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Abstract

This paper deals with the complete constitutive relations of elastoplastic deform-
ation process theory, based on Ilyushin's postulate of isotropy and hypotheses of
local determinancy and complanarity in plastic stage with complex loading. The
formulation of the boundary value problem is given and existence and uniqueness
theorems are considered.

Introduction

The analysis of stress-strain states or the stability of components or structures
subjected to various complex loading beyond limits of elasticity requires a plas-
ticity theory which can describe complex elastoplastic processes of deformation.
The theory of elastoplastic deformation processes, based on Ilyushin's postulate
of isotropy, satisfies this requirement. But up to now the stress-strain relation-
ship has contained undetermined functionals. In recent years many papers have
been published concerned with particular processes such as: simple loading
process and process with small curvature; formulation and analysis of boundary
value problems of these theories are studied. The general case is still open.

Assuming some approximation (hypothesis), we have constructed a com-
plete stress-strain relationship of the local theory of elastoplastic deformation
processes [4], based on Ilyushin's postulate of isotropy [5] and hypotheses of

1 School of Mathematics and Statistics, Curtin University of Technology, Perth, Western Australia.
On leave from State University of Hanoi, Vietnam.
© Australian Mathematical Society, 1994, Serial-fee code 0334-2700/94

506

https://doi.org/10.1017/S0334270000009589 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000009589


[2] A boundary value problem of elastoplastic deformation process theory 507

local determinancy [1, 3, 6, 7, 10] and complanarity [8]. These results can be
applied to more general processes. The relationship for simple loading process,
process with small and average curvature, unloading process and Prandtl - Reuss
relations are considered as particular cases of this theory.

The formulation of the boundary value problem and analysis of the uniqueness
theorem for plane deformation process are given in [3].

The aim of this paper is to analyse the stress-stain relationship and the solvab-
ility of the boundary value problem of local theory of elastoplastic deformation
processes in general cases.

1. Constitutive relations of local theory of elastoplastic deformation
processes

We shall employ the following notation:

M, = displacement,

M, = increment of displacement,

Sij = strain tensor,

dj = Sij — eS,j = strain deviator,

e = ^ekk = mean longitudinal strain,

tij = strain increment tensor,

etj = strain increment deviator,

su = (jeijeij) = strain intensity,

vu = (|e,y£,y) = strain increment intensity,

s — I vudt = arc length of strain trajectory,
./o

ffij = stress tensor,

5,y = otj — a 8^ = stress deviator,

a = mean normal stress,

Sij = stress increment deviator,

au = (|SijS,j) — stress intensity,
S-e

6 = arccos '' '' = angle between stress vector and tangent to strain trajectory,
ouvu

G = torsion modulus of elasticity,
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K = compressive volume modulus of elasticity,

/ \ o u , 9, s), \j/{6, s) = material functions,
dd>

<\> (s) — — = instantaneous slope of stress versus strain characteristic,
as

as = uniaxial yield stress,

Fj = applied external surface force,

pKj = applied external volume force,

0, = given surface displacement,

t = loading process parameter,

JC = radius vector of body's point,

S = body surface,

£2 = body volume.

According to Ilyushin's postulate of isotropy [5] and hypotheses of local
determinancy [1, 3, 6, 7, 10] and complanarity of the stress vector, the stress
increment vector and the strain increment vector [8], constitutive relations of
the elastoplastic deformation process theory are of the form [4]:

a»f\
a (1.1)

a = 3Ke,

where

2 ) '

a > 1, > 1, 0 <0 <n.

a and fi are constants, depending upon the material being used.
It is significant that / and if/ can be applied for all active and passive deform-

ation processes, i.e. the stress-strain relationship (1.1) - (1.2) can describe all
deformation processes with complex loading (not only loading, but unloading
as well). Material functions / and x[r, depending upon the materials used, are
approximated analytically in the form (1.2) based on experimental data [4, 2].
The stress-strain relations for plane deformation process have been considered
in [1,3, 11].
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Particular cases:
A. SIMPLE LOADING PROCESS

For this process 9 = 0,

lim = — , lim \t = <j>'(s);
0->-o sin 9 s e-*o

the relations (1.1) - (1.2) become

2 ®u ( i "" \ ^>j
lJ 3 s 'J \ s / cru

Otherwise, according to the small elastoplastic deformation theory for simple
loading

5y = lj-eu, (1.4)

we obtain
• , au . 7 / l dau

Substituting e,s from (1.4) gives

(pL«L)S>Lkum (1.5),J lJ ( p )
s eu \deu euj au

Since a simple loading process always gives

dou dau

s-su, s = eu = vu, -— = ——= 4> (s);
deu ds

relation (1.5) reduces to (1.3).
In the elastic stage, the material displays elastic behaviour until yield occurs

ou < crs. The stress versus strain characteristic is a straight line with slope 3G,
so that au/s = 3G, 4>' = 3G. Hence the relations (1.3) or (1.5) reduces to a
simple Hookean relationship of the form

Su = 2Geu. (1.6)

B. UNLOADING PROCESS

The unloading process occurs when 9 = n, i.e. the direction of the tan-
gent to the continuing deformation trajectory is opposite to the stress vector at
considered point. Since

/ 3G
l i m ^ , l im^ = -3G,
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(1.1)-(1.2) become
S,j = 2Ge,j. (1.7)

C. DEFORMATION PROCESS WITH AVERAGE CURVATURE

For this process the value of angle 9 is small. Restricting to the second-order
small values we obtain, from (1.2),

1 9
f = — sin# ss — ,

5 S

ifr = 0 ' c o s 0 « 0 ' ( l -92/2).

Substituting into (1.1) - (1.2) gives

Sij = j-eu + (0 ~ -j) —^~S>J- ( L 8 )

The relation (1.8) is a generalization of Prandtl-Reuss relation for perfectly
plastic material and Prager relations for plastic strain-hardening material.

2. Boundary value problem of local theory of elastoplastic deformation
processes

Let K, (x, t) and F, (x, t) be external volume and surface forces that act on the
body and let (pt(x, t) be displacement on the body's surface. It is necessary to
find displacements w,(;t, t) e C2{Q) D Cl(Q), strain tensor e,y(x, t) and stress
tensor a,7 (x, t) e C (Q) D C°(J2), where fi = fi U 5, t e [0, T], that satisfy the
following equations:

?pi xetl, (2.1)

(2.4)

and the boundary conditions

a.jHj = Ft x e Sa, (2.5)

M, = fpf x e Su, (2.6)

5a U 5H = S, SanSu=<f> t e [0, T].
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A boundary problem formulated in this way is called a 'global' problem. The
problem now can be formulated also 'in small', i.e. with displacement, strain
and stress increments at any fixed t = to.

Let Ki(x, to), Fi(x, to) be given increments of external forces and let cp,(x, to)
denote the increment of displacement on the body's surface. It is necessary to
find increments

M, (X, to), Bij (x, to), Oij (X, to)

that satisfy the following equations:

d&ij(x,to)
i x e Q, (2.7)

duj(x,toy

A . - 2(Juofo((TUo,9o,So).
Sij(x, to) = — eu(x, to)

3 sin^

60

ouof0\ Smn(x,to)emn(x,to)
-r-T- ; 5/,(JC, to), (2.9)
sin6>0/ alo

cos6»o sin6>0

&(x, to) = 3Ke(x, to) x e fi, (2.10)

and the boundary conditions

on(,x,to)rij = Fi(x,t0) x € Sa, (2.11)

iii(x,to) = (t>l(x,to) xeSu, (2.12)

where

Su(x,t0)eij(x,t0)
60 = arccos — ,

0Uo = <7«(*, to) = [lS,j(x, to)Su(x, to)] ,

vuo = vu(x, to) = \^eij{x, to)e,j(x, to)\ .

Combining (2.8) - (2.10) we can express 6is as functions of it,, or shortly
&ij(u). Substituting into (2.7) gives

^^1+pk, =0. (2.13)
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Let u be any smooth vector function such that

v = [Vi(x,t0)} and Vi(x,to) = 0 on SU.

Multiplying (2.13) by u, and integrating over the entire volume Q of the body,
we obtain

/ —£ + pKt \VidO. = / J- Oij{u)— \dQ + / pK.v.
Jn\ dxj ) Jnl dxj dxj ] Jn

= 0.

Using the divergence theorem and the boundary conditions (2.11), (2.12) we
have:

/ &,j(u)eij(v)dQ = / pkiV,dQ.+ I F,u,
Ja Jn Jsas. (2-14)

VL> : v = {v,}, v\Su = 0,

where

The equation (2.14) can be written in the form

/ 5,y(w)el7(u)Jfi + 3 &(u)e(v)dQ = I pklvid^i.+ I FtVidS,
Jn Jn Jn Jsa

Vu, v\Su = 0.
(2.15)

The boundary value problem can be formulated either in the form (2.7) -
(2.13), or in the form (2.15).

3. Existence and uniqueness theorems for the boundary value problem

The vector function u is to be called a generalized solution of the boundary
value problem (2.7) - (2.12), if u satisfies (2.8), constitutive relations (2.9),
(2.10) and identity (2.15) for all u such that v\Su = 0 . The function v is not
required to be smooth. If the generalized solution is smooth enough, then it is a
classical solution of the problem (2.7) - (2.12).

We shall consider the function u as an element of the functional space
with the norm
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Since

/ \u\2dQ <Ci I -^- • -^-dQ., Ci = const,
Jn Jn oxi dXj

and

du du Jtn f fdiii duj\ (Bit, 3M, \ ^
— .—dQ. < C2 / —- + —L —- + —i- ) rffl, C2 = const,
dXidx, ~ Ja\dXj dxJ\dXj dxJ

the norm becomes:

/" /" e2(M)rffi. (3.1)/ / /
n Jn Jn

Now consider the functional

,v)= f dy(M)e0(uI(u,v)= f dy(M)e0(u)dn. (3.2)

The functional / is linear because of the linearity of £ij(v) with respect to v.
In order to prove the continuity of / , it is necessary to show that

/ cr,j(u)eij(v
Jn

>)dn<M\\u\\H\\v\\H, M < + o o .

In fact we have

/ &u(u)eij(v)dSl = / Sij(u)eij(v)dQ + 3 6{u)e(v)dSl
Jn Jn Jn

i}(u)S,j(u)dSl\ (f eu{v)eu(v)dn\

+ 9K ( [ e2{u)dSlJ U e2(v)do\ .

According to (2.9), we have

I^^r-e,j(u) + I — + -—
3s\n0o \cos6o sm6

Uofo\ Smnemn "1

m6oJ <ru
2
o
 J]

[ 2auofo. ( \}/0 ouof0\ Smnemn

[ 3
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Hence

DaoHuyBich

/ &ij (u)e,j {v)dQ. < I / | (au
2
0/o

2 + Vo
2) «y («)«y («)^n) ( / <?y (")cy

[9]

1/2

3e2(u)dQ

< M

\ ' / r \
i) (/a «•(«>«)

If eu(v)eij(v)da\

O
f \ 1/2 / /. \ i/:

' 3e2(«)rffi) I / 3e2(v)dQ]
a ) \Jn Jwhere

M = max {f {a + '/2 ; 3AT} < +oo. (3.3)

Applying the Cauchy-Schwarz inequality, we can rewrite the above as fol-
lows:

f ^ ^ ( u M f l < M ([ e,j(,u)e,j(.u)dn + f 3e2(u)dQ)

• (J ey(u)^(u)dn + f 3e2(v)dSl\
1/2

= M\\u\\H\\v\\H.

Therefore / is linear and continuous on H(£i). It follows from Riesz's theorem
that there exists an operator A : H(Q) -> H*(£l), where //*(S2) is the dual
functional space of //(£2), such that:

(Au, v)H = f cfu(«)e0(v)dQ.
Jn

(3.4)

The operator A is called a fundamental operator of the boundary value problem.
If

pKi &LP, p> 6/5, F, &Lq, q > 4/3,

then the expression at the right hand side of (2.15) is also a linear continuous
functional on //(£2), and there exists an operator L : H —>• H* such that:

/ pk,v,dn + [ F.VtdS = (L, v)H.
n Jso

(3.5)
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The equation (2.15) reduces to an equivalent operator equation

Au = L ue H(S2). (3.6)

A generalized solution of the boundary value problem (2.7) - (2.12) is also a
solution of the operator equation (3.6) and conversely.

In order to prove existence and uniqueness of the solution of the boundary
value problem we shall consider properties of the operator A.
a. OPERATOR A is COERCIVE

(Au,u)H > y||«| |^; y > 0; VM e

PROOF.

,. . f f 2auofo. ( fo auofo\ Smnemn(u) "1 .
(AM, u)H - -~^-^-eij(u) + I —7T + ~^T ) ; SU eu(u)dSi

Jnl 3sm0o \sin0o sin^o/ au
2
0 J

+9K f e2(u)d5l

>y\ I e^We.jWdQ + 3 / e2(u)dQ
Un Jn J

= y||«ll2
w,

where

y = min {3K; l(i/ocos6o - CTuo/0sin6>o)},

or
2,
- (ifr0 cos 90 - ouof0 sin Go) > y > 0, 0 < 9O < it. (3.7)

Hence, if condition (3.7) is satisfied, then the operator A is coercive. Later
condition (3.7) can be verified with f0, \fr0 indicated in (1.2).

b. OPERATOR A is STRICTLY MONOTONE

-Au2,Ui -u2)H > 0 , VM,,M2<

Introducing the five-dimensional strain vector 3 and stress vector a, with
components defined in the form
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1 2
3 : Bi=en, 32 =-=(eu+2e22), 33 =—e12,

3 V3 / -
o": o"i = 2^i"' o"2 = — (5n+2522), a3 = V3512,

| C T | 2 = a,<7, = C T U
2 ,

we rewrite the expression at the left hand side in terms of stress and strain vectors
as

(Aul-Au2,Ui-u2)H= [(al-a2)(3l-32)dn+9K I\ex-e2)
2d£l. (3.8)

Jn Jn
The stress-strain relation (2.9) now can be written in the form

cos6o sin Qo

Introducing the unit vector n, perpendicular to u/ouo and situated on the
plane containing vectors a/ou and 3 , we can express the vector 9 as

3 = vuocos^o— ± vuo sin0on, (3.9)

i.e. n is apparently chosen to ensure a decomposition of the strain-rate vector.
The stress-strain relation (2.9) becomes

cr
cr = vuoiro— :p ouovuof0n. (3.10)

Define A: = o/ouo (with t = to,k is fixed),

/; = vuo sin0o,

Z1 = vuo\lro(6o, so) = P{$, r), so),

Q = -(TuoVuofotfo, CTUO, So) = Q(£, V, Ouo, So)

and rewrite (3.9), (3.10) in the form:

3 , =^k
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and

9 2 = $2* ±

Vector A: is fixed, but vector n is changed, depending on 5>i, 3 2 . In general
3 i , 3 2 do not lie on the same plane, containing k and n, so that two planes
(A:, «i) and (A:, n2) do not coincide.

Substituting into (3.8) gives

(Aul-Au2,ul-u2)H =

f
Jn

Since ?; = uuo, sin0o > 0 and

for all 60, where 0 < 9O < n; \tti • n2\ < 1, so that

, , i j i , . . . ) -

-n ,

Using the mean value theorem we obtain

- £ 2 )

- m)
dP

+[ op o f~\

Or O ^ /

dr) *"''''

* 1 F /3Gs» \ /l-cos0o\°"| .
Q = -VuoVuofo = —OuoVuo 1 + ( — 1 I ( ) Sin6>0 >
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where £ \ §*• e [§,, £2], »?*, rj** € fa,, ml
This expression must be positive, i.e. the quadratic form must be positive

definite, so that

dr,

With the quantities P and Q as shown above, these conditions become

*,(*;,*,)cose;- ^ ' ^ s i n e ; > o,

dfo(0**,auo,so)
C om so) sinc

Ou inC - f,V?, auo, So) cose)] > 0

v o<e;, 9*o*<n.
If (3.11) is satisfied, then the operator A is strictly monotone.

c. OPERATOR A is CONTINUOUS BY LIPSCHITZ

We show that the operator A has a continuous Gateau differential, i.e.

(DA(u, h), v)H < m(u)\\h\\H\\v\\H, 0 < m < +oo.

By definition

Df{a,b) = A/ ( a ¥
Applying to the operator A

(AM, v)H = [ \ - l
JQ\_ 5 sin v0

?±vuo(u)] eu{v)dQ
auo j

+9K I e(u)e(v)dS2,
Jn
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we get:

2auof
8(DA(u, h), v)H=

3sin0o

2 3 (auofo\ Mo

3 B60 \ s i n 0 o / demn

3 300 Sjj
•zrWo + cruo fo cot 9O)— vuo(u)
ovo demn auo

C1 O T

cot60)-^-^ emn(h)e,j(v)dQ
ou0 oemn J

+ 9K I e(h)e(v)dQ.
Jn

Since

dvuo

demn

we have:

2
3fH0

d90 _ 1 / 5mn 2 g m n \

3emn sin 0O \^UoW«o 3 ° u , ! J '

+ 2_aHO 3

3sin6»036»0 \sin6»,

3 ,

fo \ . ( Smn 2

(, (Smn 2
o) — I -C0S(9o

emn(u)\
I

uU0 /

ouo vuo

+9K I e(h)e(v)dSi
Jn
&uoft

|1+COS0O
sin 90 89O sin 9O

1 3

emn(h)eu(v)da

sin6>o30o

+9K I e(h)e(v)dQ.
Jn

m \j ^vuo(h)vuo(v)dn + 3 J e(h)e(v)do\ ,
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m = max - | s'm90

| l+cos0o| o~uo

sin90d90

1 3

(JL-\
\sin6»o/

sin#0 d90

Thus

(DA(u,h),v)H <m
1/2

;3K\.

1/2

1/2-

5m(i/"' /" e2{h)dSl J

x

We obtain

with the condition:

0140 fc

(DA{u,h),v)H < m H\W\\H,

0 I to + Ouofo COt 90\ + 11 + COS 9O
sin9od9o V sin ft

+ 11 +
1

d9o

(to + o-Uof0cot90)

0<9o< n.

+OO,

(3.12)

Finally, if the conditions (3.3), (3.7), (3.11) and (3.12) are satisfied, then the
operator A exists and has the following properties: coercivity, strict monoton-
icity and Lipschitz continuity. According to the Minty-Browder theorem [9],
the operator equation (3.6) has a unique solution.

THEOREM. If the material functions fo, y$r0 satisfy the conditions (3.3), (3.7),
(3.11), (3.12), then there exists a unique solution of the boundary value problem
of the local theory of elastoplastic deformation processes (2.7) - (2.12).
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4. Verification of the conditions (3.3), (3.7), (3.11) and (3.12)

According to (1.2) material functions are of the form

1 f ChGso \ /l-cos0o\H
Wo, ouo, so) = sin0o 1 + - - 1 -

So I V °uo ) \ 2 ) J

cos0o-(3G-4>'{So)) [l-™sd°\ .,s0) = </>U)

a > 1, > 1, 0<6O<JT.

These functions f0 and i/o describe vectorial and scalar behaviours of materials
under complex loading [2], the function / expresses a local instantaneous turning
rate of the stress vector in the direction of tangent to the strain trajectory and
the function xfr an increment of the stress intensity. Consider some of their
properties:

auo, so are fixed and limited;

ouo > 0, so > 0;

0 < </>'(*„) < 3G, ouo/s0 > <t>\s0);

fo<0 for all 60;

0<9o<n and | / o | < Cx < +oo.

Since

and

we obtain

fo

Jo <xsinflo 3G^ _ \ / 1

< C2 < +oo;

1 O

Jo
sin$n

< C3 < +oo;

< C4 < +co.
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Similarly

> 0 with 0 < 90 < 90 < - ,

1r0 < 0 90<90<n;

\iso\ < W i < +oo;

Ho
<p'(s0) + — (3G — <p'(so

Hence
Ho

< +oo,
l

< M3 < +oo.
sin^o d90

Consequently, (3.3) and (3.12) are completely satisfied. Now consider (3.7)
obtaining

B = i//o cos 9O — aU0fo sin 9O

= 4>'(s0) cos2 90 - (3G - 4>'(so)) cos 9O
-cosftV

)

Put X = cos 9O; rewrite

B(X) = <t>\so)X
2 - (3G - <p'(s0

- 1 < X < 1.

We can show that B(X) > 0 for - 1 < X < 1 and

min B(X) = B(l) = <p'(so) > 0.

Hence B > <t>'(so) > 0. The conditions (3.11) can be verified similarly.
We also verify previous conditions by graphic consideration, based on exper-

imental data of certain materials.
In particular cases, these conditions reduce to simpler form. For example, in

the process of average curvature,

fo — sin0o, \j/0 = (j>'(so) cos 9o,
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and the previous conditions reduce to

Ifs0 > 0, <f)\s0) > 0.

Naturally, the first condition is satisfied, since arc length of the deformation
trajectory is positive and the second condition means that the material must be
plastic strain-hardening. For perfectly plastic material there can be different
strain states respected to one stress state.

5. Conclusions

1. The complete form of constitutive relations of the local theory of elastoplastic
deformation processes is given. Material functions have been shown in
(1.2). This stress-strain relationship is adequate to describe various complex
deformation processes in the body.

2. The boundary value problem of local theory of elastoplastic deformation
processes has a unique solution. The material functions satisfy the required
conditions of the theorem.
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