MEAN OSCILLATION AND BESOV SPACES

BY

JOSE R. DORRONSORO

Abstract

The homogeneous Besov-Lipschitz spaces, usually defined by difference operators or Fourier transform, are studied in terms of mean oscillation, and several equivalent characterisations are given.

1. Definitions and main results. The purpose of this paper is to show how mean oscillation characterisations similar to those already known ([1], [6]) for Lipschitz spaces Λ_{α} can be given for their L^{p} counterparts, the Besov spaces $B_{p, q}^{\alpha}$. We recall their definition: for each positive integer k, the k-th order L^{p} modulus of continuity of a function f is defined as

$$
\omega_{p, k}(f, t)=\sup \left\{\left\|\Delta_{h}^{k} f\right\|_{p}:|h| \leqq t\right\}, \quad t>0,
$$

where Δ_{h} denotes the difference operator $\Delta_{h} f(x)=f(x+h)-f(x), x, h \in \mathbb{R}^{n}$; then, the (homogeneous) Besov space $B_{p, q}^{\alpha, k}, \alpha>0, k>[\alpha], 1 \leqq p, q \leqq \infty$, is ([10]) the space of those functions f (or, more precisely, classes of functions modulo \mathscr{P}_{k-1}, the polynomials of degree $\leqq k-1$) such that

$$
\|f\|_{B_{p, q}^{\alpha, k}}=\left(\int_{0}^{\infty}\left(t^{-\alpha} \omega_{p, k}(f, t)\right)^{q} t^{-1} \mathrm{~d} t\right)^{1 / q}<\infty
$$

(equivalent definitions ([8]) can be given in terms of Fourier transform). In particular, if $p=q=\infty$, we obtain the classical Lipschitz spaces Λ_{α} if α is not an integer and the Zygmund classes for α integral.

Shortly after the introduction of BMO by John and Nirenberg, mean oscillation characterisations of Λ_{α} were given by Meyers ([6]) for $0<\alpha<1$ and by Campanato ([1]) for a general α. It is therefore natural to ask whether the same is true for the $B_{p, q}^{\alpha, k}$ and an affirmative answer is obtained as follows: let f be a locally integrable function and Q a cube in \mathbb{R}^{n}; by $P_{Q}^{k} f$ we denote the unique polynomial in \mathscr{P}_{k} such that

$$
\int_{Q}\left(f-P_{Q}^{k} f\right) x^{\alpha} \mathrm{d} x=0
$$

for all $\alpha \in \mathbb{N}^{n}, 0 \leqq|\alpha| \leqq k$ (e.g., if $k=0, P_{Q}^{0} f=f_{Q}=|Q|^{-1} \int_{Q} f$). We will write $P_{Q} f$ and even P_{Q} if there is no chance of confusion. The following operator gives a pointwise measure of the mean oscillation of f

$$
\Omega_{f}^{1, k}(x, t)=\Omega_{f}^{k}(x, t)=\sup \left\{|Q|^{-1} \int_{Q}\left|f-P_{Q}^{k} f\right| \mathrm{d} z: x \in Q,|Q|=t^{n}\right\}
$$

and we have
Theorem 1. $f \in B_{p, q}^{\alpha, k}$ if and only if

$$
\begin{equation*}
\|f\|_{\alpha, k ; p, q}=\left(\int_{0}^{\infty}\left(t^{-\alpha}\left\|\Omega_{f}^{k-1}(\cdot, t)\right\|_{p}\right)^{q} t^{-1} \mathrm{~d} t\right)^{1 / q}<\infty \tag{1}
\end{equation*}
$$

in which case $\|f\|_{\alpha, k ; p, q} \sim\|f\|_{B_{p, q}^{\alpha, k}}(A \sim B$ means there is an absolute constant C such that $C^{-1} A<B<C A$).

Mean oscillation characterisations are well suited to obtain estimates for singular integrals and also to generalise these spaces to domains whose geometry makes difficult the use of the classical definitions (see [5] and [7]). In any case, they allow great flexibility in the definition of $B_{p, q}^{\alpha, k}$; for instance, in view of John-Nirenberg's inequality a natural question is for which values of r the following variants of the operator Ω_{f}^{1}

$$
\Omega_{j}^{r, k}(x, t)=\sup \left\{\left(|Q|^{-1} \int_{Q}\left|f-P_{Q}^{k}\right|^{\prime}\right)^{1 / r}: x \in Q,|Q|=t^{n}\right\}
$$

can be used to define $B_{p, q^{-}}^{\alpha, k}$. The precise answer is
Theorem 2. (i) If $\alpha \leqq n / p, 1 / q=1 / p-\alpha / n$ and $r<q$, replacing in (1) Ω_{f}^{\prime} by Ω_{f}^{r} we obtain a norm equivalent to $\|f\|_{\alpha, k ; p, q^{\cdot}}$ (ii) If $\alpha>n / p, \Omega_{f}^{\infty}$ can be used in just the same way.

Furthermore, it is well known that for $k>[\alpha]$ the spaces $B_{p, 4}^{\alpha, k}$ are all equivalent modulo \mathscr{P}_{k}; this fact is also an immediate consequence of the following mean oscillation version of Marchaud's inequality:

Theorem 3. Given positive integers $k^{\prime}>k>[\alpha]$, if $f \in B_{p, 4}^{\alpha, k^{\prime}}$ there exists a polynomial $R \in \mathscr{P}_{k^{\prime}-1}$ such that

$$
\left\|\Omega_{f-R}^{1, k-1}(\cdot, t)\right\|_{p} \leqq C t^{k^{\prime}} \int_{t}^{\infty}\left\|\Omega_{f}^{1 \cdot k^{\prime}-1}(\cdot, s)\right\|_{p} s^{-k^{\prime}-1} \mathrm{~d} s
$$

The rest of the paper is devoted to the proofs of these results but before giving them we should like to point out that (1) can be shown to be equivalent with the norm used by Ricci and Taibleson ([13]) to define MO spaces; in these sense, theorem 1 gives, for suitable indices, an identification between MO and Besov spaces, a fact proved in \mathbb{R} by Ricci and Taibleson and by Greenwald ([2]) in $\mathbb{R}^{\prime \prime}$. Their arguments, however, make extensive use of the structure theory of Besov spaces and are somewhat less direct than those given here.
2. Proof of theorem 1. Recalling the definition of $P_{Q}^{k-1} f$, an easy homogeneity argument gives

$$
\begin{equation*}
\underset{Q}{\text { ess } \sup }\left|P_{Q}^{k-1} f\right| \leqq C|Q|^{-1} \int_{Q}|f| \mathrm{d} x \tag{2}
\end{equation*}
$$

for any cube Q and $k \geqq 1$; it then follows that, since $P_{Q}^{k}(f+R)=P_{Q}^{k} f+R$ for any polynomial R of degree $\leqq k$,

$$
\begin{equation*}
|Q|^{-1} \int_{Q}\left|f-P_{Q}^{k} f\right| \leq C|Q|^{-1} \int_{Q}|f-R| \tag{3}
\end{equation*}
$$

and that if $Q \subset Q^{\prime}$,

$$
\begin{equation*}
|Q|^{-1} \int_{Q}\left|f-P_{Q}^{k} f\right| \leq C\left(\left|Q^{\prime}\right| /|Q|\right)\left|Q^{\prime}\right|^{-1} \int_{Q^{\prime}}\left|f-P_{Q^{\prime}}^{k} f\right| \tag{4}
\end{equation*}
$$

We have now
Lemma 1. If Q has side length t, then, for a.e. $x \in Q$

$$
\left|f(x)-P_{Q}^{k-1}(x)\right| \leqq C \int_{0}^{t} \Omega_{f}^{k-1}(x, s) s^{-1} \mathrm{~d} s
$$

Proof. By Lebesgue's differentiation theorem,

$$
\left|f(x)-P_{Q}^{k-1}(x)\right|=\lim \left|Q^{\prime}\right|^{-1} \int_{Q^{\prime}}\left|f-P_{Q}^{k-1}\right| \mathrm{d} z \text { as } Q^{\prime} \rightarrow\{x\}
$$

a.e. in Q. Let $\left\{Q_{n}\right\}$ be a sequence of cubes tending to x and such that $Q=Q_{0}, Q_{i} \subset$ Q_{i+1} and $\left|Q_{i}\right|=2^{n}\left|Q_{i+1}\right|$; by (4)

$$
\begin{aligned}
\left|Q_{i}\right|^{-1} \int_{Q_{i}}\left|f-P_{Q}^{k-1}\right| & \leqq\left|Q_{i}\right|^{-1} \int_{Q_{i}}\left|f-P_{Q_{i}}^{k-1}\right|+\sum_{j=1}^{i}\left|Q_{i}\right|^{-1} \int_{Q_{i}}\left|P_{Q_{j}}^{k-1}-P_{Q_{j-1}}^{k-1}\right| \\
& \leqq C \sum_{j=0}^{i}\left|Q_{j}\right|^{-1} \int_{Q_{j}}\left|f-P_{Q_{j}}^{k-1}\right| \leqq C \sum_{j=0}^{i} \Omega_{f}^{k-1}\left(x, 2^{-j} t\right) \\
& \leqq C \int_{0}^{t} \Omega_{f}^{k-1}(x, s) s^{-1} \mathrm{~d} s
\end{aligned}
$$

and the lemma follows.
Fix now x, h and let Q be the cube with centre x and side length $2 k|h|$. Since Δ^{k} annihilates \mathscr{P}_{k-1}, the estimate

$$
\left|\Delta_{h}^{k} f(x)\right|=\left|\Delta_{h}^{k}\left(f-P_{Q}^{k-1}\right)(x)\right| \leqq C \int_{0}^{2 k|h|} \sum_{j=0}^{k} \Omega_{f}^{k-1}(x+j h, s) s^{-1} \mathrm{~d} s
$$

holds a.e. in \mathbb{R}^{n} and it follows that

$$
\left\|\Delta_{h}^{k} f\right\|_{p} \leqq C \int_{0}^{2 k|h|}\left\|\Omega_{f}^{k-1}(\cdot, s)\right\|_{p} s^{-1} \mathrm{~d} s
$$

therefore

$$
\omega_{p, k}(f, t) \leqq C \int_{0}^{2 k t}\left\|\Omega_{f}^{k-1}(\cdot, s)\right\|_{p} s^{-1} \mathrm{~d} s
$$

which, together with Hardy's inequality implies $\|f\|_{B_{p, q}^{\alpha, k}} \leqq C\|f\|_{\alpha, k ; p, q}$.

Conversely, if $f \in B_{p, q}^{\alpha, k}, f$ is then locally integrable and for each $t>0$ we can construct (see [4]) functions $g_{t} \in L^{p}$ and h_{t} in L^{1} with weak derivatives $D^{\beta} h_{t} \in L^{p}$, $|\boldsymbol{\beta}|=k$, such that $f=g_{t}+h_{t}$ and

$$
\left\|g_{t}\right\|_{p} \leqq C \omega_{p, k}(f, t), t^{k}\left|h_{t}\right|_{p, k}=t^{k} \sum_{|\beta|=k}\left\|D^{\beta} h_{t}\right\|_{p} \leqq C \omega_{p, k}(f, t)
$$

It now follows from (4) that

$$
\left\|\Omega_{g_{1}}^{k-1}(\cdot, t)\right\|_{p} \leqq C\left\|g_{t}\right\|_{p} \leqq C \omega_{p, k}(f, t) ;
$$

also if $\phi \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right), \int \phi \mathrm{d} x=1$ and $\phi_{\lambda}(x)=\lambda^{-n} \phi(x / \lambda)$, we can estimate the mean oscillation of the smooth function $h_{t} * \phi_{\lambda}$ using its $k-1$ order Taylor expansion and we obtain that $\left\|\Omega_{h_{t} * \phi_{\lambda}}^{k-1}(\cdot, t)\right\|_{p} \leqq C \cdot t^{k}\left|h_{t} * \phi_{\lambda}\right|_{p, k}$; hence by Fatou's lemma, $\left\|\Omega_{h_{t}}^{k-1}(\cdot, t)\right\|_{\rho} \leqq C \omega_{p, k}(f, t)$, and therefore,

$$
\left\|\Omega_{g_{t}}^{k-1}(\cdot, t)\right\|_{p} \leqq C\left(\left\|\Omega_{g_{t}}^{k-1}(\cdot, t)\right\|_{p}+\left\|\Omega_{h_{t}}^{k-1}(\cdot, t)\right\|_{p}\right) \leqq C \omega_{p, k}(f, t),
$$

which implies $\|f\|_{\alpha, k ; p, q} \leqq C\|f\|_{B_{p, q}^{\alpha, k}}$.
3. Proof of theorem 2. By Hardy's inequality theorem 2 follows from

Lemma 2. (i) If $\alpha \leqq n / p, 0<\alpha^{\prime}<\alpha^{\prime \prime}<\alpha$ and $1 / r=1 / p-\alpha^{\prime \prime} / n$,

$$
\left\|\Omega_{f}^{r}(\cdot, t)\right\|_{p} \leqq C t^{\alpha^{\prime}} \int_{0}^{t}\left\|\Omega_{f}^{1}(\cdot, 4 s)\right\|_{p} s^{-\alpha^{\prime}-1} \mathrm{~d} s
$$

(ii) If $\alpha>n / p$,

$$
\left\|\Omega_{f}^{\infty}(\cdot, t)\right\|_{p} \leqq C t^{n / p} \int_{0}^{t}\left\|\Omega_{f}^{1}(\cdot, 4 s)\right\|_{p} s^{-n / p-1} \mathrm{~d} s
$$

Proof. (i) Fix $t>0$ and let Q be a cube with side length t; we have from lemma 1

$$
\begin{equation*}
\left|f(y)-P_{Q} f(y)\right| \leqq C \int_{0}^{t} \Omega_{f}^{1}(y, s) s^{-1} \mathrm{~d} s \tag{5}
\end{equation*}
$$

a.e. in Q. Writing $Q^{*}=Q(y, 2 s)$ we obtain by (4)

$$
\begin{aligned}
\Omega_{f}^{\prime}(y, s) & \leqq C\left|Q^{*}\right|^{-1} \int_{Q^{*}}\left|f-P_{Q^{*}}\right| \mathrm{d} u \leqq C \inf _{Q^{*}} \Omega_{f}^{\prime}(z, 2 s) \\
& \leqq C s^{-n} \int_{Q^{*}} \Omega_{f}^{\prime}(z, 2 s) \mathrm{d} z
\end{aligned}
$$

therefore, if Q_{0} is the cube with centre 0 and side length t,

$$
\begin{aligned}
\Omega_{f}^{\prime}(y, s) & \leqq C s^{-\alpha^{\prime}} \int_{Q^{*}} \frac{\Omega_{f}^{\prime}(z, 2 s)}{|y-z|^{n-\alpha^{\prime}}} \mathrm{d} z \\
& \leqq C s^{-\alpha^{\prime}}\left(\Omega_{f}^{\prime}(\cdot, 2 s) \chi_{2 Q}\right) *\left(\frac{\chi_{2 Q_{0}}}{|\cdot|^{n-\alpha^{\prime}}}\right)(y)
\end{aligned}
$$

Inserting this estimate in (5) and using Minkowski's and Young's inequalities, we have for $1 / r=1 / p+\left(n-\alpha^{\prime \prime}\right) / n-1$

$$
\begin{aligned}
\left(|Q|^{-1} \int_{Q}\left|f-P_{Q}\right|^{r}\right)^{1 / r} & \leqq C t^{-n / r} \int_{0}^{t}\left\|\left.\Omega_{f}^{1}(\cdot, 2 s) \chi_{2 Q^{*}}| | \cdot\right|^{\alpha^{\prime}-n} \chi_{2 Q_{0}}\right\|_{r} s^{-\alpha^{\prime}-1} \mathrm{~d} s \\
& \leqq C t^{-n / r+\alpha^{\prime}-\alpha^{\prime \prime}} \int_{0}^{t}\left(\int_{2 Q} \Omega_{f}^{1}(z, 2 s)^{p} \mathrm{~d} z\right)^{1 / p} s^{-\alpha^{\prime}-1} \mathrm{~d} s \\
& =C t^{\alpha^{\prime}-n / p} \int_{0}^{t}\left(\int_{2 Q} \Omega_{f}^{1}(z, 2 s)^{p} \mathrm{~d} z\right)^{1 / p} s^{-\alpha^{\prime}-1} \mathrm{~d} s .
\end{aligned}
$$

If $\left\{Q_{i}\right\}$ is now a disjoint family of cubes with side length t and such that $\mathbb{R}^{n}=U Q_{i}$, it follows that for a general $x \in \mathbb{R}^{n}$

$$
\begin{aligned}
\Omega_{f}^{r}(x, t) & \leqq C \sum_{i}\left(\left|2 Q_{i}\right|^{-1} \int_{2 Q_{i}}\left|f-P_{2 Q_{i}}\right|^{r}\right)^{1 / r} \chi_{Q_{i}}(x) \\
& \leqq C t^{\alpha^{\prime}-n / p} \int_{0}^{t}\left|\sum_{i}\left(\int_{4 Q_{i}} \Omega_{f}^{1}(z, 4 s)^{p} \mathrm{~d} z\right)^{1 / p} \chi_{Q_{i}}(x)\right| s^{-\alpha^{\prime}-1} \mathrm{~d} s
\end{aligned}
$$

and again by Minkowski's inequality,

$$
\begin{aligned}
\left\|\Omega_{f}^{r}(\cdot, t)\right\|_{p} & \leqq C t^{\alpha^{\prime}-n / p} \int_{0}^{t}\left\|\sum_{i}\left(\int_{4 Q_{i}} \Omega_{f}^{\prime}(z, 4 s)^{p} \mathrm{~d} z\right)^{1 / p} \chi_{Q_{i}}\right\|_{p} s^{-\alpha^{\prime}-1} \mathrm{~d} s \\
& \leqq C t^{\alpha^{\alpha^{\prime}-n / p}} \int_{0}^{t}\left|\left(\sum_{i} \int_{4 Q_{i}} \Omega_{f}^{\prime}(z, 4 s)^{p} \mathrm{~d} z\right) t^{\prime \prime}\right|^{1 / p} s^{-\alpha^{\prime}-1} \mathrm{~d} s \\
& \leqq C t^{\alpha^{\prime}} \int_{0}^{t}\left\|\Omega_{f}^{1}(\cdot, 4 s)\right\|_{p} s^{-\alpha^{\prime}-1} \mathrm{~d} s .
\end{aligned}
$$

(ii) We prove first that f is locally bounded. Fix a cube $Q,|Q|=t^{\prime \prime}$; we have for a.e. $y \in Q$

$$
\begin{aligned}
\left|f(y)-P_{Q}(y)\right| & \leqq C \int_{0}^{t} \Omega_{f}^{1}(y, s) s^{-1} \mathrm{~d} s \\
& \leqq C \int_{0}^{t}\left(s^{-n} \int_{2 Q_{s}(y)} \Omega_{f}^{1}(z, 2 s) \mathrm{d} z\right) s^{-1} \mathrm{~d} s \\
& \leqq C \int_{0}^{t} s^{-n / p}\left(\int_{2 Q_{s}(y)} \Omega_{f}^{1}(z, 2 s)^{p} \mathrm{~d} z\right)^{1 / p} s^{-1} \mathrm{~d} s \\
& \leqq C\left(\int_{0}^{t} s^{(\alpha-n / p) q^{\prime}-1} \mathrm{~d} s\right)^{1 / q^{\prime}}\left(\int_{0}^{\infty}\left(s^{-\alpha}\left\|\Omega_{f}^{1}(\cdot, 2 s)\right\|_{p}\right)^{q_{s}-1} \mathrm{~d} s\right)^{1 / q} \\
& =C t^{\alpha-n / p}\|f\|_{\alpha ; p, q} .
\end{aligned}
$$

Now, if $y_{0} \in Q$ is such that $\left\|\left(f-P_{Q}\right) \chi_{Q}\right\|_{\infty} \leqq 2\left|f\left(y_{0}\right)-P_{Q}\left(y_{0}\right)\right|$, then

$$
\begin{aligned}
\left\|\left(f-P_{Q}\right) \chi_{Q}\right\|_{\infty} & \leqq C \int_{0}^{t} s^{-n}\left(\int_{2 Q_{s}\left(y_{0}\right)} \Omega_{f}^{1}(z, 2 s) \mathrm{d} z\right) s^{-1} \mathrm{~d} s \\
& \leqq C \int_{0}^{t} s^{-n / p}\left(\int_{2 Q} \Omega_{f}^{1}(z, 2 s)^{P} \mathrm{~d} z\right)^{1 / P} s^{-1} \mathrm{~d} s
\end{aligned}
$$

and writing as before $\mathbb{R}^{n}=U Q_{i}, Q_{i}$ disjoint, $\left|Q_{i}\right|=t^{n}$,

$$
\begin{aligned}
\Omega_{f}^{\infty}(x, t) & \left.\leqq \sum_{i} \| f-P_{2 Q_{i}}\right) \chi_{2 Q_{i}} \|_{\infty} \chi_{Q_{i}}(x) \\
& \leqq C \int_{0}^{t}\left|\sum_{i}\left(\int_{4 Q_{i}} \Omega_{f}^{1}(z, 4 s)^{p} \mathrm{~d} z\right)^{1 / p} \chi_{Q_{i}}(x)\right| s^{-n / p-1} \mathrm{~d} s ;
\end{aligned}
$$

therefore

$$
\begin{aligned}
\left\|\Omega_{f}^{\infty}(\cdot, t)\right\|_{p} & \leqq C \int_{0}^{t}\left\|\sum_{i}\left(\int_{4 Q_{i}} \Omega_{f}^{1}(z, 4 s)^{p} \mathrm{~d} z\right)^{1 / p} \chi_{Q_{i}}\right\|_{p} s^{-n / p-1} \mathrm{~d} s \\
& \leqq C t^{n / p} \int_{0}^{t}\left\|\Omega_{f}^{1}(\cdot, 4 s)\right\|_{p} s^{-n / p-1} \mathrm{~d} s .
\end{aligned}
$$

4. Proof of theorem 3. Our approach originates in the proofs for the Lipschitz case given in [1] or [3]. Clearly, it is enough to assume $k^{\prime}=k+1$ and we construct first the polynomial R. Let Q_{0}^{ℓ} be the cube with centre 0 and side length 2^{ℓ} and for $f \in B_{p, 4}^{\alpha, k+1}$ write

$$
P_{Q_{0}^{\prime}}^{k} f(x)=\sum_{|\beta| \leq k}\left(a_{\beta, k} / \beta!\right) x^{\beta} ;
$$

if $|\boldsymbol{\beta}|=k$, using lemma 2.1 in [1] we obtain

$$
\begin{equation*}
\left|a_{\beta, j}-a_{\beta, j}\right| \leqq \sum_{i+1}^{i^{\prime}}\left|a_{\beta, i}-a_{\beta, i-1}\right| \leqq C \sum_{j+1}^{i^{\prime}} 2^{-i k}\left|Q_{0}^{i}\right|^{-1} \int_{Q_{0}^{i}}\left|f-P_{Q_{0}^{\prime}}^{k}\right|, \tag{6}
\end{equation*}
$$

which can be bounded by

$$
\begin{aligned}
C \sum_{j+1}^{\infty} 2^{-i k}\left|Q_{0}^{i}\right|^{-1} \int_{Q_{0}^{i}} \Omega_{f}^{k}\left(z, 2^{i}\right) \mathrm{d} z & \leqq C \sum_{j}^{\infty} 2^{-i k-i n / p}\left\|\Omega_{f}^{k}\left(\cdot, 2^{i}\right)\right\|_{p} \\
& \leqq C 2^{-j\left(k+n^{\prime} p-\alpha\right)}\|f\|_{\alpha, k+1: p, q} .
\end{aligned}
$$

Thus, $\left\{a_{\beta, \ell}\right\}$ is a Cauchy sequence as $\ell \rightarrow \infty$ and we set $a_{\beta}=\lim a_{\beta, \ell},|\beta|=k$. Let $R(x)=\sum_{|\beta|=k}\left(a_{\beta} / \beta!\right) x^{\beta}$ and $g=f-R$; we have now

$$
\begin{equation*}
\Omega_{g}^{k-1}(x, t) \leqq C t^{k} \int_{t}^{x} \Omega_{f}^{k}(x, s) s^{-k-1} \mathrm{~d} s \tag{7}
\end{equation*}
$$

which obviously gives the desired result. To prove it, let $x \in Q,|Q|=t^{n}$ and let $Q=$ $Q_{0} \subset Q_{1} \subset \ldots \subset Q_{\lambda}=Q_{0}^{N}$ be a sequence of cubes such that $\left|Q_{i}\right|=2^{n}\left|Q_{i-1}\right| ;$ writing

$$
\begin{aligned}
& P_{Q_{i}}^{k} f(y)=\sum_{|\beta|=k}\left(a_{\beta, i} / \beta!\right)(y-x)^{\beta}+S_{i}(y)=R_{i}(y)+S_{i}(y) \\
& R(y)=\sum_{|\beta|=k}\left(a_{\beta} / \beta!\right)(y-x)^{\beta}+S^{\prime}(y)=R^{\prime}(y)+S^{\prime}(y)
\end{aligned}
$$

and using (3) we obtain

$$
\begin{align*}
|Q|^{-1} \int_{Q}\left|g-P_{Q}^{k-1} g\right| \mathrm{d} y & \leqq C|Q|^{-1} \int_{Q}\left|g-\left(P_{Q}^{k} f-R_{0}\right)+S^{\prime}\right| \mathrm{d} y \tag{8}\\
& \leqq C\left[|Q|^{-1} \int_{Q}\left|f-P_{Q}^{k} f\right| \mathrm{d} y+\underset{Q}{\text { ess sup }}\left|R-R_{0}\right|\right]
\end{align*}
$$

Since again by lemma 2.1 of [1]

$$
\begin{aligned}
\underset{Q}{\text { ess } \sup }\left|R_{i}-R_{i-1}\right| & \leqq C t^{k} \sum_{|\beta|=k}\left|a_{\beta, i}-a_{\beta, i-1}\right| \\
& \leqq C t^{k}\left(2^{i} t\right)^{-k}\left|Q_{i}\right|^{-1} \int_{Q_{i}}\left|f-P_{Q_{i}}^{k}\right|
\end{aligned}
$$

and from (6)

$$
e s s_{Q} \sup \left|R_{\lambda}^{\prime}-R^{\prime}\right| \leqq C t^{k} \sum_{|\beta|=k}\left|a_{\beta, N}-a_{\beta}\right| \leqq C t^{k} \int_{2^{N}}^{\infty} \Omega_{f}^{k}(x, s) s^{-k-1} \mathrm{~d} s
$$

we arrive at (7) by estimating (8) by

$$
C t^{k}\left[\sum_{0}^{\lambda}\left(2^{i} t\right)^{-k} \Omega_{f}^{k}\left(x, 2^{i} t\right)+\int_{2^{N}}^{\infty} \Omega_{f}^{k}(x, s) s^{-k-1} \mathrm{~d} s\right] \leqq C t^{k} \int_{t}^{\infty} \Omega_{f}^{k}(x, s) s^{-k-1} \mathrm{~d} s
$$

Acknowledgements: The author would like to thank Professors M. Taibleson and Guido Weiss for many valuable suggestions and the Department of Mathematics, Washington University in St. Louis, for its support.

References

1. S. Campanato, Propricta di una famiglia di spazi funzionali, Ann. Scuola Norm. Sup. Pisa 18 (1964), pp. 137-160.
2. H. Greenwald, Homogeneous Lipschitz spaces and mean oscillation, to appear in Pacif. J. of Math.
3. S. Janson, M. Taibleson and G. Weiss, Elementary characterizations of Morrey-Campanato spaces, to appear in Pacif. J. of Math.
4. H. Johnen and K. Scherer, On the equivalence of the K functional and moduli of continuity and some applications, Lecture Notes in Math. Springer-Verlag, 571, (1977), pp. 119-140.
5. S. G. Krantz, Geometric Lipschitz spaces and applications to complex function theory and nilpotent groups, J. Funct. Anal. 34, (1979), pp. 456-471.
6. N. G. Meyers, Mean oscillation over cubes and Hölder continuity, Proc. Amer. Math. Soc. 15, (1964), pp. 717-721.
7. A. Nagel and E. M. Stein, Lectures on pseudodifferential operators, Math. Notes 24, Princeton Univ. Press, 1979.
8. J. Peetre, New thoughts on Besov spaces, Duke University Mathematics Series 1, 1976.
9. F. Ricci and M. Taibleson, Boundary values of harmonic functions on mixed norm spaces and their atomic structure, to appear in Ann. Scuola Norm. Sup. Pisa.
10. E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Math. Series, Princeton University Press, 1970.

Washington University
St. Louis, MI, U.S.A.

Universidad Autónoma
Madrid, Spain

