A CHARACTERIZATION OF PROXIMAL SUBGRADIENT SET-VALUED MAPPINGS

R. A. POLIQUIN

Abstract

In this paper we tackle the problem of identifying set-valued mappings that are subgradient set-valued mappings. We show that a set-valued mapping is the proximal subgradient mapping of a lower semicontinuous function bounded below by a quadratic if and only if it satisfies a monotone selection property.

1. Introduction. In nonsmooth analysis, where one works with functions that are not differentiable in any classical sense, many types of subgradients have been introduced, e.g. (Clarke) generalized subgradients (see [1], [2], [13]), approximate subgradients (see [3]), proximal subgradients (see [6], [7], [10]), and lower subgradients (see [4]). The (Clarke) generalized subgradients are probably the best known among these different flavors of subgradients. To obtain the set of all (Clarke) generalized subgradients of a locally Lipschitzian function one takes the convex hull of the set of limiting proximal subgradients; for an arbitrary function one needs to consider in addition the singular limiting proximal subgradients; see [10]. For a lower semicontinuous extended-realvalued function f on \mathbb{R}^{n} (i.e. $f: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{\infty\}$), we say that a vector u is a proximal subgradient to f at \bar{x} if, for some positive t,

$$
f(x) \geq f(\bar{x})+\langle u, x-\bar{x}\rangle-(t / 2)\|x-\bar{x}\|^{2} \text { in a neighborhood of } \bar{x} .
$$

The set of all proximal subgradients at \bar{x} is denoted by $\partial_{p} f(\bar{x})$, the set of (Clarke) generalized gradients is denoted by $\partial f(x)$.

The expression proximal, comes from an equivalent characterization in terms of the proximal normal cone. For a closed set C of \mathbb{R}^{n} and an element x of C, we say that y is a proximal normal to C at x if, for some positive t, x is the unique closest point of C to $x+t y$. The proximal normal cone is the set of all proximal normals, and is denoted by $\mathrm{PN}_{C}(x)$. The relationship between the set of proximal subgradients and the proximal normal cone is the following:

$$
y \in \partial_{p} f(x) \Longleftrightarrow(y,-1) \in \operatorname{PN}_{\text {epi } f}(x, f(x)) .
$$

(where epi $f=\left\{(x, \alpha) \in \mathbb{R}^{n} \times \mathbb{R} \mid \alpha \geq f(x)\right\}$).

[^0]When the function f is convex then the set of (Clarke) generalized subgradients to f at \bar{x} is equal to the subdifferential to f at \bar{x}. (the same can be said for the set of proximal subgradients, in fact for the set of all subgradients mentioned previously). Recall that the subdifferential to f at \bar{x}, written $\partial f(\bar{x})$, is given by

$$
\partial f(\bar{x})=\{y \mid f(x) \geq f(\bar{x})+\langle y, x-\bar{x}\rangle, \text { for all } x\} .
$$

It is well known that a set valued mapping Γ is the subdifferential of a lower semicontinuous proper (i.e. there exists \bar{x} with $f(\bar{x})<\infty$) convex function f if and only if Γ is maximal cyclically monotone; see [9]. Recall that a set-valued mapping $\Gamma: \mathbb{R}^{n} \rightrightarrows \mathbb{R}^{n}$ is cyclically monotone if given $\left(x_{i}, y_{i}\right) \in \operatorname{gph} \Gamma, i=0, \ldots, m$, where m is arbitrary and $\mathrm{gph} \Gamma$ is the graph of Γ, we have

$$
\left\langle x_{1}-x_{0}, y_{0}\right\rangle+\left\langle x_{2}-x_{1}, y_{1}\right\rangle+\cdots+\left\langle x_{0}-x_{m}, y_{m}\right\rangle \leq 0,
$$

where $\langle x, y\rangle$ is the usual dot product. The set-valued mapping Γ is monotone if given $\left(x_{i}, y_{i}\right) \in \operatorname{gph} \Gamma, i=1,2$ we have $\left\langle x_{1}-x_{2}, y_{1}-y_{2}\right\rangle \geq 0$.

The next contribution in this area of identifying set-valued mappings that are subgradient mappings is due to Janin in 1984. In [5] he showed that a mapping Γ is cyclically submonotone if and only if Γ is the (Clarke) generalized subgradient mapping of a lower- C^{1} (locally Lipschitzian) function; see [11] for lower- C^{1} functions. A set-valued mapping Γ is cyclically submonotone if for all \bar{x} in the domain of Γ (i.e $\Gamma(\bar{x}) \neq \emptyset$) we have

$$
\liminf _{\substack{x_{1} \neq x_{2} \\ x_{i} \rightarrow \bar{x} \\ y_{i} \in \Gamma\left(x_{i}\right)}} \frac{\left\langle x_{1}-x_{2}, y_{1}-y_{2}\right\rangle}{\left\|x_{1}-x_{2}\right\|} \geq 0
$$

This is not the definition given by Janin, but rather the equivalent one given in Spingarn [14].

Surprisingly enough very little is known beyond the cyclically monotone and the cyclically submonotone cases. How does one tell if a given set-valued mapping is a subgradient mapping? In this paper we give a necessary and sufficient condition for a set-valued mapping to be the proximal subgradient set-valued mapping of a lower semicontinuous function bounded below by a quadratic. In Theorem 2.3, we show that a set-valued mapping Γ is a proximal set-valued mapping if and only if it satisfies a monotone selection property, i.e. there exist \bar{t} and for $t \geq \bar{t}$, set-valued mappings $M_{t}: \mathbb{R}^{n} \rightrightarrows \mathbb{R}^{n}$ with
(a) $M_{t}(x) \subset \Gamma(x)$ for all x.
(b) $M_{t}(x) \uparrow \Gamma(x)$ (i.e., if $t_{1}<t_{2}$, then $M_{t_{1}}(x) \subset M_{t_{2}}(x)$ and $\bigcup_{t \geq i} M_{t}(x)=\Gamma(x)$).
(c) $M_{t}+t I$ is a monotone set-valued mapping (where I is the identity mapping).
(d) The set-valued mapping M defined by

$$
M(z, t)= \begin{cases}\operatorname{con}\left\{\left(x,-(1 / 2)\|x\|^{2}\right): x \in\left(M_{t}+t I\right)^{-1}(z)\right\} & t>\bar{t} \\ \operatorname{con}\left\{\left(x,-(1 / 2)\|x\|^{2}\right): x \in\left(M_{\bar{t}}+\bar{t} I\right)^{-1}(z)\right\}+\{(0,-\lambda) \mid \lambda \in \mathbb{R}\} & t=\bar{t} \\ \emptyset & t<\bar{t}\end{cases}
$$

(where con C is the convex hull of C) is maximal cyclically monotone.
2. Main result. In this section we will assume that the lower semicontinuous function f is strictly bounded below by a quadratic, with quadratic part $(\bar{t} / 2) \geq 0$ i.e., there exist \bar{a}, \bar{z} and \bar{t}, such that

$$
\begin{equation*}
f(x)>\bar{a}+\langle\bar{z}, x\rangle-(\bar{t} / 2)\|x\|^{2} . \tag{2.1}
\end{equation*}
$$

This occurs, for example, when $\operatorname{dom} f$ is a bounded set (where $\operatorname{dom} f=\{x \mid f(x)<\infty\}$), since in this case the function is bounded below (recall that f is lower semicontinuous).

In [8] the quadratic conjugate function was introduced as a tool for studying proximal subgradients; recall that for z in \mathbb{R}^{n} and $t \geq \bar{t}$, the quadratic conjugate to f at (z, t) is given by

$$
\begin{equation*}
h_{f}(z, t)=\max _{x \in \mathbb{R}^{n}}\left\{\langle z, x\rangle-(t / 2)\|x\|^{2}-f(x)\right\} . \tag{2.2}
\end{equation*}
$$

We are justified in writing max, since f is bounded below by a quadratic, with "quadratic part \vec{l}^{\prime}. Let $\operatorname{argmax} h_{f}(z, t)$ be the set of points where the maximum is attained in (2.2), i.e.,

$$
\operatorname{argmax} h_{f}(z, t)=\left\{x:\langle z, x\rangle-(t / 2)\|x\|^{2}-f(x)=h_{f}(z, t)\right\} .
$$

Note. This is not the standard notation; to be more precise we have $\operatorname{argmax} h_{f}(z, t)$ $=\operatorname{argmax} h_{f}(z, t, \cdot)$ where $h_{f}(z, t, x)=\langle z, x\rangle-(t / 2)\|x\|^{2}-f(x)$.

The function h_{f} is lower semicontinuous proper and convex, with domain $\mathbb{R}^{n} \times[\bar{t}, \infty)$. We can express the subgradients of the quadratic conjugate function in the following way (please see [8] for details): For $t>\bar{t}$,

$$
\begin{equation*}
\partial h_{f}(z, t)=\operatorname{con}\left\{\left(x,-\frac{\|x\|^{2}}{2}\right): x \in \operatorname{argmax} h_{f}(z, t)\right\}, \tag{2.3}
\end{equation*}
$$

where $\operatorname{con}(S)$ is the convex hull of S, and for $t=\bar{t}$

$$
\begin{equation*}
\partial h_{f}(z, \bar{t})=\operatorname{con}\left\{\left(x,-\frac{\|x\|^{2}}{2}\right): x \in \operatorname{argmax} h_{f}(z, \bar{t})\right\}+\{(0,-\lambda) \mid \lambda \in \mathbb{R}\} \tag{2.4}
\end{equation*}
$$

We recall here some of the important properties of the conjugate quadratic function (these were all established in [8]).

Theorem 2.1. (a) For $z \in \mathbb{R}^{n}$ and $t \geq \bar{t}$, if $\bar{x} \in \operatorname{argmax} h_{f}(z, t)$, then $z-t \bar{x} \in \partial_{p} f(\bar{x})$.
(b) If $u \in \partial_{p} f(\bar{x})$, then for t big enough, $\operatorname{argmax} h_{f}(u+t \bar{x}, t)=\{\bar{x}\}$.
(c) If $\left(x,-(1 / 2)\|x\|^{2}\right) \in \partial h_{f}(z, t)$ and $t \geq \bar{t}$, then $x \in \operatorname{argmax} h_{f}(z, t)$.
(d) For all \bar{x},

$$
f(\bar{x})=\sup _{\substack{z, t) \\ t \geq t}}\left\{\langle z, \bar{x}\rangle-(t / 2)\|\bar{x}\|^{2}-h_{f}(z, t)\right\} .
$$

Hence, $f(\bar{x})=h_{f}^{*}\left(\bar{x},-(1 / 2)\|\bar{x}\|^{2}\right)$, where h_{f}^{*} is the convex conjugate of the function h_{f}; see [9].

We now give a characterization of the quadratic conjugate function. It is remarkable that a simple differentiability property and an adequate domain identifies a convex function as the quadratic conjugate of a lower semicontinuous function which is bounded below by a quadratic.

THEOREM 2.2. Assume that $h: \mathbb{R}^{n} \times \mathbb{R} \rightarrow \mathbb{R} \cup\{\infty\}$ is a lower semicontinuous proper convex function and that for some positive \bar{t}, the set $\{(z, t): t \geq \bar{t}\} \subset$ dom h. In addition, we assume that if h is differentiable at (z, t), then $\nabla h(z, t)=\left(x,-(1 / 2)\|x\|^{2}\right)$ for some x in \mathbb{R}^{n}. Under these assumptions, there exists a lower semicontinuous extended-real-valued function on \mathbb{R}^{n}, bounded below by a quadratic, with quadratic conjugate h. Moreover, the function is given by

$$
\begin{equation*}
\sup _{\substack{(z, t) \\ t \geq t}}\left\{\langle z, x\rangle-(t / 2)\|x\|^{2}-h(z, t)\right\} . \tag{2.5}
\end{equation*}
$$

Proof. Let $f(x)$ be given by (2.5). Clearly f is lower semicontinuous, it is bounded below by a quadratic and we will show that $h_{f}(z, t)=h(z, t)$ for all $t \geq \bar{t}$.

Claim. Assume h is differentiable at $\left(z_{0}, t_{0}\right)$ with $t_{0}>\bar{t}$ and $\nabla h\left(z_{0}, t_{0}\right)=$ $\left(x_{0},-(1 / 2)\left\|x_{0}\right\|^{2}\right) ;$ then $f\left(x_{0}\right)=\left\langle z_{0}, x_{0}\right\rangle-\left(t_{0} / 2\right)\left\|x_{0}\right\|^{2}-h\left(z_{0}, t_{0}\right)$ and $h\left(z_{0}, t_{0}\right)=h_{f}\left(z_{0}, t_{0}\right)$.

Proof of Claim. Consider $L_{x_{0}}(z, t)=\left\langle z, x_{0}\right\rangle-(t / 2)\left\|x_{0}\right\|^{2}-h(z, t)$. The function $L_{x_{0}}$ is concave with $\nabla L_{x_{0}}\left(z_{0}, t_{0}\right)=(0,0)$. Therefore, $L_{x_{0}}$ attains a global maximum at $\left(z_{0}, t_{0}\right)$. This means that $f\left(x_{0}\right)=\left\langle z_{0}, x_{0}\right\rangle-\left(t_{0} / 2\right)\left\|x_{0}\right\|^{2}-h\left(z_{0}, t_{0}\right)$. For all $x, h\left(z_{0}, t_{0}\right) \geq$ $\left\langle z_{0}, x\right\rangle-\left(t_{0} / 2\right)\|x\|^{2}-f(x)$, therefore $h\left(z_{0}, t_{0}\right) \geq h_{f}\left(z_{0}, t_{0}\right)$. But, $h_{f}\left(z_{0}, t_{0}\right) \geq\left\langle z_{0}, x_{0}\right\rangle-$ $\left(t_{0} / 2\right)\left\|x_{0}\right\|^{2}-f\left(x_{0}\right)=h\left(z_{0}, t_{0}\right)$. Hence, $h\left(z_{0}, t_{0}\right)=h_{f}\left(z_{0}, t_{0}\right)$ and this completes the proof of the claim.

By the previous claim and the fact that h is differentiable on a dense subset of the interior of its domain (see [9]) we conclude that $h(z, t)=h_{f}(z, t)$ for all $t>\bar{t}$ (a convex function is continuous on the interior of its domain). Because a convex function is completely determined by the values it assumes on the interior of its domain (see [9]) we conclude that $h(z, t)=h_{f}(z, t)$ for all $t \geq \bar{t}$.

We end this section by giving our characterization of the proximal subgradient setvalued mapping of a function bounded below by a quadratic. For $t \geq \bar{t}$ (see (2.1)), let

$$
\begin{equation*}
M_{t}(x)=\left\{z-t x: x \in \operatorname{argmax} h_{f}(z, t)\right\} \tag{2.6}
\end{equation*}
$$

It is clear that $M_{t}+t I$ is a monotone set-valued mapping because $\left(M_{t}+t I\right)(x)=\partial h_{f, t}^{-1}(x)$, where $h_{f, t}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is defined by $h_{f, t}(z)=h_{f}(z, t)$. In [8], it is shown that $h_{f, t}^{*}(x)-(t / 2)\|x\|^{2}$ (where $h_{f, t}^{*}$ is the convex conjugate of $h_{f, t}$; see [9]) is the supremum of all quadratics functions majorized by f with quadratic part $-(t / 2)$.
In addition $\left(M_{t}+t I\right)$ is a selection of $\left(\partial_{p} f+t I\right)$ in the sense that for all x

$$
\left(M_{t}+t I\right)(x) \subset\left(\partial_{p} f+t I\right)(x)
$$

(if $\left(M_{t}+t I\right)(x)=z$ then $x \in \operatorname{argmax} h_{f}(z, t)$, this implies that $z-t x \in \partial_{p} f(x)$ (Theorem 2.1(a)) i.e. $z \in \partial_{p} f(x)+t x=\left(\partial_{p} f+t I\right)(x)$.) There are examples where $\left(M_{t}+t I\right)$ is not a maximal monotone selection of $\left(\partial_{p} f+t I\right)$; one such example is

$$
f(x)=\left\{\begin{array}{ll}
-1 & x \leq-1, x \geq 1 \\
0 & -1<x<1
\end{array} .\right.
$$

The proximal set-valued mapping of this function is given by

$$
\partial_{p} f(x)= \begin{cases}0 & \text { if } x \neq-1 \text { and } x \neq 1 \\ {[0, \infty)} & \text { if } x=-1 \\ (-\infty, 0] & \text { if } x=1\end{cases}
$$

So that

$$
\left(\partial_{p} f+t I\right)(x)= \begin{cases}t x & \text { if } x \neq-1 \text { and } x \neq 1, \\ {[-t, \infty)} & \text { if } x=-1 \\ (-\infty, t] & \text { if } x=1\end{cases}
$$

For $t \leq 2$ one easily calculates that

$$
\left(M_{t}+t I\right)(x)= \begin{cases}t x & x \leq-1, x \geq 1 \\ {[-t, 0]} & x=-1 \\ {[0, t]} & x=1\end{cases}
$$

However, adjoining $(0,0)$ to $\left(M_{t}+t I\right)$ still yields a monotone selection of $\left(\partial_{p} f+t I\right)$. By definition of $M_{t}(x)$, the set-valued mapping M defined on $\mathbb{R}^{n} \times[\bar{t}, \infty)$ by

$$
M(z, t)=\operatorname{con}\left\{\left(x,-(1 / 2)\|x\|^{2}\right): x \in\left(M_{t}+t I\right)^{-1}(z)\right\}
$$

for $t>\bar{t}$ and for $t=\bar{t}$

$$
M(z, \bar{t})=\operatorname{con}\left\{\left(x,-(1 / 2)\|x\|^{2}\right): x \in\left(M_{\bar{t}}+\bar{t} I\right)^{-1}(z)\right\}+\{(0,-\lambda) \mid \lambda \in \mathbb{R}\}
$$

is maximal cyclically monotone (see [9]), because it is equal to $\partial h_{f}(z, t)$. Another property of the sets $M_{t}(x)$ is that they increase and the limit set is $\partial_{p} f(x)$. The sets $M_{t}(x)$ are the key to the characterization of the proximal subgradient mapping.

Theorem 2.3. Let $\Gamma: \mathbb{R}^{n} \rightrightarrows \mathbb{R}^{n}$ be a set-valued mapping. For all $x, \Gamma(x)=\partial_{p} f(x)$, where f is a lower semicontinuous extended-real-valued function on \mathbb{R}^{n} bounded below by a quadratic, if and only if there exist $\bar{t}>0$ and for $t \geq \bar{t}, M_{t}: \mathbb{R}^{n} \rightrightarrows \mathbb{R}^{n}$ with $M_{t}(x) \subset$ $\Gamma(x)$ for all x, such that
(a) $M_{t}(x) \uparrow \Gamma(x)$ (i.e., if $t_{1}<t_{2}$, then $M_{t_{1}}(x) \subset M_{t_{2}}(x)$ and $\left.\bigcup_{t \geq i} M_{t}(x)=\Gamma(x)\right)$.
(b) If M is the set-valued mapping defined by

$$
M(z, t)= \begin{cases}\operatorname{con}\left\{\left(x,-(1 / 2)\|x\|^{2}\right): x \in\left(M_{t}+t I\right)^{-1}(z)\right\} & t>\bar{t} \\ \operatorname{con}\left\{\left(x,-(1 / 2)\|x\|^{2}\right): x \in\left(M_{\bar{t}}+\bar{t} I\right)^{-1}(z)\right\}+\{(0,-\lambda) \mid \lambda \in \mathbb{R}\} & t=\bar{t} \\ \emptyset & t<\bar{t}\end{cases}
$$

then for all $t \geq \bar{t}$ and $z \in \mathbb{R}^{n}, M(z, t) \neq \emptyset$ and M is maximal cyclically monotone.
PROOF. \Longrightarrow See the discussion preceding the Theorem.
\Longleftarrow There exists $h: \mathbb{R}^{n} \times[\bar{t}, \infty) \rightarrow \mathbb{R} \cup\{\infty\}$, lower semicontinuous proper convex with $\partial h(z, t)=M(z, t)$ (see [9]). Assume h is differentiable at (z, t). This implies that $\partial h(z, t)$ is a singleton, therefore $M(z, t)=\left(x,-(1 / 2)\|x\|^{2}\right)$ for some x in \mathbb{R}^{n}. By Theorem 2.2, if

$$
f(x)=\sup _{\substack{(z, t) \\ t \geq t}}\left\{\langle z, x\rangle-(t / 2)\|x\|^{2}-h(z, t)\right\},
$$

then $h_{f}(z, t)=h(z, t)$. In addition,
(a) $\partial_{p} f(x) \subset \Gamma(x)$. To see this, let $u \in \partial_{p} f(x)$. By Theorem 2.1 (b), for t big enough, $\left(x,-(1 / 2)\|x\|^{2}\right)=\nabla h_{f}(u+t x, t)$. Therefore,

$$
M(u+t x, x)=\left(x,-(1 / 2)\|x\|^{2}\right)
$$

which implies that $u \in M_{t}(x) \subset \Gamma(x)$.
(b) $\Gamma(x) \subset \partial_{p} f(x)$. To see this, if $u \in \Gamma(x)$, then eventually $u \in M_{t}(x)$. Hence, $\left(x,-(1 / 2)\|x\|^{2}\right) \in M(u+t x, t)=\partial h_{f}(u+t x, t)$. By Theorem 2.1(c), $x \in \operatorname{argmax} h_{f}(u+$ $t x, x)$. By Theorem 2.1(a), we know that $u \in \partial_{p} f(x)$, since $u=(u+t x)-t x$.

We now wish to characterize the proximal normal cone mapping. The following corollary is an immediate consequence of Theorem 2.3 and the following obvious observation

$$
y \in \operatorname{PN}_{C}(x) \Longleftrightarrow y \in \partial_{p} \delta_{C}(x),
$$

where δ_{C} is the indicator function

$$
\delta(x)= \begin{cases}0 & \text { if } x \in C \\ \infty & \text { if } x \notin C\end{cases}
$$

Corollary 2.4. Let $\Gamma: \mathbb{R}^{n} \rightrightarrows \mathbb{R}^{n}$ be a set-valued mapping. For all $x, \Gamma(x)=\mathrm{PN}_{C}(x)$, where C is a closed nonempty subset of \mathbb{R}^{n}, if and only if there exist, for $t \geq 0, M_{t}: \mathbb{R}^{n} \rightrightarrows \mathbb{R}^{n}$ with $M_{t}(x) \subset \Gamma(x)$ for all x, such that
(a) $M_{t}(x) \uparrow \Gamma(x)$ (i.e., if $t_{1}<t_{2}$, then $M_{t_{1}}(x) \subset M_{t_{2}}(x)$ and $\bigcup_{t \geq 0} M_{t}(x)=\Gamma(x)$).
(b) If M is the set-valued mapping defined by

$$
M(z, t)= \begin{cases}\operatorname{con}\left\{\left(x,-(1 / 2)\|x\|^{2}\right): x \in\left(M_{t}+t I\right)^{-1}(z)\right\} & t>0 \\ \operatorname{con}\left\{\left(x,-(1 / 2)\|x\|^{2}\right): x \in\left(M_{0}\right)^{-1}(z)\right\}+\{(0,-\lambda) \mid \lambda \in \mathbb{R}\} & t=0 \\ \emptyset & t<0\end{cases}
$$

then for all $t \geq 0$ and $z \in \mathbb{R}^{n}, M(z, t) \neq \emptyset$ and M is maximal cyclically monotone.
We conclude this paper with a characterization of the generalized subgradient mapping of a locally Lipschitzian function.

Corollary 2.5. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be locally Lipschitzian and bounded below by a quadratic. Under these conditions there exist \bar{t} and for $t \geq \bar{t}$, set-valued mappings $M_{t}: \mathbb{R}^{n} \rightrightarrows \mathbb{R}^{n}$, where M_{t} is defined in (2.6), such that
(1) $M_{t}(x) \subset \partial_{p} f(x)$ for all x.
(2) Parts (a) and (b) of Theorem 2.3 are satisfied (with $\Gamma(x)=\partial f(x)$).
(3) $\widetilde{M}_{t}(x) \uparrow \partial f(x)$, where

$$
\widetilde{M}_{t}(x)=\operatorname{con}\left\{y \mid \exists x_{i} \rightarrow x \text { and } y_{i} \in M_{t}\left(x_{i}\right) \text { with } y_{i} \rightarrow y\right\} .
$$

Proof. Recall that the set of (Clarke) generalized subgradients is the convex hull of limiting proximal subgradients.

References

1. F. H. Clarke, Generalized gradients and applications, Trans. Amer. Math. Soc. 205(1975), 247-262.
2. \qquad Nonsmooth Analysis and Optimization, John Wiley, New York, 1983.
3. A. D. Ioffe, Approximate subdifferentials and applications I: the finite dimensional case, Trans. Amer. Math. Soc. 281(1984), 389-416.
4. \qquad Calculus of Dini subdifferentials of functions and contingent coderivatives of set-valued maps, Nonlinear Analysis 8(1984), 517-539.
5. R. Janin, Sur des multiapplications qui sont des gradients généralisés, C.R. Acad. Sc. Paris 294(1982), 115-117.
6. P. D. Loewen, The proximal normal formula in Hilbert space, Nonlinear Analysis 11(1987), 979-995.
7. R. A. Poliquin, Integration of subdifferential of nonconvex functions, Nonlinear Analysis, 17(1991), 385398.
8. \qquad Subgradient monotonicity and convex functions, Nonlinear Analysis 14(1990), 305-317.
9. R. T. Rockafellar, Convex Analysis, Princeton University Press, 1970 .
10. \qquad Proximal subgradients, marginal values, and augmented Lagrangians in nonconvex optimization, Math. of Op. Res, 6(1981), 427-437.
11. Favorable classes of Lipschitz continuous functions in subgradient optimization. In: Progress in Nondifferentiable Optimization, Institute of Applied Systems Analysis, Laxenburg, Austria, (1982), 125144.
12. , Extensions of subgradient calculus with applications to optimization, Nonlinear Analysis 9(1985), 665-698.
13. R. T. Rockafellar and R. J.-B. Wets, Variational Analysis, to appear.
14. J. E. Spingarn, Submonotone subdifferentials of Lipschitz functions, Trans. Amer. Math. Soc. 264(1981), 77-89.

Department of Mathematics
University of Alberta
Edmonton, Alberta
T6G 2GI

[^0]: This work was supported in part by the Natural Sciences and Engineering Research Council of Canada under grant OGP41983.

 Received by the editors April 12, 1991.
 AMS subject classification: Primary: 49A52, 58C06; secondary: 58C20, 65K10.
 Key words and phrases: proximal subgradients, nonsmooth analysis, quadratic conjugate, set-valued mappings, monotone mapping, generalized subgradients, strictly submonotone, cyclically submonotone.
 (c) Canadian Mathematical Society 1993.

