Fingerprints and the Diagnosis of Zygosity in Twins*

P. Parisi, M. Di Bacco

I. Design of the Work

I.1. Introduction

Bibliographic references, aim, material and methods of the present study, as well as the methodology especially worked out for the qualitative analysis, have already been largely described in a previous introductory note (Parisi and Di Bacco, 1967). A few minor variations having been introduced, and for the sake of completeness, essential data shall be now referred to again, before describing and discussing the results.

This research was designed with two complementary aims:
a) To apply the twin method to the study of the hereditary behaviour of digital dermatoglyphic traits, both at the qualitative and quantitative level;
b) To apply the results thus obtained to work out a method for discriminating MZ and DZ twins by means of fingerprints.

I.2. Material and Methods

A sample of 100 , apparently healthy, same-sexed twin pairs, only selected as to sex combination and zygosity ($250+25$ ㅇ MZ, and $25 \sigma^{\hat{\sigma}}+25 \not \subset \mathrm{DZ}$), was drawn from the Mendel Institute's large twin file and fingerprinted.

Zygosity was determined on account of the following data (cf recommendations of the WHO report on the methodology of twin studies, 1966 , and Hauge et al, 1968): (a) number of choria; (b) ABO, MN and Rh blood groups; (c) eye and hair colour, according to the apposite anthropological scales; (d) information about the twins ever having been mixed up by parents, friends or relatives; (e) subjective judgements on the basis of the twins' general aspect, direct medical examination, anamnestic data etc.

Fingerprints were examined with respect to both qualitative and quantitative

* With an Appendix on Automatic Procedure by M. Umani.

Tab. I. Standardized procedure for the collection of data: pattern/ridge count
($\mathrm{Dx}=$ right $; \mathrm{Sn}=1 \mathrm{eft} ; 1 \mathrm{a}$ and 2 a nata $=1 \mathrm{st}$ and 2 nd born $)$
5736: F. ANTOEIMA I PAOLA - $\mathbf{~ L z}$

	DX						8i						Ix + S ${ }^{\text {P }}$
	1	II	III	IV	V	BFPC	I	II	III	IV	∇	LFRC	TH2C
1a nata	w/21	Lu/15	L2/13	Lna/5	Lu/6	60	8/23	Lu/ 10	Lu/5	L24/5	L2/7	50	110
$\begin{gathered} \text { 2a } \\ \text { nata } \end{gathered}$	L20/20	Lu/ 11	Lu/ 10	Lu/12	Lu/9	62	Lu/18	L2/10	Lu/ 11	Lu/10	$4 / 0$	49	111

traits (cf Tab. I), i.e. to the five fundamental papillary patterns [$\mathrm{W}=$ whorl; $\mathrm{Lu}=$ ulnar loop; $\mathrm{Lr}=$ radial loop; $\mathrm{S}=\mathrm{twin}$ loops (S figure); $\mathrm{A}=$ arch], and to ridge counts, both single for each finger and cumulative for one or both hands ($\mathrm{RFRG}=$ right finger ridge count; LFRC $=$ left finger ridge count; TFRC $=$ $=$ total finger ridge count).

II. Methodology of the Analysis

II.1. Qualitative analysis

A judgement on the similarities existing for each finger between cotwins' papillary patterns will be based upon the probability of obtaining at random and conditional upon the distribution of the five papillary patterns observed in the sample a number of concordances (namely, of coinciding patterns between cotwins' corresponding fingers) not lesser than the number observed in the sample.

The calculation of this probability is not easily done: it may however be summed up as follows.

Let us order the five papillary patterns arbitrarily. Let then ${ }_{\mathrm{D}} \mathrm{Z}_{1}(\mathrm{i}=\mathrm{I} ; \ldots ; 5)$ be the aggregate number of the $\mathrm{i}^{\text {th }}$ type observed on the D finger in the two members of the n twin pairs observed. Let also ${ }_{\mathrm{D}} \mathrm{f}_{11}$ be the number of pairs in which the finger D of both members has the pattern i, and ${ }_{D} f_{1 j}$ the number of pairs in which one of the two members has the pattern i on his finger D while the other has the pattern $\mathrm{j}(\mathrm{j}=2 ; \ldots ; 5$. In general, $\mathrm{j}>\mathrm{i}$).

The observed sample of n pairs may be represented by a sample configuration which is a vector formed by fifteen non-negative integer numbers:
[I.I] ${ }_{\mathrm{D}} \mathrm{F}_{\mathrm{r}} \equiv\left({ }_{\mathrm{D}} \mathrm{f}_{11} ; \ldots ; \mathrm{Df}_{55} ;{ }_{\mathrm{D}} \mathrm{f}_{12} ; \ldots ;{ }_{\mathrm{D}} \mathrm{f}_{15} ; \ldots ;{ }_{\mathrm{D}} \mathrm{f}_{34} ;{ }_{\mathrm{D}} \mathrm{f}_{35} ;{ }_{\mathrm{D}} \mathrm{f}_{45}\right.$)
and the number of observed concordances is ${ }_{\mathrm{D}} \mathrm{r}=\Sigma_{\mathrm{iD}} \mathrm{f}_{11}$.
In the previous, already cited, introductory note, it has been shown that the probability

$$
P_{r}\left\{\left.{ }_{D} F_{r}\right|_{D} Z_{1} ; \ldots ;{ }_{D} Z_{5}\right\}
$$

to obtain the sampling configuration at random, is:

$$
\begin{equation*}
P_{r}\left\{_{D} F_{r} \mid{ }_{D} Z_{1} ; \ldots ;{ }_{D} Z_{5}\right\}=\frac{n!}{\prod_{i \leq 1} \frac{{ }_{D} f_{i j}!}{\prod_{\mathrm{i}}}{ }_{\mathrm{D}} Z_{1}!} \frac{(2 n)!}{\left(2 n-{ }_{D} r .\right.} \tag{I.2}
\end{equation*}
$$

However, [1.2] is not the probability of obtaining ${ }_{\mathrm{D}} \mathrm{r}$ concordances at random, conditional upon the frequencies. This may be obtained, instead, by setting up all the sampling configurations that may be obtained from [I.I] by causing $\mathrm{D}_{\mathrm{fi1}}$ and D_{ij} to vary in the class of non-negative integer numbers under the conditions:

$$
\left\{\begin{array}{l}
\sum_{i={ }_{1}}^{5}{ }_{D} f_{i i}={ }_{D} r \tag{I.3}\\
{ }_{2} f_{D i}+\sum_{j={ }_{2}}^{5}{ }_{D} f_{1 j}={ }_{D} Z_{i} .
\end{array}\right.
$$

The probability of each such configurations may be calculated by means of [r.2]. Then,

$$
\begin{equation*}
\operatorname{Pr}\left\{{ }_{\mathrm{D}} \mathrm{r} \mid{ }_{\mathrm{D}} Z_{1} ; \ldots ;{ }_{\mathrm{D}} Z_{5}\right\}=\Sigma \operatorname{Pr}_{\mathrm{r}}\left\{_{\mathrm{D}} \mathrm{~F}_{\mathrm{r}} \mid{ }_{\mathrm{D}} Z_{1} ; \ldots ;{ }_{\mathrm{D}} Z_{5}\right\} \tag{1.4}
\end{equation*}
$$

(being the summations extended to all the configurations obtained under the conditions [I .3]) is actually the probability required.

Finally, if also the probability values under [I .4] are calculated for all possible values of r greater than ${ }_{D} r$ (on putting r instead of ${ }_{D} r$ in [r.3] and [1.4]), then:

$$
\begin{equation*}
\mathrm{P}_{\mathrm{r}}\left\{\mathrm{r} \geq\left._{\mathrm{D}} \mathrm{r}\right|_{\mathrm{D}} \mathrm{Z}_{1} ; \ldots ;{ }_{\mathrm{D}} \mathrm{Z}_{5}\right\}=\sum_{\mathrm{r}}^{\mathrm{D}={ }_{\mathrm{D}} \mathrm{R}} \mathrm{P}_{\mathrm{r}}\left\{\left.\mathrm{r}\right|_{\mathrm{D}} \mathrm{Z}_{1} ; \ldots ;{ }_{\mathrm{D}} \mathrm{Z}_{5}\right\} \tag{I.5}
\end{equation*}
$$

where ${ }_{\mathrm{D}} \mathrm{R}=\sum_{i=1}^{5}{ }_{\mathrm{D}} \mathrm{S}_{1}$, with ${ }_{\mathrm{D}} \mathrm{S}_{1}=\frac{{ }_{\mathrm{D}} Z_{i}}{2}$ or ${ }_{\mathrm{D}} \mathrm{S}_{1}=\frac{{ }_{\mathrm{D}} Z_{i}-\mathrm{I}}{2}$, according to ${ }_{\mathrm{D}} Z_{1}$ being even or odd.

The [I .5] is the required probability of obtaining at random a number of concordances greater than, or equal to, that observed on the D finger, conditional upon the frequencies ${ }_{D} Z_{1} ; \ldots ;{ }_{D} Z_{5}$ of the five types of patterns referring to the D finger.

The difficulty of this procedure lies in the constructions of configurations similar to [I.I] under the conditions [I.3]. A method which makes this construction possible has already been explained (Parisi and Di Bacco, 1967: II.2), while in the Appendix to the present work details of the Fortran program are given. By employing this method it was possible to entrust to a $7044 / \mathrm{K}_{32}$ IBM computer the search for the sampling configurations. Having fixed the critical value o.or of the probability
of an error of the first kind, it may be said that there is a similarity with respect to the finger D between the twins, if the probability $P_{r}\left\{r \geq\left.{ }_{D} r\right|_{D} Z_{1} ; \ldots ;{ }_{D} Z_{5}\right\}$ calculated by means of [I .5] is lesser than, or equal to, o.OI. If the probability is greater than o.or, the hypothesis is rejected.

The results of this test are shown in Tab. II, together with a synthetical judgement on the hypothesis of similarity, i.e.: " + " if it is true, " - " if it is false.

Since sex did not appear to play any relevant role, the same analysis has been carried out on the two samples of $5^{\circ} \mathrm{MZ}$ and $5^{\circ} \mathrm{DZ}$ twin pairs, irrespective of sex (third section of the table). The results of this analysis by zygosity only are quite similar to those by sex and zygosity, except that for finger II only the upper or lower probability limits are given, instead of the precise probability value [1.5]. Actually, as explained in the Appendix, an accurate computation of these four values would have required an enormous load of work, practically unnecessary for the purposes of our conclusion: in fact, also in this particular case the preassigned probability value of an error of the first kind is o.or.

II.2. Quantitative Analysis

Cumulative ridge counts, i.e. RFRC, LFRC and TFRC values, have been considered, and their correlations estimated in the four types of twin pairs ($\mathrm{MZ} \delta^{\delta}, \mathrm{MZ}$ ㅇ, $\mathrm{DZ} \hat{\sigma}$ and DZ Q) by computing, for each sample and for each count, the intraclass correlation coefficient. The twelve values of the latter are shown in the upper part of Tab. III. Their general coefficient will be indicated as $\mathrm{r}_{\mathrm{ijt}}(\mathrm{i} \equiv \mathrm{MZ}, \mathrm{DZ}$; $\mathrm{j} \equiv \overparen{\delta}, ~ Q ; \mathrm{t} \equiv \mathrm{R}$ for RFRC, L for LFRC, T for TFRC), which is an unbiased and consistent estimator of the "true" coefficient of intra-class correlation, $\rho_{1 j t}$.

We may reasonably assume that the bivariate random variable associated with the sample values of RFRC, LFRC and TFRC in twin pairs is fairly well approximate to a bivariate normal distribution. It is then possible to set up also a confidence interval for the coefficient $\rho_{i j t}$.

In fact, if $\mathrm{I}-\alpha$, where $0<\alpha<\mathrm{I}$, is the confidence coefficient, the upper [lower] confidence limits for the coefficient of correlation are *:

$$
\begin{align*}
& \text { tngh }\left\{\operatorname{tngh}^{-1} \mathrm{r}_{\mathrm{ijt}}+\frac{\lambda}{\left.\mathrm{n}-\frac{3}{2}\right\}}\right. \tag{2.I}\\
& {\left[\operatorname{tngh}\left\{\operatorname{tngh}^{-1} \mathrm{r}_{\mathrm{ijt}}-\frac{\lambda}{\left.\mathrm{n}-\frac{3}{2}\right\}}\right\}\right.}
\end{align*}
$$

[^0] totically normally distributed with mean $=\operatorname{tngh}^{-1} \rho_{i j t}$ and variance $=\frac{\mathrm{I}}{\mathrm{N}-3 / 2}$ (cf Fischer, 1921).
where n is the number of pairs making up the sample（i．e．25）and λ is the root of the equation $G(-x)=\frac{\alpha}{2}$ if $G(x)$ is the distribution function of the normal ran－ dom variable with mean o and variance I ．

By choosing $\mathrm{I}-\alpha=0.95$ ，hence $\lambda=\mathrm{I} .96$ ，we obtain the twelve confidence in－ tervals at 95% level．They are shown in the lower part of Tab．III．

The following questions have then been examined：
（A）Is the coefficient of intra－class correlation higher in MZ than in DZ twin pairs？
(B) Is the coefficient of intra－class correlation significantly different in δ and 우 twin pairs？
（C）Is there any significant interaction between sex and zygosity for the charac－ teristics under consideration？In other words，are sexual differences significantly diverse according to the pairs being MZ or DZ？Or，conversely：are differences due to zygosity significantly diverse according to the pairs being δ^{*} or $ㅇ$

Answers to these questions have been provided（only with respect to the TFRC， because of its wider use and probably more limited random variability，as the general cumulative value）by applying the comparative orthogonal design to the two＂fac－ tors＂，zygosity and sex，each having two＂levels＂：MZ；DZ，and δ ； O respectively．

In our particular case，once selected the value of the probability of an error of the first kind，tests＊have to be set up in order to verify the three hypotheses：

$$
\begin{align*}
& \mathrm{u}_{\mathrm{A}}=\frac{\left(\mathrm{Z}_{\mathrm{MZ}, \mathrm{O}^{\pi}, \mathrm{T}}+\mathrm{Z}_{\mathrm{MZ}, \uparrow, \mathrm{~T}, \mathrm{~T}}\right)-\left(\mathrm{Z}_{\mathrm{DZ}, \mathrm{O}^{\top}, \mathrm{T}}+\mathrm{Z}_{\mathrm{DZ}, 母, \mathrm{~T}}\right)}{\sqrt{\frac{4}{23 \cdot 5}}} \tag{2.2}\\
& \mathrm{u}_{\mathrm{B}}=\frac{\left|\left(\mathrm{Z}_{\mathrm{MZ}, \mathrm{O}^{\top}, \mathrm{T}}+\mathrm{Z}_{\mathrm{DZ}, O^{\top}, \mathrm{T}}\right)-\left(\mathrm{Z}_{\mathrm{MZ}, \uparrow, \mathrm{~T}}+\mathrm{Z}_{\mathrm{DZ}, \mathcal{Q}, \mathrm{~T}}\right)\right|}{\sqrt{\frac{4}{23 \cdot 5}}} \\
& u_{\mathrm{C}}=\frac{\left|\left(\mathrm{Z}_{\mathrm{MZ}, \text { O }^{\circ}, \mathrm{T}}-\mathrm{Z}_{\mathrm{MZ}, 甲, \mathrm{~T}}\right)-\left(\mathrm{Z}_{\mathrm{DZ}, \text { O }^{\top}, \mathrm{T}}-\mathrm{Z}_{\mathrm{DZ}, \varnothing, \mathrm{~T}}\right)\right|}{\sqrt{\frac{4}{23 \cdot 5}}}
\end{align*}
$$

where $\mathrm{Z}_{\mathrm{ijt}}=$ tngh $^{-1} \mathrm{r}_{\mathrm{iJt}}$ ．

The three questions， $\mathrm{A} ; \mathrm{B} ; \mathrm{C}$ ，will be given positive answers，respectively if $u_{\mathrm{A}} \geq-\lambda(\alpha) ; u_{\mathrm{B}} \geq-\lambda\left(\frac{\alpha}{2}\right) ; \mathrm{u}_{\mathrm{C}} \geq-\lambda\left(\frac{\alpha}{2}\right)$.
＊The justification for the three tests here applied is given in detail by Naddeo（1960）．

Since $-\lambda(\alpha)$ and $-\lambda\left(\frac{\alpha}{2}\right)$ are the roots of the two equations, respectively $G(x)=\alpha$ and $G(x)=\frac{\alpha}{2}$ [where $G(x)$ is the distribution function of the normal random variable with mean 0 and variance I], if we choose $\alpha=0.05$ we have $-\lambda\left(\frac{\alpha}{2}\right)=\mathrm{I} .96$ and $-\lambda(\alpha)=$ г 649.

The following values are thus obtained*:

$$
u_{\mathrm{A}}=8.3438 ; \mathrm{u}_{\mathrm{B}}=0.4023 ; \mathrm{u}_{\mathrm{C}}=\mathrm{I} .0427
$$

Our conclusion will therefore be that the TFRC correlation is significantly higher in MZ than in DZ pairs. On the other hand, sex does not seem to play any relevant role, nor does it appear to exist any interaction between sex and zygosity.

On the basis of these latter two results, sexes have been pulled within zygosities, and sample intraclass correlation coefficients, and respective confidence intervals (with $\mathrm{I}-\alpha=0.95$), have been estimated for MZ and DZ twin pairs, irrespective of sex (cf Tab. IV).

Correlation values were then estimated for each finger. Sex having already been shown not to play any relevant role, the analysis was directly carried out on the two samples of 50 MZ and 50 DZ twin pairs, irrespective of sex. The results are shown in Tab. V.

Although, because of methodological problems, the previously described test could not be applied in this case, correlation values for single fingers appear to be much higher in MZ than in DZ twin pairs, and altogether similar to those obtained for cumulative values.

* The values of $u_{A} ; u_{B} ; u_{\mathrm{C}}$; are based on the following valus of $\mathrm{Z}_{\mathrm{ijt}}$:

$$
\begin{aligned}
& \mathrm{Z}_{\mathrm{MZO}}{ }^{\text {a }} \mathrm{T}=\text { tngh }^{-1}(0.988)=2.555 \\
& \mathrm{Z}_{\mathrm{MZ}}{ }_{9} \mathbf{T}=\text { tngh }^{-1}(0.983)=2.3796 \\
& \mathrm{Z}_{\mathrm{DZ} \square^{7} \mathrm{~T}}=\operatorname{tngh}^{-1}(0.38 \mathrm{I})=0.4013 \\
& Z_{D Z} q \mathbf{T}=\operatorname{tngh}^{-1}(0.633)=0.7465
\end{aligned}
$$

III. Results

III.1. Qualitative analysis

The results of the qualitative analysis are summarized into the six sections of Tab. II, the upper three being referred to the MZ sample and the lower three to the DZ one.

Tab. II. Qualitative analysis

Finger		δ^{\star}			P			$\sigma+9$		
		N. of concordances	Probability	Judgement	N. of concordances	Probability	Judgement	N. of concordances	Probability	Judgement
a. MZ sample										
$$	I	13	0.00876	$+$	17	0.00164	+	30	0.00004	+
	II	10	0. 14430	-	16	0.00010	$+$	26	<0.01*	+
	III	18	0.00003	+	22	0.00004	+	40	0.00000	+
	IV	19	0.00002	$+$	20	0.00001	$+$	39	0.00000	+
	V	20	0.00053	+	21	0.00112	$+$	$4{ }^{1}$	0.00000	+
	I	14	0.00742	$+$	18	0.00021	+	32	0.00000	$+$
	II	13	0.00219	$+$	18	0.00000	$+$	$3{ }^{1}$	<0.01*	$+$
	III	21	0.00000	+	18	0.00060	+	39	0.00000	$+$
	IV	18	0.00016	$+$	21	0.00000	$+$	39	0.00000	$+$
	V	19	0.05554	-	22	0.00008	$+$	41	0.00004	$+$

b. DZ sample

	I	17	0.00200	+	12	0.20378	-	29	0.00294	$+$
$\stackrel{H}{T}$	II	11	0.06805	-	12	0.21797	-	23	>0.01*	-
O	III	17	0.05479	-	22	0.01114	?	39	0.00133	+
2	IV	19	0.00701	+	11	0.65506	-	30	0.03899	-
	V	20	0.01031	-	18	1.00000	-	38	$0.0554{ }^{2}$	-
	I	19	0.00429	+	13	0.12494	-	32	0.00291	+
H	II	13	0.01174	-	13	0.00812	+	26	<0.01*	$+$
思	III	14	0.48860	-	17	0.09283	-	31	0.14686	-
4	IV	17	0.02076	-	18	0.00765	+	35	0.00061	+
	V	20	0.07184	-	19	0.48427	-	39	0.08177	-

* Only upper or lower probability limits are given, instead of the precise probability [I .5] the calculation of which would have required a practically unnecessary, enormous load of work (cf Appendix).

III.2. Quantitative analysis

The results of the quantitative analysis are summarized in Tables III, IV and V , respectively referred to the analysis of cumulative ridge counts by sex and zygosity, to the analysis of TFRC values by zygosity only, and to the analysis of single ridge count values, also by zygosity only.

Tab. III. Quantitative analysis: Cumulative ridge counts

Sample	RFRC	LFRC	TFRC
a. Estimates of the intraclass correlation coefficient (p)			
MZ ${ }^{\text {® }}$	0.960	0.975	0.988
MZ $甲$	0.928	0.955	0.983
DZ $\widehat{\theta}$	0.398	0.323	0.381
DZ Q $^{\text {P }}$	0.687	0.565	0.633

b. Confidence intervals of ρ (confidence coefficient $=0.95$)

MZ σ
$0.912 \leq \rho \leq 0.965$
$0.946 \leq \rho \leq 0.989$
$0.973 \leq \rho \leq 0.994$
MZ \bigcirc
$0.849 \leq \rho \leq 0.967$
$0.908 \leq \rho \leq 0.977$
$0.962 \leq \mu \leq 0.993$
DZ $\widehat{0}$
$0.019 \leq \rho \leq 0.679$
$0.073 \leq \rho \leq 0.627$
$0.004 \leq \rho \leq 0.666$
DZ 9
$0.417 \leq \rho \leq 0.849$
$0.225 \leq \rho \leq 0.777$
$0.326 \leq \rho \leq 0.8{ }^{15}$

Tab. IV. Quantitative analysis:
TFRC irrespective of sex

Sample	ρ	Confidence interval of ρ
MZ	0.985	$0.966 \leq \rho \leq 0.993$
DZ	0.533	$0.189 \leq \rho \leq 0.760$

Tab. V. Quantitative analysis:
Estimates of ρ for single ridge counts

	Finger	MZ	DZ
$\begin{aligned} & \underset{y y y}{*} \\ & \underset{\sim}{3} \end{aligned}$	I	0.853	0.258
	II	0.796	0.380
	III	0.842	0.547
	IV	0.907	0.528
	V	0.904	0. 436
Haaa	I	0.893	0.122
	II	0.867	0.212
	III	0.888	0.454
	IV	0.932	0.535
	V	0.893	0.332

IV. Application of Fingerprints to the Diagnosis of Zygosity

IV.1. Introduction

The utmost importance of the twin method in human genetic studies makes the diagnosis of zygosity to be a fundamental problem of research. In fact, a large number of methods have been introduced, in the past fifty years, to meet this problem. A recent, authoritative analysis of the main ones has been provided by a WHO report on the methodology of twin studies (1966), which concludes, however, that " there is a great need for further research ". Such a need is especially felt in the study of large groups, where more economic and simpler procedures are to be taken into account.

Fingerprints appear to very well meet this need; actually, they started being used for the diagnosis of zygosity in twins around 1930, and many methods have been, and keep being proposed since then. Except for the pattern score worked out by Wendt (1955), the main ones have been proposed by two British biometric schools (Maynard-Smith and Penrose, 1955; and Nixon, 1956; Slater, 1963; Slater et al, 1964) and are generally based on ridge counts.

They all consist in score methods, in which the probability of monozygosity is indirectly proportional to the difference in the cotwins' ridge counts; i.e.: the probability is higher when the difference is lower. For the sake of simplicity, as well as for methodological reasons, we have preferred to work out a method aiming to finding out a general discriminant function between $M Z$ and $D Z$ twin pairs, i.e. based on the classic principles of nonparametric classificatory analysis, with fixed values and probability of error. According to the results obtained in the present study, the search for the discriminant function was based on TFRC differences.

IV.2. TFRC discriminant method

The intraclass correlation coefficient may be interpreted "as a simple linear transformation of a ratio of variances between classes and within classes in the Analysis of Variance " (Kendall and Stuart, i962).

It has been ascertained (II.2) that the value of the intraclass correlation coefficient is higher in MZ than in DZ twin pairs, and fails to show any sex difference or interaction between sex and zygosity. The modulus Δ of the difference ${ }^{*}$ between

[^1]the two TFRC values observed on the two members of a same-sexed twin pair of unknown zygosity, may be reasonably assumed for the purpose of classifying the pair as either MZ or DZ.

The problem is then to choose a value δ_{0} of the variable Δ, such that, if δ is the observed value of Δ :
[3.I] $\delta \leq \delta_{0}$ leads to classify the pair as MZ; whereas
[3.2] $\delta>\delta_{0}$ leads to classify the pair as DZ.
The choice of the discriminant value δ_{0} may be based on the following considerations derived from Stoller (1954) with a few modifications.

Let us suppose we know the probabilities $\mathrm{p}(\delta)$ and $\mathrm{q}(\delta)$ for Δ to assume a value $\delta=0 ; \mathrm{I} ; 2 ; \ldots ; \mathrm{n}$, in MZ and DZ twins, respectively.

Let us further suppose we know the probability π for a same-sexed pair to be MZ.

Then:

$$
\pi \sum_{\delta=0}^{\bar{\delta}} \mathrm{p}(\delta)
$$

is the probability that a same-sexed pair be MZ and that a δ value of Δ, lesser than, or equal to $\bar{\delta}$, be observed thereon.

Similarly, the probability for a same-sexed twin pair to be DZ , and for a δ value, lesser than, or equal to $\bar{\delta}$, to be observed thereon, is:

$$
(\mathrm{I}-\pi) \sum_{\delta=0}^{\bar{\delta}} \mathrm{q}(\delta) .
$$

Then the probability:

$$
\begin{equation*}
\mathrm{P}(\bar{\delta})=\pi \mathrm{F}(\bar{\delta})+(\mathrm{I}-\pi)[\mathrm{I}-\mathrm{G}(\bar{\delta})] \tag{3.3}
\end{equation*}
$$

where $\mathrm{F}(\bar{\delta})=\sum_{\delta=0}^{\bar{\delta}} \mathrm{p}(\delta)$ and $\mathrm{G}(\bar{\delta})=\sum_{\delta=0}^{\bar{\delta}} \mathrm{q}(\delta)$,
refers to the event of observing a value $\delta \leq \bar{\delta}$ on a MZ, or a value $\delta>\bar{\delta}$ on a DZ same-sexed pair.

If $\mathrm{P}(\bar{\delta})$, considered as a function of $\bar{\delta}$, is maximized for $\bar{\delta}=\delta_{0}$, then the criterion of classification under [3.1] and [3.2] possesses the desirable property of maximizing the probability of making a correct diagnosis of zygosity of a twin pair under observation. As a result, δ_{0} shall be chosen so that

$$
\begin{equation*}
\mathrm{P}\left(\delta_{0}\right)=\text { maximum } \tag{3.4}
\end{equation*}
$$

The solution to the problem under [3.4] implies the prior knowledge both of the two distribution functions, $\mathrm{p}(\delta)$ and $\mathrm{q}(\delta)$, and of the probability of monozygosity (π).

At present, in Italy, the latter may be estimated at 0.30 (Gedda and Brenci, i961). Hence, we may insert in [3.3]:

$$
\pi \simeq \frac{0.30}{0.30+0.70+0.5^{0}}=0.46
$$

The distribution functions $\mathrm{p}(\delta)$ and $\mathrm{q}(\delta)$ are unknown, and we cannot estimate them by means of the Δ values observed in the four samples under consideration.

The following estimators may therefore be set up:

$$
\hat{\mathrm{p}}(\delta)=\frac{\mathrm{m} \delta^{\lambda}(\delta)+\mathrm{m} Q(\delta)}{5^{0}} \quad \hat{\mathrm{q}}(\delta)=\frac{\mathrm{n}_{\delta^{\lambda}}(\delta)+\mathrm{n} Q(\delta)}{5^{0}}
$$

$\mathrm{m}_{\mathrm{K}}(\delta)$ and $\mathrm{n}_{\mathrm{K}}(\delta)$ (where $\mathrm{K} \equiv \delta^{\top}$; q) being the number of pairs which, respectively in the δ and Q MZ and δ and Q DZ samples, have $\Delta=\delta$.

Then, the probability in [3.3], when inserting $\pi=0.46$, is estimated by means of:

$$
\begin{equation*}
0.46 \hat{\mathrm{~F}}(\bar{\delta})+0.54[\mathrm{I}-\hat{\mathrm{G}}(\bar{\delta})]=\hat{\mathrm{P}}(\bar{\delta}) \tag{3.5}
\end{equation*}
$$

where $\hat{\mathrm{F}}(\overline{\boldsymbol{\delta}})=\sum_{\delta=0}^{\bar{\delta}} \hat{\mathrm{p}}(\delta) \quad$ and $\hat{\mathrm{G}}(\overline{\boldsymbol{\delta}})=\sum_{\delta=0}^{\bar{\delta}} \hat{\mathrm{q}}(\boldsymbol{\delta})$.
These quantities are obviously determinations of two random variables whose variances are $\mathrm{F}(\bar{\delta})[\mathrm{I}-\mathrm{F}(\bar{\delta})] 50^{-1}$ and $\mathrm{G}(\bar{\delta})[\mathrm{I}-\mathrm{G}(\bar{\delta})] 50^{-1}$, respectively. It follows that the standard deviation of the random variable described by the [3.5] estimate is not greater than 0.05 .

Let us now consider the sequence generated by [3.5] when $\delta=0 ; \mathrm{r} ; \ldots$; n. If for $\bar{\delta}=\delta_{0}$ the sequence reaches its absolute maximum, δ_{0} will be chosen according to the criterion of classification [3.1]; [3.2]. The probability of correctly classifying a twin pair under observation will be estimated by $\hat{\mathrm{P}}\left(\delta_{0}\right)$ and its standard deviation will not exceed 0.05 .

It should finally be noted that, in the application of this method, r values $\delta_{0}^{(\mathrm{J})}$ ($\mathrm{j}=\mathrm{I} ; 2 ; \ldots ; \mathrm{r}$), which maximize the sequence, are likely to be obtained. If these r values, arranged in increasing order according to the index (j) are contiguous, the following procedure may be used.

For any $\delta \leq \delta_{0}^{(1)}$, the observed pair will be classified as MZ, while for any $\delta>\delta_{0}^{(\mathrm{r})}$ the pair will be classified as DZ. No classification shall be assigned if $\delta_{0}^{(1)}<\delta \leq \delta_{0}^{(r)}$, but in our experience the unique value $\delta_{0}=$ II has been obtained, being

$$
\mathrm{P}(\mathrm{II})=0.86
$$

On the basis of these results, we suggest that a twin pair be classified as follows:

$$
\mathrm{MZ}, \text { if } \Delta \leq \mathrm{Ir} \quad \mathrm{DZ}, \text { if } \Delta>\mathrm{II}
$$

The error of classification may be estimated in the range of o.14.

V. Discussion and Conclusions

The qualitative analysis has shown:
I. A significantly higher concordance in MZ than in DZ twin pairs. The hypothesis of genetic conditioning thus appears fully supported.
2. A remarkable variability of single finger concordance values. Individual genetic conditioning, for single finger patterns, may thus be inferred.
3. Absence of significant influence of handedness and sex. The analysis by zygosity only, irrespective of sex, thus appears justified.

The quantitative analysis on cumulative values has shown:
I. Significantly higher correlations in MZ $(\sim$ I) than in DZ ($\sim 0.3-0.7$) twin pairs. The hypothesis of genetic conditioning thus appears fully supported.
2. Much more limited confidence intervals in MZ than in DZ twin pairs. Almost complete genetic conditioning may thus be inferred.
3. Absence of significant influence of handedness and sex. The analysis of TFRC irrespective of sex thus appears justified.

The quantitative analysis on single values, although less extensive, has apparently yielded quite similar results to the ones of cumulative values. Also taking into account the fact that random variability must obviously be higher in single than in cumulative values, individual genetic conditioning, for single finger values, may thus be inferred.

In conclusion, our results clearly support the view of a practically complete genetic conditioning of digital dermatoglyphics. Rather than at a cumulative level for the ten fingers, as is largely believed, the latter appears to act, however, on single finger quali-quantitative traits. Actually, TFRC would hardly appear to be a trait as such, and should rather be considered as a useful, but artificial cumulative value, with a reduced random variability, and summarizing the single finger actual traits. As such we have used it in our discriminant method, which, yielding a single discriminant value between MZ and DZ twins, may provide a useful and simple tool for the diagnosis of zygosity, especially in large twin samples.

Summary

A twin study was undertaken with the twofold aim (a) of studying the hereditary behaviour of digital dermatoglyphic traits both at the qualitative and quantitative level, and (b) of working out a method for discriminating MZ and DZ twins by means of fingerprints.

Fingerprints of 50 MZ ($25 \delta^{\star}$ and 25 우) and 50 DZ ($25 \delta^{\star}$ and 25 Q) twin pairs were thus examined and analyzed by means of a special methodology and of a 7044/ K_{32} IBM computer.

The qualitative analysis has shown a significantly higher concordance in MZ than
in DZ twin pairs, with a certain variability of single finger concordance values. The quantitative analysis has shown significantly higher correlation values in MZ than in DZ twin pairs, with very limited confidence intervals in the former. Single ridge counts apparently behave as cumulative counts on the five or ten fingers, although with an obviously higher random variability.

Digital dermatoglyphics thus appear to show practically complete genetic conditioning, which, rather than at a cumulative level for the ten fingers, as is largely believed, appears to act on single finger quali-quantitative traits. The total finger ridge count, rather than a trait, only appears to be a useful, but artificial cumulative value. Actually, applied to the diagnosis of zygosity, it provides, by itself, a fairly high, general probability (0.86) of a correct diagnosis.

References

Allen G. (1960). The M quadruplets. II - The interpretation of quantitative differences. A.Ge.Me.Ge., 9: 452. - (1968). Diagnostic efficiency of fingerprint and blood group differences in a series of twins. A.Ge.Me.Ge. 17: 359.
Fisher R. A. (i921). On the probable error of the correlation coefficient with small sample. Metron, 1: 4.
Gedda L., Brenci G. (196i). Valutazione e critica del metodo differenziale di Weinberg per la diagnosi di zigotismo. Proceed. 2nd Internat. Congr. Hum. Genet., Roma. 1963.
Hauge M., Harvald B., Fischer M., Jensen G. K., Nielsen N. J., Raebild I., Shapiro R., Videbech T. (1968). The Danish twin register. A.Ge.Me.Ge., 17: 315.

Holt S. B. (1957). Quantitative genetics of dermal ridge-patterns of fingers. Proceed. Ist Internat. Congr. Hum. Genet., Acta Genet. Basel, 6: 473.

- (196ia). The inheritance of dermal ridge patterns. In L.S. Penrose: Recent Advances in Human Genetics. Churchill, London.
- (rg6rb). Quantitative genetics of finger-print patterns. Brit. Med. Bull., 17: 247.

Kendall M. G., Stuart A. (1962). The Advanced Theory of Statistics. G. Griffin \& Co., London.
Levene H. (1949). On a matching problem arising in genetics. Ann. Mathemat. Statist., 20.
Maynard-Smith S., Penrose L. S. (1955). Monozygotic and dizygotic twin diagnosis. Ann. Hum. Genet., 19: 273.

- - Smith C. A. B. (ı66ı). Mathematical Tables for Research Workers in Human Genetics. Churchill, London.

McDonald A. D. (1964). Mongolism in twins. J. Med. Genet., 1: 39.
Naddeo A. (1960). Contributi alla Teoria Statistica del Campione. Milano.

- Landenna G. (1966). Metodi Statistici nella Ricerca Scientifica e nella Programmazione Industriale. I and II., Milano.
Nixon W. L. B. (1956). On the diagnosis of twin pair ovularity and the use of dermatoglyphic data. In L. Gedda: Novant'Anni delle Leggi Mendeliane. Ed. Ist. Mendel, Roma.

Parisi P., Di Bacco M. (ig67). Le impronte digitali nei gemelli. A.Ge.Me.Ge., 16: 71.
Slater E. (1963). Diagnosis of zygosity by fingerprints. Acta Psychiat. Scand., 39: 78.
Slater P., Shields J., Slater E. (1964). A quadratic discriminant of zygosity from fingerprints. J. Med. Genet., 1: 142.
Stoller D. S. (1954). Univariate two-population distribution. Free discrimination J. Amer. Statist. Ass., $49 \cdot$
Wendt G. G. (1955). Der individuelle Musterwert der Fingerleisten und seine Vererbung. A.Ge.Me.Ge., 4: 330 .
Weninger M. (1964). Zur "polygenen" (additiven) Vererbung des quantitativen Wertes der Fingerbeerenmuster. Homo, 15: 96.
W.H.O. (r966). The use of twins in epidemiological studies. Report of Investigators on Methodology of Twin Studies. A.Ge.Me.Ge., 15: 11 I.

APPENDIX*

Automatic procedure for testing the qualitative hypotheses

From a numerical point of view the test of the qualitative hypothesis proposed in II.I can be split up into the following phases:
A. Input operation and initialization of auxiliary quantities;
B. Search for the configurations [I.1] subject to the restrictions [I.3];
C. Computation of [1.2] for each configuration and cumulation of its successive values for obtaining [1.4];
D. Cumulation of the [r.4] values, comparison with the significance level and output operation, which are however closely interdependent one with the other as evidenced by Fig. 1.
A. The following boxes of Fig. I are concerned with this phase:

Box I: Control for end of data.
Box 2: The following input quantities are required (the corresponding symbols used in II.r are to be found, if any, in the second member):
$\mathrm{N} 1=$ number of attributes. In our own case it is 5 ;
$\mathrm{K}(\mathbf{I})=\mathrm{pr}$ number of concordances observed with respect to finger D ;
ALPHA $=$ level of significance;
SINT $=$ logical variable conditioning the output;
$=\mathrm{T}$ synthetic output;
$=\mathrm{F}$ analytical output;
$\mathrm{Z}(\mathrm{I})={ }_{\mathrm{D}} \mathrm{Z}_{1}$ number of fingerprints possessing the $\mathrm{i}^{\text {th }}$ attribute.
The variable FORMAT to read-in the above quantities must be expressed by means of the variables FRM and FOR.
Box 3: The main auxiliary quantities are:
$\mathrm{NC}=\mathrm{n}$ number of twin pairs examined;
KSUP $={ }_{\mathrm{D}} \mathrm{R}$ maximum number of concordances for finger D ; $\mathrm{NC} 2=$ number of individuals examined.
$\mathrm{F}={ }_{\mathrm{D}} \mathrm{F}_{\mathrm{r}}$ vector containing the configurations [1.I]
Box 4: Subroutine PRIM generates all I prime numbers not greater than NMAX and stores them into the NP vector. They will be utilized later in phase C. More details are given in Fig. 2.
B. In order that the application of the program should not be confined only to populations whose members exhibit five attributes provision has been made for N 1 to be assigned any integer value greater than I during the input phase. This has substantially affected the translation of this phase into FORTRAN IV language as such generalization does not permit us to know at the programming stage the number of routines which are nec-

* By M. Umani, Centro di Calcolo dell’Università, Trieste.
essary for describing the search process of the configurations ${ }_{D} F_{r}$ (Parisi and Di Bacco, 1967, II.2).
The problem has been solved by means of only one routine to be performed at the different levels which are necessary for searching one individual configuration and to be repeated again and again for as many cycles as are the configurations satisfying [I.3]. For a better understanding of the above procedure and for enphasizing its salient aspects, the operations indicated in Boxes 5, 6 and 7 of Fig. I have been represented in detail on Figs. 3 and 4 .
C. It is useful for computational purposes to consider [r.2] as the quotient of P_{1} by P_{2}, where

$$
P_{1}=\frac{n!}{(2 n)!} 2^{n}-{ }_{D} r \prod_{i=1}^{5}{ }_{D} Z_{i}!
$$

and

$$
P_{2}=\prod_{i \leq j} f_{i 1}!
$$

in that only P_{1} varies as a function of the configuration ${ }_{D} F_{r}$ under consideration. Bearing in mind that P_{1} and P_{2} may always be expressed as products of powers of distinct positive integers not greater than $2 n$ and n respectively, the value of the exponent of the generic base i has been assigned, for each power belonging to P_{1} to the $\mathrm{i}^{\text {th }}$ element of vector INIZ. Subsequently, for each configuration ${ }_{D} F_{r}$ generated in phase B, the elements of vector IFACT have been equated to the corresponding ones of INIZ and the exponent of the power of the generic base i in P_{1} has been subtracted from the $\mathrm{i}^{\text {th }}$ element of the former vector. Hence, in order to minimize the loss of significant digits in the computation of the product of powers represented by IFACT, the latter vector has been simplified by transferring (with the aid of the prime numbers generated by the PRIM subroutine) the value of its elements whose serial number is not prime to those indicated by factoring the latter.
In this manner, all non-prime elements of IFACT are set to zero and will not be considered for the purpose of the computation of [I.2].
The operations described in boxes 8 and 9 of Fig. I, whose details are explained by Fig. 5, refer to the present phase.
D. The following boxes of Fig. I belong to this phase:

Box 10: Cumulation of [I .4] values as Dr increases from its initial value to DR^{D};
Box 1I: Comparison between dr and its maximum value;
Box 12: Comparison between [1.5] and ALPHA;
Box 13: If SINT $=T$ in output only a judgement on the significance of the test performed is obtained. Furthermore, in the event of non-significant concordances, there will be a saving in the performance time.
If $\operatorname{SINT}=\mathbf{F}$ in addition to the judgement as above, the probabilities relative to each or considered and their successive cumulation are obtained;
Box 14: Step up of ${ }_{\mathrm{p}} \mathrm{r}$.
The statistical tests of the random association hypothesis have been carried out by an IBM $7044 / 32 \mathrm{~K}$ computer.

This experience has revealed that the execution time is, for each test, a non-decreasing function of n and a non-increasing one of both ${ }_{\mathrm{D}} \mathrm{r}$ and d , the latter being a dispersion measure of the papillary patterns frequencies. This measure is given by

$$
\mathrm{d}=\frac{\sum_{\mathrm{I}}^{\sum_{\mathrm{I}}}\left|{ }_{\mathrm{D}} \mathrm{Z}_{1}-\mathrm{m}\right|}{5}
$$

where m is the arithmetic mean of the ${ }_{D} Z_{i}$.
The memory space required is approximately of $\frac{5}{2}(\mathrm{~N} 1+1) \mathrm{N} 1+3 \mathrm{~N} 1+5 \mathrm{n}+3150$ words.

In the following pages the source program has been entirely reported in Fortran IV language.

	PRIM	PR IMOOO1
	SUBROUTINE FOR GENERATING PRIME Numbers	PRIM0002
		PR IMOOO 3
	SUBRDUTINE PRIM(NMAX,NP, I)	PRIM0004
	DIMENSION NP(1)	PRIM0005
	$N P(1)=2$	PRIM0006
	$N P(2)=3$	PRIM0007
	$N P(3)=5$	PRIM0008
	$\mathrm{I}=2$	PRIM0009
	$\mathrm{NN}=1$	PRIM0010
10	DO $50 \mathrm{~K}=4,6,2$	PRIM0011
	NCOM $=$ NN+K	PRIM0012
	$C \cap M=N C O M$	PRIMOO13
	NS = SQRT (COM)	PRIM0014
	$J=3$	PRIMOO15
20	IF(NP(J).GT.NS) GOTO 40	PRIM0016
	IF(MOD(NCOM,NP(J)).EQ.0) GOTO 50	PRIM0017
30	$\mathrm{J}=\mathrm{J}+1$	PRIM0018
	GOTO 20	PR IMOO19
40	IF (NCOM.GT. NMAX) RETURN	PR IMOO20
	$\mathrm{I}=\mathrm{I}+1$	PRIM0021
	NP(I) = NCOM	PRIM0022
50	CONTINUE	PRIM0023
	NN=NCOM	PRIM0024
	GOTO 10	PR IMOO25
	END	PRIM0026

Parisi and Di Bacco: Fingerprints and the Diagnosis of Zygosity in Twins

C	FPBT	1
C	PROGRAM FOR THE STATISTICAL TEST OF THE HYPOTESES OF CONCOROANCE	FPBT0002
C	between the papillary patterns of mz and dz twins	FPBT0003
C		FPBT0004
1	FORMAT(12A6)	FPBT0005
3	FORMAT(////////12X,9HNUMBER OF,31X,10HCUMULATIVE/)	FPBT0006
4	FORMAT(1H1///1X,12^6///)	FPBT0007
5	FORMATIIOX,12HCONCORDANCES, $9 \mathrm{X}, 13 \mathrm{HPROBABILITIES} 7 \mathrm{X},, 13 \mathrm{HPRDBABILITIESF}$	FPBT0008
	////1)	FPB10009
7	FORMAT(12X, I5,14X,F11.8,9X,F11.8/)	FPBTOO10
8	FORMATI//////1X,34HSIGNIFICANT CONCORDANCES AT LEVEL ,F5.2////)	FPBT0011
9	FORMAT(//////1X,38HNOT SIGNIFICANT CONCORDANCES AT LEVEL ,F5.2///)	FPBT0012
	LOGICAL SINT	FPBTOO13
	INTEGER 2(99),F(999),G(999)	FPBTOO 14
	DIMENSIUN N(99), J(99), K(999), INIZ(999), IFACT(999), LS (999), L(999),	FFPBT0015
	\#P(99), NOME(12),FRM(12), FOR(12)	FPBTO016
c		FPBTOO17
c	PHASE A	FPBT0018
c		FPBT0019
	READ(5,1) (FRM(I), $1=1,12)$	FPBT0020
	READ(5,1) (FOR(I), $1=1,12)$	FPBT0021
. 10	READ(5,1) (NOME(1), $1=1,12$)	FPBT0022
	READ (5,FRM) NI,K(1), ALPHA,SINT	FPBT0023
	READ($5, F O R)(\mathrm{Z}(\mathrm{I}), \mathrm{I}=1, \mathrm{~N} 1)$	FPBT0024
	WRITE(6,4) (NOME(I), I= 1, 12)	FPBT0025
	IF(SINT) GOTO 12	FPBT0026
	WRITE(6,3)	FPBT0027
	WRITE(6,5)	FPBT0028
C		FPBT0029
12	NC $2=0$	FPBT0030
	KSUP $=0$	FPBT0031
	DO $14 \mathrm{I}=1, \mathrm{Na}$	FPBT0032
	NC2=NC2+2(1)	FPBT0033
	L(I) $=$ L (I)/2	FPBT0034
14	KSUP=KSUP + L (I)	FPBT0035
	$\mathrm{N}(1)=\mathrm{Nl}$	FPBT0036
	$N C=N C 2 / 2$	FPBT0037
	NC1 $=$ NC +1	FPBT0038
	$\mathrm{NT}=(\mathrm{NL}+\mathrm{NL}+\mathrm{N} 1) / 2$	FPBT0039
	PRR $=0$.	FPBT0040
	CALL PRIM(NC2,NP,NTP)	FPBT0041
c		FP8T0042
C	PHASE C	FPBT0043
C		FPBT0044
	$0016 \mathrm{I}=3, \mathrm{NC} 2$	FPBT0045
	INIZ(t) $=0$	FPBT0046
16	IF(I.GE.NCI) INIZ(I)=-1	FPBT0047
	INIZ 2) $=$ NC-K(1)+1	FPBT0048
	DO $20 \mathrm{I}=1, \mathrm{~N} 1$	FPBT0049
	IF(Z)	FPBT0050
	LV=2 (I)	FPBT0051
	DO $18 \mathrm{JL}=2, \mathrm{LV}$	FPBT0052
18	INIZ $(\mathrm{JL})=\mathrm{INIZ}(\mathrm{JL})+1$	FPBT0053
20	CONTINUE	FP8T0054
22	INIZ $(2)=$ INIZ 2)-1	FPBT0055
	PROB=0.	FPBT0056
c		FPBT0057
c	PHASE B	FPBT0058
c		FPBT0059
	Do $24 \mathrm{I}=1, \mathrm{NT}$	FP8T0060
24	$F(I)=0$	FPBT0061
	$M=1$	FPBT0062

```
    26 J(M)=0 FPBT0063
    NN=N(M) FPBTOO64
    MI=(M-1)*NL-(M-1)*(M-2)/2 FPBT0065
    MII=MI+1
    MM=MII+1
    NNN=NN+MI
    NS=NNN-1
    LS(MII)=L(MII)
C
    28 J(M)=J(M)+1
    JM=J(M)+MI
    30 JJ=JM+1
    36 K(JJ)=K(JM)-F(JM)
    IF(K(JJ).GE.L(JJ)) GO TO 40
    LS(JJ)=K(JJ)
    GD TO 50
    40 LS(JJ)=L(JJ)
    50 IF(JM.LT.NS) GO TO 28
    KL=K(NNN)-L(NNN)
    IF(KL.ST.O) GOTO 90
    IF(F(JM).LE.LS(JM)) GO TO 70
    60 F(JM)=0
    J(M)=J(M)-1
    JM=J(M)+MI
    1F(JM.GT.MI) GOTD8O
    M=M-1
    IF(M.LE.O) GO TO 250
    NN=N(M)
    MI=(M-1)*N1-(M-1)*(M-2)/2
    MII=MI+1
    MM=MII+1
    NNN=NN+MI
    NS=NNN-1
    JM=J(M)+MI
    GO TO 80
    70 F(NNN)=K(NNN)
c
    ISUM=0
    DO 110 I=MII,NNN
    G(I)=L(I)-F(I)
    IF(M.EQ.1) G(I)=Z(I)-2*(L(I)-G(I))
    IF(I.EQ.MII) GOTO 100
    IF(G(I).LE.ICOM) GO TO 110
    100 INDEX=I
    ICOM=G(I)
    110 ISUM=ISUM+G(I)
    IF(2*ICOM-ISUM) 130,150,80
    130
    G(INDEX)=G(MII)
        DO 140 I=MM,NNN
        II=I+NN-1
    140 L(II)=G(I)
        K(NNN+1)=ICOM
        M=M+1
        N(M)=NN-1
        GO TO 26
    150 G(INDEX)=G(MII)
        DO 160 I=MM,NNN
        II=I +NN-1
    160 F(II)=G(I)
c
C
PHASE C
```

FP
FPBT0064 FPBT0065 FPBT0066 FPBT0067 FPBT0068 FPBT0069 FPBT0070 FPBT0071 FPBT0072 FPBT0073 FPBT0074 FPBT0075 FPBT0076 FPBT0077 FPBT0078 FPBT0079 FPBT0080 FPBI0081 FPBT0082 FPBTOO83 FPBT0084 FPBTOOB5 FPBT0086 FPBT0087 FPBT0088 FPBT0089 FPBTOO90 FPBT0091 FPBT0092 FPBT0093 FPBT0094 FPBT0095 FPBTOO96 FPBr0097 FPBT0098 FPBT0099 FPBTOLOO FPBTOL01 FPBTO102 FPBT0103 FPBTO104 FPBTO105 FPBTOLO6 FPBrO107 fPBTO108 FPBTOLO9 FPBTOl10 FPBTOIII FPBTOI12 FPBTOl13 FPBTOL14 FPBTO115 FPBT0116 FPBTO117 FPBTO118 FPBTO119 FPBTO120 FPBTOL21 FPBTOL22 FPBTO123 FPBTO124

Parisi and Di Bacco: Fingerprints and the Diagnosis of Zygosity in Twins

```
        DD 190 I=2,NC2 FPBTO125
    190 IFACT(I)=INIZ(I)
        OO 210 I= 1,II
        IF(F(I).LT.2) GOTO 210
        LV=F(I)
        DO 200 JL=2,LV
    200 IFACT(JL)=IFACT(JL)-1
    210 CONTINUE
C
    PR=1.
    DD 230 JL=1,NTP FPBRO135
        IP=NP(JL)
        RIP=IP
        IP2=IP+IP
        JS=NC2/IP*IP
        IF(IPZ.GT.JS) GUTD 230
        DO 220 I=IP2,JS,IP
        JI= JS-I +1P2
        JD=JI/IP
        IFACT(IP)=IFACT(IP)+IFACT(JI)
        IFACT(JD)=IFACT(JD)+IFACT(JI)
    220 [FACT(JI)=0
    230 PR=PR*RIP**IFACT(IP)
        PROS=PROB+PR
c
C PHASE B
C
        DO 170 I=MM,NNN
        II=I+NN-I
    170 F(II)=0
    80 F(JM)=F(JM)+1
        IF(F(JM)-LS(JM)) 30,30,60
    90 F(JM)=F(JM)+KL
        GO ID 36
C
C
                PHÁSE D
    250 PRR=PRDB+PRR
        IF(SINT) GOTO 254
        WRITE(6,7) K(1),PROB,PRR
        coro 260
    254 IF(PRR.LT.ALPHA) GOTO 260
    256 WRITE(6,9) ALPHA
        GOTO }1
    260 K(1)=K(1)+1
        IF(K(1).LE.KSUP) GOTO 22
        IF(PRR.GE.ALPHA) GOTD 256
        WRITE(6,8) ALPHA
        GOTO }1
        END
    FPBT0126
FPBTO127
FPBT0128
FPBTOL29
FPBT0130
    210 CONTINUE
FPBTO131
    FPBT0132
    FPBT0133
    FPBT0134
    FPBT0135
    FPBT0136
    FPBT0137
    FPBT0138
    FPBT0139
    FPBTO140
    FPBT0141
    FPBT0142
    FPBT0143
    FPBT0144
    FPBT0145
    FPBTO146
    FPBT0147
    FPBT0148
    FPBT0149
    FPBTO149
    FPBT0151
    FPBTO151
    FPBT0153
FPBT0154
FPBT0155
FPBTO156
FPBT0157
FPBTO158
FPBT0159
FPBT0160
FPBT0161
FPBT0162
FPBT0163
FPBT0164
FPBT0165
FPBT0166
FPBT0167
FPBT0168
FPBT0169
FPBT0170
FPBT0171
FPBT0172
FPBT0173
FPBT0174
```


Flow Charts

(Figs. I-5)

Fig. I

Fig. 2

Fig. 3

Fig. 4

Fig. 5

RIASSUNTO

E stato condotto uno studio gemellare con il duplice scopo: 1. di studiare il comportamento ereditario dei dermatoglifi digitali a livello sia qualitativo che quantitativo, e 2. di elaborare un metodo per distinguere i gemelli MZ dai DZ mediante le impronte digitali.

Le impronte digitali di 50 coppie MZ (25 ठ e 25 ㅇ) e $50 \mathrm{DZ}(25$ § e 25 Q) sono dunque state esaminate ed analizzate con una metodologia originale e un calcolatore IBM 7044/K32.
L'analisi qualitativa ha indicato una concordanza significativamente più elevata nelle coppie $M Z$ che nelle $D Z$, con una certa variabilità fra i valori di concordanza di ogni singolo dito. L'analisi quantitativa ha indicato delle correlazioni significativamente più elevate nelle coppie MZ che nelle DZ, con intervalli di confidenza molto limitati nel primo caso. I conteggi singoli presentano un comportamento analogo a quello dei conteggi cumulativi compiuti sulle 5 o 10 dita, pur con una variabilità casuale ovviamente più elevata.
I dermatoglifi digitali risultano dunque presentare un condizionamento genetico praticamente completo che più che a un livello cumulativo per le 10 dita, come generalmente si ritiene, sembra agire a livello dei caratteri quali-quantitativi delle singole dita. Il numero totale delle creste, più che un carattere, sembra essere un valore cumulativo utile ma artificiale; applicato alla diagnosi di zigotismo, esso fornisce da solo una probabilità generale di una giusta diagnosi relativamente elevata (0.86).

RESUME

Une étude gémellaire a été conduite avec le but 1. d'étudier l'hérédité des dermatoglyphes digitaux au point de vue qualitatif et quantitatif, et 2. de développer une méthode pour séparer les jumeaux $M Z$ et $D Z$ moyennant les empreintes digitales.

Les empreintes digitales de 50 couples MZ ($25 \sigma^{\pi}$ et 25 Q) et 50 DZ (25 ठ et 25 Q) ont été examinées et analysées par une méthodologie originale et un computer IBM 7044/K32.

L'analyse qualitative a indiqué des valeurs de concordance significativement plus élevées chez les MZ vis-à-vis des DZ, avec une certaine variabilité parmi les différentes valeurs pour chaque doigt. L'analyse quantitative a indiqué des valeurs de corrélation significativement plus élevées chez les MZ vis-à-vis des DZ , avec des intervalles de confiance très limités chez les premiers. Le numéro des crêtes sur chaque doigt a un comportement similaire aux numéros complexifs pour 5 ou 10 doigts, tout en présentant une variabilité casuelle évidemment plus élevée.
Les dermatoglyphes digitaux présentent donc un conditionnement génétique pratiquement complet qui, plutôt qu'à un niveau cumulatif pour les 10 doigts (ainsi que l'on croit généralement), paraît agir sur les caractères qualiquantitatifs de chaque doigt. Le numéro total des crêtes, au lieu qu'un caractère, paraît être une valeur complexive utile, mais artificielle, qui, appliquée au diagnostic de zygotisme, donne une probabilité générale relativement élevée (0.86) d'un diagnostic correct.

ZUSAMMENFASSUNG

Verf. führten eine Zwillingsuntersuchung durch, die folgende Ziele verfolgte: 1. die Vererbung der Fingerleisten sei es qualitativ als quantitativ gesehen zu untersuchen und 2. eine Methode auszuarbeiten, die es gestattet, auf Grund der Fingerleisten EZ von ZZ zu unterscheiden.

Es wurden daher mit Hilfe einer 7044/K32 IBM-Büromaschine und nach einer besonderen Methode die Fingerleisten von 50 EZ und 50 ZZ-Paaren (jeweils $25 \sigma^{\circ}$ und 25 Q) untersucht und analysiert.

Die qualitative Analyse zeigte eine wesentlich höhere Konkordanz der EZ gegenüber den ZZ mit einigen Schwankungen in den Konkordanzwerten der einzelnen Finger. Die quantitative Analyse wies auf bedeutend höhere Korrelationen bei den EZ- als bei den ZZ-Paaren hin mit sehr beschränkten «Confidence-Intervals» bei den ersteren. Die Auszählungen an den einzelnen Fingern ergaben ähnliche Werte wie diejenigen, die sich über 5 oder 10 Finger erstreckten, wenn auch die Zufallsschwankungen dabei natürlich höher sind.

Die Fingerhautleisten scheinen somit praktisch voll und ganz erbbendingt zu sein. Während allgemein angenommen wird, dass sich die Erblichkeit kumulativ auf die 10 Finger auswirkt, so scheint sie hingegen eher an den qualitativ-quantitativen Merkmalen der einzelnen Finger zum Ausdruck zu kommen. Die Gesamtleistenzahl (total finger ridge count) würde demnach weniger ein Merkmal als einen nützlichen jedoch künstlichen Kumulativwert darstellen: wenn man ihn auf die Eiigkeitsdiagnose anwendet, so liefert er in der Tat allein schon eine relativ hohe allgemeine Wahrscheinlichkeit für eine richtige Diagnose (0.86).

[^0]: * The justification for [2.1] lies in the following property: if the parent-population, from which the sample is obtained, is bivariate-normally distributed, then the transformation $Z_{i j t}=\operatorname{tngh}^{-1} \mathrm{r}_{\mathrm{ijt}}$ is asymp-

[^1]: * The use of the absolute difference, instead of the relative one, is advisable, among other things, also in view of the fact that the identification of the cotwins as first and second born is purely conventional. Of course, $\Delta^{\mathbf{K}}$, with K even, could be chosen instead of Δ, but this, as will be plain at a later stage, would be an unnecessary complication.

 As it is implicit in the inductive techniques employed in the preceding section, we deem it reasonable to assume that the pairs of TFRC values be approximate determinations of a two-dimensional normal random variable. However, this assumption apparently fails to be very useful in attempting to establish a discriminant function of zygosity, so that we have applied a more general procedure (cf Stoller, 1954).

