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Weak Convergence
Is Not Strong Convergence
For Amenable Groups
Joseph M. Rosenblatt and George A. Willis

Abstract. Let G be an infinite discrete amenable group or a non-discrete amenable group. It is shown
how to construct a net ( fα) of positive, normalized functions in L1(G) such that the net converges
weak* to invariance but does not converge strongly to invariance. The solution of certain linear equa-
tions determined by colorings of the Cayley graphs of the group are central to this construction.

1 Introduction

Let G be a locally compact Hausdorff group, and let λ denote a left-invariant Haar
measure on the group. Let P(G) denote the positive functions f in L1(G) such
that

∫
G f dλ = 1. For f ∈ L1(G) and F ∈ L∞(G), denote by 〈 f , F〉 the integral∫

G f (x)F(x) dλ(x). The convex set P(G) has all of the means on L∞(G) in its weak*
closure. In particular, if G is amenable, and φ is a left-invariant mean on L∞(G),
then there is a net ( fα) in P(G) such that ( fα) converges to φ in the weak* topology
i.e. limα→∞〈 fα, F〉 = φ(F) for any F ∈ L∞(G). Thus, for any F ∈ L∞(G) and any
g ∈ G, we have limα→∞〈 fα−g fα, F〉 = 0. This is the condition of weak* convergence
to invariance of Day. In Day [2], he used this to show that amenability is equivalent to
his condition of strong convergence to invariance: G is amenable if and only if there
exists a net ( fα) in P(G) such that for all g ∈ G, we have limα→∞ ‖ fα − g fα‖1 = 0.
This is proved by a use of the principle in functional analysis that the weak and strong
closures of a convex set are the same, but it is not saying that weak* convergence to
invariance is the same as strong convergence to invariance. Indeed, in Day [3], he
points out that the failure of the equivalence of these topologies is exactly why the
functional analytic argument is needed. See in addition Namioka [5] where the con-
nection between weak* convergence to invariance and strong convergence to invari-
ance is clearly presented. Namioka [5] also gives the first easily understood proof of
the equivalence of amenability and the existence of Følner sets. See also Greenleaf [4]
and Patterson [6] for background about amenable groups.

Despite so much having been written on amenable groups, there does not seem to
have been a construction of nets which are weak* converging to invariance but not
converging strongly to invariance. There is something to prove here since Sine [7]
showed that for sequences, weak* convergence to invariance actually does imply
strong convergence to invariance. This article will construct nets which are weak*
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converging to invariance but not converging strongly to invariance, by considering
some aspects of Cayley graphs on the group which are equivalent to amenability of
the group.

2 Configurations in Discrete Groups

Our object is to construct nets which are weak* converging to invariance but not
converging strongly to invariance. Consider first the case of discrete groups. It is clear
that what one has to do is to show that there is some x ∈ G and some δ > 0 such that
given any ε > 0, functions F1, . . . , Fm ∈ L∞(G) and elements g1, . . . , gn ∈ G, there
is some f ∈ P(G) with |〈 f − g j f , Fi〉| < ε for i = 1, . . . , m and j = 1, . . . , n, but
‖ f −x f ‖1 ≥ δ. Then, varying over the directed set of α given by choices of ε, {Fi : i =
1, . . . , m} and {g j : i = j, . . . , n} in the usual manner gives a net converging weak*
to invariance, but such that strong invariance fails since ‖ fα − x fα‖1 ≥ δ for all α. It
is also clear that the largest possible value for δ would be δ = 2. In carrying out such
a construction, there is no harm in replacing the functions {Fi : 1 = 1, . . . , m} by an
arbitrary finite partition {E1, . . . , Em} of G. Also, being optimistic one could look to
show that there is some x ∈ G, such that for any finite partition {Ei : i = 1, . . . , m}
of G, and any choice of {g j : j = 1, . . . , n}, there is some f ∈ P(G) such that for all i
and j, one has 〈 f − g j f , 1Ei 〉 = 0, while also ‖ f − x f ‖1 = 2. It turns out that this is
possible in any infinite amenable group.

Consider for the rest of this section the case of a discrete group G. The general case
will be treated in the next section. In order to carry out the construction outlined
above, it is very convenient to look at colorings of Cayley graphs on G. We are not
assuming that G is finitely generated, but given any finite set {g j : j = 1, . . . , n} ⊂ G,
there is a Cayley graph, denoted by (G, {g j}), with vertices being the elements of G
and the directed edges being from h1 to h2, for h1, h2 ∈ G, if h2 = g jh1 for some
j = 1, . . . , n. Suppose also that a partition {Ei : 1, . . . , m} of G has been fixed. It
will be useful to speak of this as corresponding to a coloring of the vertices of the
Cayley graph (G, {g j}), so that all vertices in Ei are given the same distinctive color.
This provides us then with a class of finite sets which we call configurations. Each
configuration C is an (n + 1)-tuple of colors (C0,C1, . . . ,Cn) with each Ck being one
of the m colors. For C to be a realized configuration, it is necessary that there is some
(not necessarily unique) set of elements x0, x1, . . . , xn ∈ G, such that each x j is the
color C j , j = 0, . . . , n, and for each j = 1, . . . , n, we have x j = g jx0. The element x0

is called a base point of the configuration and the elements x j , j = 1, . . . , n, are called
branch points of C . In this case, we say that (x0, x1, . . . , xn) realizes the configuration
C . For each configuration C and each j between 1 and n, x j(C) will denote the set of
all elements of G which appear as the j-th branch point in an occurrence of C . Thus
x j(C) consists of all points y of color C j such that x0 = g−1

j y is of color C0, and gkx0

is of color Ck for all k = 1, . . . , n.
There are only a finite number of possible configurations, but there may be an

infinite number of tuples (x0, x1, . . . , xn) ∈ Gn+1 which have the same configura-
tion. Also, the configurations can be thought of as refining the partition {Ei : i =
1, . . . , m} if one further partitions each Ei into the subsets consisting of all base
points x with (x, g1x, . . . , gnx) having the configuration C .
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Figure 1: The configuration in the Cayley graph with base point x0

Now given f ∈ l1(G), and a configuration C as above, let fC denote the sum∑{ f (x) : x ∈ x0(C)}. Clearly then
∑{ f (x) : x ∈ Ei} =

∑{ fC : x0(C) ⊂ Ei}. This
is because for any two configurations C and C ′, either x0(C) and x0(C ′) are disjoint
or C = C ′. In this spirit, we have the following proposition. In this proposition,
the equations (2) here are called the configuration equations. They can be considered
abstractly without reference to the function f ∈ l1(G) if one takes the values ( fC )
simply as the unknowns in the equations. The configuration equations depend on
the choices of {Ei : i = 1, . . . , m} and {g j : j = 1, . . . , n}. There are n configuration
equations, one corresponding to each generator g j . The number of variables in the
configuration equations is equal to the number of configurations, there being one
variable fC for each configuration C .

Proposition 2.1 Given f ∈ l1(G), we have for all i = 1, . . . , m and j = 1, . . . , n,

(1) 〈 f − g j f , 1Ei 〉 = 0,

if and only if for all i = 1, . . . , m and j = 1 . . . , n

(2)
∑

{ fC : x0(C) ⊂ Ei} =
∑

{ fC : x j(C) ⊂ Ei}.

Proof We have observed that 〈 f , 1Ei 〉 =
∑{ f (x) : x ∈ Ei} =

∑{ fC : x0(C) ⊂ Ei}.
But in the same spirit, 〈g j f , 1Ei 〉 =

∑{ f (g−1
j x) : x ∈ Ei} =

∑{ fC : x j(C) ⊂ Ei}.

Indeed, if y ∈ x j(C) ⊂ Ei , then g−1
j y ∈ x0(C). Also, if y ∈ Ei , then g−1

j y ∈ x0(C) for
some C with y ∈ x j(C). Furthermore, for any two configurations C and C ′, either
x j(C) and x j(C ′) are disjoint or C = C ′. Thus,

∑
{ f (g−1

j x) : x ∈ Ei} =
∑

{ f (z) : z ∈ x0(C) and x j(C) ⊂ Ei}

=
∑

{ fC : x j(C) ⊂ Ei}.

Remark 2.2 a) The configuration equations are just saying that for the i-th color
and the j-th branch, the sum of all fC with base point of the i-th color should be
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Figure 2: The configuration set corresponding to the partition E.

the same as the sum of all fC with j-th branch point of that same color. As such, the
configuration equations derived from a function f ∈ l1(G) depend only on ( fC ), and
not on the individual values of f at points in x0(C).

b) Given a solution ( fC ) to (2) in Proposition 2.1, one can construct the f ∈ l1(G)
to go with them. See the end of Proposition 2.4.

Example 2.3 A simple example may help to illustrate what the configuration equa-
tions are. Let the group be the integers Z. Let E be the partition whose two terms are
E1, the even integers, and E2, the odd integers. Let g1 = 1 and g2 = 2. There are two
realizable configurations, C(1) = (1, 2, 1) and C(2) = (2, 1, 2). Here we have used the
index i of the color Ei to identify it. These are illustrated in Figure 2. Letting ci = fC (i)

be the unknown value in the configuration equations which is corresponding to the
configuration C(i), this example gives these configuration equations:

From g1: From g2:

c1 = c2 c1 = c1

c2 = c1 c2 = c2

Now, in general the configuration equations comprise a finite system of linear
equations in the variables fC with coefficients being either 0 or 1. We are inter-
ested in when there is a solution ( fC ) such that each fC ≥ 0 and

∑{ fC : C is a
configuration} = 1. We call such a solution a normalized solution of the configura-
tion equations. This is possible in general in amenable groups (and only in amenable
groups).

Proposition 2.4 There is a normalized solution of every possible instance of the con-
figuration equations if and only if G is amenable.

Proof Suppose that G is amenable. Let ( fα) be a net in P(G) converging weak* to
invariance. For a fixed choice of {Ei} and {g j} as above, the values

(
( fα)C

)
are

normalized. Because of the weak* invariance, the values
(

( fα)C

)
give approximate

solutions of the configuration equations, with the error in the approximation tend-
ing to 0 as α → ∞. But the configuration equations form a finite linear system.
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Therefore, taking the limit as α → ∞, we get a normalized solution of the config-
uration equations. On the other hand, suppose there is a normalized solution for
every instance of the configuration equations. Given fixed {Ei} and {g j}, let ( fC ) be
such a solution. Choose a single base point xC

0 for each realized configuration C . Let
f ∈ P(G) be the function such that f (xC

0 ) = fC for every C , and f = 0 otherwise.
Then by Proposition 2.1, for every i and j, we have 〈 f − g j f , 1Ei 〉 = 0. Since the
choice of {Ei} and {g j} is arbitrary, this shows that there is a net in P(G) converging
weak* to invariance, and hence that G is amenable.

Remark 2.5 The values which solve the configuration equations might be generated
in other ways. For example, if µ is a positive, normalized finitely-additive measure
defined on all subsets of G, and we have the equations µ(g jEi) = µ(Ei) for all i =
1, . . . , m and j = 1, . . . , n, then there is a solution, call it ( fC ) to the corresponding
instance of the configuration equations. In this case the values fC would be the values
µ
(

x0(C)
)

.

The proof of this proposition is actually showing the following.

Corollary 2.6 Let G be an amenable group. Then for every possible instance of the
configuration equations for some configurations {C(1), . . . ,C(L)}, there is a function
f ∈ P(G) such that the values ( fC (l) : l = 1, . . . , L) yield a normalized solution of
the equations.

This observation gives the following proposition.

Proposition 2.7 Let G be an amenable group. Let g1, . . . , gn ∈ G and D1, . . . , Dr be
arbitrary subsets of G. Then there exists a positive, normalized function f ∈ l1(G), such
that for all i = 1, . . . , r and j = 1, . . . , s, we have 〈 f , 1g j Di 〉 = 〈 f , 1Di 〉.

Proof Let the sets Ei , i = 1, . . . , m, be the atoms of the σ-algebra generated by
{D1, . . . , Dr}. Then apply Proposition 2.4 to the configuration equations given by
{Ei : i = 1, . . . , m} and {g j : j = 1, . . . , n}.

Remark 2.8 The point of this proposition is that we could not get this exact in-
variance with a function f ∈ P(G) if we were not dealing with finitely many sets
and translations. If there were infinitely terms to deal with, then we might need
a linear functional like an invariant mean which vanishes at all singleton sets in the
group. Also, although a net converging weak* to invariance would have given approx-
imate invariance here, some argument like the one with the configuration equations
is needed in order to get exact invariance.

It is also clear from the solution of the configuration equations how to get weak*
invariant nets which are not strongly invariant.

Theorem 2.9 If G is an infinite discrete amenable group, then there exists a net ( fα)
in P(G) converging weak∗ to invariance, such that for every x ∈ G, x = e, eventually
‖ fα − x fα‖1 = 2.
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Proof Fix {Ei} and {g j} as above. Observe first that if ( fα) is a net in P(G) which
is converging weak* to invariance, then the associated limiting solution to the con-
figuration equations derived from {Ei} and {g j} must have fC equal 0 for any con-
figuration C which has only finitely many occurrences in the Cayley graph (G, {g j})
because G is infinite. Also, because G is infinite and there are only a finite number of
possible configurations with respect to a fixed choice of {Ei} and {g j}, there must be
configurations with infinitely many incidences in the Cayley graph. Take the normal-
ized solution ( fC ) to the configuration equations for all configurations with infinite
incidence. Choose distinct base points xC

0 for each C with infinite incidence. Let
f ∈ P(G) be defined as in the proof of Proposition 2.4, with f (xC

0 ) = fC for every
C , and f = 0 otherwise. In addition, because C has infinite incidence in the Cayley
graph, we can also arrange for these points xC

0 to be arbitrarily widely separated. That
is, given any finite set K ⊂ G\{e}, the choices of xC

0 can be made so that for all k ∈ K,
we have f and k f disjointly supported and so ‖ f − k f ‖1 = 2. Now letting the choices
of {Ei}, {g j} and K vary in the usual directed fashion, the functions constructed here
form a net ( fα) as needed to finish the proof.

Remark 2.10 a) The construction shows that for any fixed finite K0 ⊂ G \ {e},
we can arrange for ‖ fα − k fα‖1 = 2 for all k ∈ K0 and all α. This is reflected in
Example 2.3 by the fact that we can put the weights c1 = 1

2 and c2 = 1
2 anywhere in

the sets E1 and E2 respectively, and still have a function f ∈ l1(Z) which is a solution
of the configuration equations in that instance.

b) In the examples that we have examined, where the configuration equations
have no normalized solution, there is also a paradoxical decomposition of the group
which can be described in terms of the configuration set. There is even a paradoxical
decomposition of the form G = 2G. See Example 2.11 for a basic instance of this.
These examples suggest, as is conjectured in Example 2.11, that it may be possible
using just the configuration equations themselves to prove Tarski’s Theorem: G is
amenable if and only if there are no paradoxical decompositions in G. See Wagon [8]
for discussion of paradoxical decompositions in general and a proof of Tarski’s The-
orem.

c) We think that it is likely that combinatorial properties of configurations can be
used to characterize various kinds of behavior of groups (like the group being abelian
or the group containing a non-abelian free subgroup). This possibility needs further
investigation especially since it may help understand more clearly the way in which
amenability is related to other properties of groups.

Example 2.11 Let F2 = 〈g1, g2〉 be the free group with generators g1 and g2. Then
each element w = e of F2 may be written as a reduced word w = w1w2 · · ·wl where
each wi is equal to g1, g−1

1 , g2 or g−1
2 . Define subsets Ei , i = 1, 2, 3 of F2 by E1 =

{w ∈ F2 : w1 = g1}, E2 = {w ∈ F2 : w1 = g2} and E3 = {w ∈ F2 : w =
e, w1 = g−1

1 or w1 = g−1
2 }. Then E = {E1, E2, E3} is a partition of F2. There

are seven configurations corresponding to the partition, namely: C(1) = (1, 1, 2),
C(2) = (2, 1, 2), C(3) = (3, 1, 2), C(4) = (3, 3, 2), C(5) = (3, 2, 2), C(6) = (3, 1, 3) and
C(7) = (3, 1, 1). These configurations are shown in Figure 3.
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Figure 3: The configuration set corresponding to the partition E.

Letting ci the value in the configuration equations which is corresponding to the
configuration C(i) in this example gives these configuration equations:

From g1: From g2:

c1 = c1 + c2 + c3 + c6 + c7 c1 = c7

c2 = c5 c2 = c1 + c2 + c3 + c4 + c5

c3 + c4 + c5 + c6 + c7 = c4 c3 + c4 + c5 + c6 + c7 = c6

These equations have no positive solution because the first equation in the first col-
umn implies that c2 +c3 +c6 +c7 = 0 while the second equation in the second column
implies that c1+c3 +c4 +c5 = 0 and adding implies that c1+c2 +2c3+c4 +c5 +c6 +c7 = 0.
Thus we have yet another proof that F2 is not amenable.

There are many nonzero solutions however because we have only six equations in
seven unknowns. In fact, the equations on the last line are dependent on the others,
as is always the case with the configuration equations, and so there are only four
independent equations.

The configurations determine a refinement, E ′ of E. Define, for each 3 ≤ i ≤ 7,
E3i = {w ∈ F2 : w is the basepoint in C(i)}. Then {E33, . . . , E37} is a partition of
E3 and so E ′ = {E1, E2, E33, . . . , E37} refines E. Now when the two equations used
above to show that the configuration equations have no positive solution are written
in terms of sets, they become g1E1 = E1∪E2∪E33∪E36∪E37 and g2E2 = E1∪E2∪E33∪
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E34 ∪ E35. Hence we have a paradoxical decomposition for F2: F2 = g1E1 ∪ E34 ∪ E35

and F2 = g2E2 ∪ E36 ∪ E37. We do not use E33 on the right hand side of the equations
so this is not an exact paradoxical decomposition of the form F2 = 2F2.

The configurations argument used here to obtain a paradoxical decomposition
applies to any group having the configuration set in Figure 3, not just the free group.
It may be that the free group is the only one having this particular configuration set,
see [1] Proposition 20, but in general there are many groups having a given configu-
ration set. Should the configuration equations for such a set of configurations have
no non-zero positive solution then none of these groups is amenable. We conjecture
that, given a configuration set having no positive solutions, there is always a paradox-
ical decomposition associated with it as in the previous paragraph. The configuration
set would then contain enough information to show that there is a paradoxical de-
composition.

It is much easier to check whether the configuration equations of a given partition
of a group have a non-zero positive solution than it is to find a paradoxical decom-
position and so it seems that the configurations method may be a convenient way to
determine whether a group is amenable. However, it may in practice turn out to be
just as difficult to determine just what configurations occur in a given partition, and
hence what the configuration equations are, as it is to decide whether the partition
gives a paradoxical decomposition.

In the case of this configuration set, there is a paradoxical decomposition of the
exact form G = 2G but to exhibit it we need to consider the g2-cosets in G. The
configuration sets imply that there are at most four types of g2-coset and these are
shown in Figure 4. Observe from Figure 3 that if w and g2w both belong to E3, then
w is in E36. The vertices in E36 are ringed in Figure 4. The cosets of type III come in
three subtypes, depending on whether the single vertex in E3 but not in E36 belongs
to E33, E34 or E35; call these subtypes III(3), III(4) and III(5). Now partition E36 in to
sets A = {w ∈ E36 : w lies on a coset of type III(3)} and B = E36 \ A. Define a new
partition F = {F1, F2, F3, F4} of G by F1 = E1, F2 = E34 ∪E35, F3 = E2 ∪E33 ∪A and
F4 = E37∪B. Then G = F1∪g1F2 and G = F3∪g2F4. This construction of a partition
associated with E is not finite in the sense that F is not formed by intersecting finitely
many translates of the sets in E. The definition of the sets A and B seems to require
an infinite number of steps from the original data and is thus the analogue of the
Schröder-Bernstein argument from Tarski’s proof.

3 Configurations in Non-discrete Groups

The same ideas that were used for discrete groups can be used in the case of general
locally compact Hausdorff groups with suitable modifications in the construction. A
configuration (C0,C1, . . . ,Cn) is assumed to be just as before except that the finite
choice of colors is determined by a λ-measurable partition (E1, . . . , Em) of G. For
f ∈ L1(G), we let fC =

∫
x0(C) f dλ. There again are configuration equations which

play the same role as for discrete groups. Assume that the λ-measurable partition
(E1, . . . , Em) and the elements (g1, . . . , gn) have been fixed.

Proposition 3.1 Given f ∈ L1(G), we have for all i = 1, . . . , m and j = 1, . . . , n,
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Figure 4: The four types of g2-cosets. Ringed vertices belong to E36.

(3) 〈 f − g j f , 1Ei 〉 = 0,

if and only if for all i = 1, . . . , m and j = 1 . . . , n

(4)
∑

{ fC : x0(C) ⊂ Ei} =
∑

{ fC : x j(C) ⊂ Ei}.

Proof We see easily that 〈 f , 1Ei 〉 =
∫

Ei
f dλ =

∑{ fC : x0(C) ⊂ Ei}. But also as in

Proposition 2.1, 〈g j f , 1Ei 〉 =
∫

Ei
f (g−1

j x) dλ(x) =
∑{ fC : x j(C) ⊂ Ei}.

This leads to a generalization of Proposition 2.4. The only extra point worth ob-
serving first is that a configuration needs to be not only realized in the group in order
to be relevant now, but it should also be essential i.e. it should be that λ

(
x0(C)

)
> 0.

Indeed, it is clear that in the configuration equations (4) as derived in Proposition 3.1,
the terms fC are all zero whenever the configuration is not essential. We therefore
to avoid trivialities assume that the configuration equations in the case of a general
group exclude any term fC where C is not essential; this revised set of equations is
called the essential configuration equations.

Proposition 3.2 There is a normalized solution of every possible instance of the essen-
tial configuration equations if and only if G is amenable.

Proof Suppose that G is amenable. Let ( fα) be a net in P(G) converging weak* to
invariance. For a fixed choice of {Ei} and {g j}, the values

(
( fα)C

)
are normalized.

Because of the weak* invariance, the values
(

( fα)C

)
give approximate solutions of

the configuration equations, with the error in the approximation tending to 0 as
α → ∞. But the configuration equations form a finite linear system. Therefore,
taking the limit as α → ∞, we get a normalized solution of the configuration equa-
tions. On the other hand, suppose there is a normalized solution for every instance of
the essential configuration equations. Given fixed {Ei} and {g j} as above, let ( fC ) be
such a solution. Because we are assuming that every C in the configuration equations

https://doi.org/10.4153/CMB-2001-023-x Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2001-023-x


240 J. M. Rosenblatt and G. A. Willis

is essential, we can choose a compact set xC
0 ⊂ x0(C) with λ(xC

0 ) > 0 for each config-
uration C . Let f ∈ P(G) be the function such that f = fC/λ(xC

0 ) on xC
0 for every C ,

and f = 0 otherwise. By Proposition 3.1, for every i and j, we have 〈 f −g j f , 1Ei 〉 = 0.
Since the choice of {Ei} and {g j} is arbitrary, this shows that there is a net in P(G)
converging weak* to invariance, and hence that G is amenable.

Now one can see using configurations that generally weak* convergence to invari-
ance does not imply strong convergence to invariance.

Theorem 3.3 If G is a non-discrete amenable locally compact Hausdorff group, then
there exists a net ( fα) in P(G) converging weak∗ to invariance, such that for every x ∈ G,
x = e, eventually ‖ fα − x fα‖1 = 2.

Proof Fix {Ei} and {g j} as above. Let f ∈ P(G) be defined as in the proof of Propo-
sition 3.2, with f = fC/λ(xC

0 ) on xC
0 for each of the C such that λ

(
x0(C)

)
> 0, and

f = 0 otherwise. There is nothing restricting us in this choice from also keeping xC
0

to be within a very small neighborhood of some particular point in x0(C). Since G is
non-discrete, this fact shows that given any finite set K ⊂ G \ {e}, the choices of xC

0

can be made inductively so that for all k ∈ K, we have f and k f disjointly supported
and so ‖ f − k f ‖1 = 2. Now letting the choices of {Ei}, {g j} and K vary in the usual
directed fashion, the functions constructed here form a net ( fα) as needed to finish
the proof.

Remark 3.4 It is possible that another argument involving extreme points can be
used for constructing nets in P(G) which are weak* converging to invariance, but not
converging strongly to invariance. C. Chou has suggested that it is possible that any
net ( fα) in P(G) which is strongly converging to invariance cannot be converging in
the weak* topology to an extreme point of the set of left-invariant means. If so, by the
Krein-Milman Theorem, one could choose a left-invariant mean φ that is an extreme
point of the set of left-invariant means, and take a net ( fα) in P(G) converging in the
weak* topology to φ, and thus obtain a net which is weak* converging to invariance,
but is not strongly converging to invariance. This argument is of course not going to
be constructive.
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