right.} \\
& \cdot\left(\varphi_{1}, \cdots, \varphi_{r} \left\lvert\, \begin{array}{c}
n_{1}+\cdots+n_{r}
\end{array}\right.\right) .
\end{aligned}
$$

Proof. Putting

$$
\begin{aligned}
& \frac{1}{j^{(1)}!\cdots j^{(r)}!}\left(\frac{1}{n_{1}} \Delta\right)^{j^{(1)}} \varphi_{1}(z) \cdots\left(\frac{1}{n_{r}} \Delta\right)^{j(r)} \varphi_{r}(z) \\
& \quad=\sum \Delta^{n} \psi_{h}(z)
\end{aligned}
$$

with $\psi_{n}(z) \in \Theta_{0}^{\left(n_{1} \cdots+n_{r}\right)}$, by virtue of Corollary of Theorem 2.1 (1.6) and (1.7) we have

$$
\begin{aligned}
& \psi_{h}(z)=\frac{1}{h!\left(n_{1}+\cdots+n_{r}\right)^{|n|}} \sum_{p} \frac{(-1)^{|p|}}{p!}\left(\frac{1}{n_{1}+\cdots+n_{r}} \Delta\right)^{p} \mathscr{D}^{p+h} \\
& \frac{1}{j^{(1)}!\cdots j^{(r)}!}\left(\frac{1}{n_{1}} \Delta\right)^{j^{(1)}} \varphi_{1}(z) \cdots\left(\frac{1}{n_{r}} \Delta\right)^{j^{(r)}} \varphi_{r}(z) \\
& =\frac{1}{h!\left(n_{1}+\cdots+n_{r}\right)^{|n|}} \sum_{p} \frac{(-1)^{|p|}}{p!}\left(\frac{1}{n_{1}+\cdots+n_{r}} \Delta\right)^{p}
\end{aligned}
$$

$$
\begin{aligned}
& \left.\cdot n^{-\left|k^{(1) \mid}\right|} \mathscr{D}^{k^{(1)}} \Delta^{j^{(1)}} \varphi_{1}(z) \cdots n^{-\left|k^{(r) \mid}\right|} \mathscr{D}^{k^{(r)}} \Delta^{j^{(r)}} \varphi_{r}(z)\right\} \\
& =\frac{1}{h!\left(n_{1}+\cdots+n_{r}\right)^{|n|}} \sum_{p} \frac{(-1)^{|p|}}{p!}\left(\frac{1}{n_{1}+\cdots+n_{r}} \Delta\right)^{p}
\end{aligned}
$$

$$
\begin{aligned}
& \left.\cdot\left(\frac{1}{n_{1}} \Delta\right)_{\varphi_{1}(z)}^{j^{(1)}-k^{(1)}} \cdots\left(\frac{1}{n_{r}} \Delta\right)_{\varphi_{r}(z)}^{j^{(r)-k^{(r)}}}\right\} \\
& =F_{j(1), \ldots, \ldots, j(r) ; h}^{\left(n_{1}, \ldots, n_{r}\right)}\left(\varphi_{1}, \cdots, \varphi_{r} \mid z\right) .
\end{aligned}
$$

Hence, replacing Δ_{i} by $\partial / \partial z_{i}(1 \leq i \leq g)$, we prove the first assertion of Theorem 3.3. Putting

$$
\begin{aligned}
& F_{j(1), \ldots, j^{(r)} ; h}^{\left(n_{1}, \cdots n_{r}\right)}\left(\varphi_{1}, \cdots, \varphi_{r} \mid z\right) \\
& =\sum_{c \in \boldsymbol{Z}^{\mathcal{G} /\left(n_{1}+\cdots+n_{r}\right) \boldsymbol{Z}}} \lambda_{h, c} Q^{\left(n_{1}+\cdots+n_{r}\right)}\left[\begin{array}{c}
c /\left(n_{1}+\cdots+n_{r}\right) \\
0
\end{array}\right](\tau \mid z),
\end{aligned}
$$

we have

$$
\begin{aligned}
& F_{\left.j_{1,1} 1, \cdots, n_{n}\right)}^{\left(n_{j}\right) ; h}\left(\varphi_{1}, \cdots, \varphi_{r} \left\lvert\, \frac{\hat{c}}{n_{1}+\cdots+n_{r}}\right.\right) \\
& =\sum_{c} \lambda_{h, c} \vartheta^{\left(n_{1}+\cdots+n_{r}\right)}\left[\begin{array}{c}
c /\left(n_{1}+\cdots+n_{r}\right) \\
0
\end{array}\right]\left(\tau \left\lvert\, \frac{\hat{c}}{n_{1}+\cdots+n_{r}}\right.\right) \\
& \left.=\sum_{c} \lambda_{h, c} \exp \left(\frac{2 \pi \sqrt{-1} \hat{c}^{t} c}{n_{1}+\cdots+n_{r}}\right)\right)^{\left(n_{1}+\cdots+n_{r}\right)}\left[\begin{array}{c}
c /\left(n_{1}+\cdots+n_{r}\right) \\
0
\end{array}\right](\tau \mid 0) \\
& \quad\left(c \in \boldsymbol{Z}^{g} /\left(n_{1}+\cdots+n_{r}\right) Z^{g}\right) .
\end{aligned}
$$

Hence, by virtue of the orthogonal relation for characters

$$
\sum_{c} \exp \left(\frac{2 \pi \sqrt{-1} \hat{c}^{t} c}{n_{1}+\cdots+n_{r}}\right)=\left\{\begin{array}{lll}
\left(n_{1}+\cdots+n_{r}\right)^{g} & \hat{c} \equiv 0 & \bmod \left(n_{1}+\cdots+n_{r}\right) \\
0 & \hat{c} \not \equiv 0 & \bmod \left(n_{1}+\cdots+n_{r}\right)
\end{array}\right.
$$

it follows

$$
\begin{aligned}
\lambda_{h, c}= & \frac{1}{\left(n_{1}+\cdots+n_{r}\right)^{g}} \sum_{\hat{c}} \exp \left(\frac{-2 \pi \sqrt{-1} \hat{c}^{t} c}{n_{1}+\cdots+n_{r}}\right) \vartheta^{\left(n_{1}+\cdots+n_{r}\right)} \\
& \cdot\left[\begin{array}{c}
c /\left(n_{1}+\cdots+n_{r}\right) \\
0
\end{array}\right](\tau \mid 0)^{-1} F_{\left.j\left(n_{1}\right), \ldots, n_{r}\right)((r) ; h}^{(n)}\left(\varphi_{1}, \cdots, \varphi_{r} \left\lvert\, \frac{\hat{c}}{n_{1}+\cdots+n_{r}}\right.\right) .
\end{aligned}
$$

Specializing

$$
\left(\varphi_{1}(z), \varphi_{2}(z)\right) \quad \text { to } \quad\left(\vartheta^{\left(n_{1}\right)}\left[\begin{array}{c}
a_{1} / n_{1} \\
0
\end{array}\right](\tau \mid z), \vartheta^{\left(n_{r}\right)}\left[\begin{array}{c}
a_{r} / n_{r} \\
0
\end{array}\right](\tau \mid z)\right),
$$

we obtain the explicit expression of structure constants of

$$
C\left[\cdots,\left(\frac{\partial}{\partial z}\right)^{j} \vartheta^{(n)}\left[\begin{array}{c}
a / n \\
0
\end{array}\right](\tau \mid z), \cdots\right]
$$

with respect to the basis

$$
\left\{\left(\frac{\partial}{\partial z}\right)^{j} \vartheta^{(n)}\left[\begin{array}{c}
a / n \\
0
\end{array}\right](\tau \mid z)\right\}
$$

Theorem 3.4. The structure constants of

$$
C\left[\cdots,\left(\frac{\partial}{\partial z}\right)^{j} \vartheta^{(n)}\left[\begin{array}{c}
a / n \\
0
\end{array}\right](\tau \mid z), \cdots\right]
$$

are given by

$$
\begin{aligned}
& \left(\frac{\partial}{\partial z}\right)^{j(1)} \vartheta^{\left(n_{1}\right)}\left[\begin{array}{c}
a_{1} / n_{1} \\
0
\end{array}\right](\tau \mid z)\left(\frac{\partial}{\partial z}\right)^{j(2)} \vartheta^{\left(n_{2}\right)}\left[\begin{array}{c}
a_{2} / n_{2} \\
0
\end{array}\right](\tau \mid z) \\
& \quad=\sum_{h} \sum_{c} \gamma_{\left(j j^{(1)}(1), a_{1} / n_{2}, n_{2}, n_{1},\left(j_{1}\left(j_{2}\right), n_{2}\right), a_{2} / n_{2}, n_{2}\right)}^{(n)}(\tau)\left(\frac{\partial}{\partial z}\right)^{n} \vartheta^{\left(n_{1}+n_{2}\right)}\left[\begin{array}{c}
c /\left(n_{1}+n_{2}\right) \\
0
\end{array}\right](\tau \mid z),
\end{aligned}
$$

$$
\begin{align*}
& =\frac{j^{(1)}!j^{(2)}!n_{1}^{\left|j^{(1)}\right|} n_{2}^{\mid j^{(2) \mid}}}{h!\left(n_{1}+n_{2}\right)^{g+|n|}} \sum_{\hat{c} \in Z^{g} /\left(n_{1}+n_{2}\right) Z_{\underline{g}}} \exp \left(\frac{-2 \pi \sqrt{-1} \hat{c}^{t} c}{n_{1}+n_{2}}\right) \vartheta^{\left(n_{1}+n_{2}\right)} \tag{3.5}\\
& \cdot\left[\begin{array}{c}
c /\left(n_{1}+n_{2}\right) \\
0
\end{array}\right](\tau \mid 0)^{-1}\left[\sum_{p} \frac{(-1)^{|p|}}{p!}\left(\frac{1}{n_{1}+n_{2}} \frac{\partial}{\partial z}\right)^{p} \sum_{\substack{\left.k(1)+k^{(2)}\right), p+h \\
k(1) \leq j(1), k^{\prime}(2) \leq j^{(2)}}}\right. \\
& \cdot\left[\begin{array}{c}
p+h \\
k^{(1)}, k^{(2)}
\end{array}\right] \frac{1}{\left(j^{(1)}-k^{(1)}\right)!\left(j^{(2)}-k^{(2)}\right)!}\left(\frac{1}{n_{1}} \frac{\partial}{\partial z}\right)^{j^{(1)}-k^{(1)}} \vartheta^{\left(n_{1}\right)}\left[\begin{array}{c}
a_{1} / n_{1} \\
0
\end{array}\right]
\end{align*}
$$

$$
\left.\cdot(\tau \mid z)\left(\frac{1}{n_{2}} \frac{\partial}{\partial z}\right)^{j(2)-k^{(2)}} \vartheta^{\left(n_{2}\right)}\left[\begin{array}{c}
a_{2} / n_{2} \\
0
\end{array}\right](\tau \mid z)\right]_{z=\hat{c}\left(n_{1}+n_{2}\right)} .
$$

For theta functions $\varphi_{\alpha}(z)(1 \leq \alpha \leq z)$, if a differential polynomial $G\left(\cdots,(\partial / \partial z)^{j} \varphi_{\alpha}(z), \cdots\right)$ is a theta function, then by virtue of Theorems 2.1 and 3.1 $G\left(\cdots,(\partial / \partial z)^{\jmath} \varphi_{a}(z), \cdots\right)$ is itself the Θ_{0}-component of the decomposition. Hence, Theorem 3.4 implies the following characterization of diffreential polynomials of $\varphi_{\alpha}(z)(1 \leq \alpha \leq r)$ which are also theta functions.

Theorem 3.5. For theta functions $\varphi_{a}(z) \in \Theta_{0}^{\left(n_{\alpha}\right)}$ the space

$$
C\left[\cdots,\left(\frac{\partial}{\partial z}\right)^{j} \varphi_{\alpha}(z), \cdots\right] \cap \Theta_{0}^{(m)}
$$

is linearly spanned by

$$
\begin{aligned}
& \left(\sum_{\alpha} e_{\alpha} n_{\alpha}=m ; j^{(1,1)}, \cdots, j^{\left(1, e_{1}\right)}, \cdots, j^{(r, 1)}, \cdots,{ }^{\left(r, e_{r}\right)} \in \boldsymbol{Z}_{\geq 0}^{g}\right) \text {. }
\end{aligned}
$$

References

[1] R. Hirota, A direct method of finding exact solution of nonlinear evolution equations, Lecture Notes in Mathematics, No. 515, 40-68 (1976).
[2] H. Morikawa, Some analytic and geometric applications of the invariant theoretic method, Nagoya Math. J., 80 (1980), 1-47.
[3] -, On Poisson brackets of semi-invariants, Manifolds and Lie groups, 267-281, Progress in Math. Birkhänser (1981).

Department of Mathematics
Faculty of Science
Nagoya University
Chikusa-ku 464
Japan

