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Abstract

We show that the position vector of any 3-space curve lying on a sphere satisfies a
third-order linear (vector) differential equation whose coefficients involve a single arbi-
trary function A(s). By making various identifications of A(s), we are led to nonlinear
identities for a number of higher transcendental functions: Bessel functions, Horn
functions, generalized hypergeometric functions, etc. These can be considered natural
geometrical generalizations of sin2 t + cos2 t = 1, We conclude with some applications to
the theory of splines.

1. Introduction

Traditionally, identities involving special functions have been demonstrated using
analytical methods, such as power series arguments and manipulations with
integrals and differential equations. In fact Watson's classic treatise on Bessel
functions [12] is a virtual compendium of such techniques. In the past 25 years or
so, algebraic approaches, particularly those based on the theory of group repre-
sentations, have become popular, and a wealth of previously hidden results have
been revealed this way. Prominent names in these efforts are those of Weisner,
Koornwinder, Miller, and Dunkl. (The book [2] contains many references to such
results.) It has been subsequently discovered that many results obtained by
algebraic methods may also be proved using analytical techniques, although, as
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112 Even Mehlum and Jet Wimp [ 2 ]

may be expected, the analytical derivations are very tricky. Askey's analytical
proof [1] of a result of Koomwinder on Jacobi polynomials is a good example of
such an undertaking.

What seems to have been relatively overlooked is the possibility of using
geometric arguments to derive identities for special functions. While it is true that
algebraic methods utilize certain geometric concepts, such as symmetry groups on
spheres, the reasoning in the algebraic approach is not geometrical.

In this paper we examine a way of using purely geometrical considerations,
namely, properties of spherical curves, to derive special-function identities.

In the reference [10] it was shown how a certain problem in the theory of
nonlinear splines led to a third order differential equation for the position vector
of a curve which lay on a sphere. When the differential equation was solved and
the condition that the sum of the squares of the components of the solution
equals a constant was imposed, a nonlinear relation involving confluent hypergeo-
metric functions of two variables was obtained. This analysis, whose physical
implications are discussed in Section 6 of this paper, has turned out to be
enormously fruitful and leads to a wide variety of relations, as we shall see.

The results may be considered to be geometric generalizations of

sin2* + cos2/ = 1, (1.1)

but they are very exotic, and we suspect that attempts to demonstrate them by
analytical techniques will encounter great obstacles. Our identities, particularly
those involving the confluent functions $ , and $2, seem to have no parallel in the
classical literature.

After presenting our approach and a number of examples, we close with an
application to nonlinear splines and suggestions for future research.

We use the notation w for vectors in 3-space, and w(l) denotes the /th
component of w.

Our notation for special functions is exclusively that of the Bateman manuscript
volumes, [5].

2. Spherical curves

Let p be the position vector of a curve (y) in 3-space, parameterized by arc
length s. We assume p is suitably smooth, (t, n, b) will denote as usual, the moving
trihedral of the curve and K, T the curvature and torsion respectively. It is known
(see, for instance [11]) that p satisfies a fourth order differential equation (in s)
with coefficients involving K and T. However, as we shall see, a simpler equation is
possible when (y) lies on a sphere centered at 0. Since (t,n,b) is an orthonormal
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system, we may write

(d/ds)"9 = ant + bnn + cnb, (2.1)

for some functions an, bn, cn. Differentiating, using the Frenet-Serret formulas,
[11], and equating coefficients of (t, n, b) results in the equations

K+x = anK + b'n- TCn, (2.2)

Cn + \ = Tbn + C'n-

When n = 1, al = 1, bx = cx = 0, since p' = t. Putting n = 0 in (2.2) and using
these values gives

1 = a'o - Kb0,

0 = a0K + b'o - TC0, (2.3)

0 = rb0 + c'o.

The condition that (y) lie on a sphere centered at the origin is

p p ' = 0, i.e., p t = O. (2.4)

Since p' = t and p" = KII,

p ' - p ' = l , p " . p " = K2, p ' p " = 0. (2.5)

Furthermore, differentiating (2.4) gives

p • p" = - 1 . (2.6)

The five conditions (2.4), (2.5), (2.6) will subsequently be used to derive the
appropriate initial data for the problem.

Using (2.1) with n = 0 and employing (2.4) shows a0 = 0. Thus (2.3) reduces to

1 = -Kb0,

0 = b'o- TC0,

0 = rbo + c'o.

The first two equations yield

bo=-\/K, CO = K'/TK2 (2.7)

and the third requires

which is the known intrinsic equation for p (see [3]). It is a necessary and
sufficient condition for (y) to lie on a sphere. Expressing t, n, b in terms of p', p",
p '" , K and T via the Serret-Frenet formulae and substituting the results, and (2.7),

https://doi.org/10.1017/S0334270000004793 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000004793


114 Even Mehlum and Jet Wimp [ 4 J

into (2.1), we obtain the differential equation

K'p '" - (T2K + ic'2A)p" + K'K2P' - r V p = 0, (2.9)
with K and T related by (2.8).

The intrinsic equation (2.8) may actually be integrated once, as follows. Taking
the dot product of (2.9) with p and using (2.5) and (2.6) yields the equation

JT + 4 T = /?2' (21°)
K K T

where R is the radius of the sphere.
Now let

K = Wl + A2, a = l/R, (2.11)
where A is any positive differentiable function of s. Using (2.10) then shows that

T = ±A'/(\ + A2) (2.12)
and putting (2.11), (2.12) in (2.9) gives our final equation

p '" -(A'/A)p" + «2(1 + ^ 2 )p ' -(a2A'/A)p = 0, a = 1/R. (2.13)
Initial vectors satisfying (2.4), (2.5), (2.6) are

p(0) = (0,0, -I/a), p'(0) = (0,1,0), p"(0) = (a^(0),0, a). (2.14)
It turns out that no generality is gained in our final formulas by choosing initial
vectors more general than (2.14). The rest of this paper is devoted to an analysis
of the system (2.13)-(2.14).

Note that when A equals a constant, the torsion vanishes and p lies in a plane.
The relation p(1)2 + p(2)2 = R2 is then, essentially, (1.1).

3. Some YF2 formulas

We take A(s) = aebs and make a change of variable and parameter,
e2bs=t, 9(s) = h(t), v = a/2b, (3.1)

to get
2t3h'" + 5r2h" + [(1 + 2v2)t + 2v2a2t2]V - v2\i = 0. (3.2)

We consider the corresponding scalar equation
2t3h '" + 5t2h" + [(1 + 2v2)t + 2v2a2t2] W - v2h = 0. (3.3)

The method of Frobenius is applicable and shows this equation has a fundamen-
tal set (hi, h2, h3) of the form

J 2 \Oj~\, Oy+ 1 - iv, Oj + 1 + iv
-a2v2t\,

a1 = i , a 2 = / > , a 3 = -,>. (3.4)
(Note that these 2.F3's are actually ^ ' s . )

https://doi.org/10.1017/S0334270000004793 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000004793


I s 1 Spherical curves 1 1 5

The Wronskian of these solutions is found to be

W{t) = -2iv(v2 + i ) r 5 / 2 .

(this follows by using Abel's formula [7, page 119] and estimating the determinant
by its leading powers of t).

The conditions (2.14) at s = 0 become conditions at / = 1,

a n d h(f ) m a y be convenient ly represented by means of the vector de t e rminan t

h(0 =
-1

2bW(l)

(0,0,0)

(0,0,-1A)

(0,1,0)

{av,-\,v)

MO MO MO
Mi) A2(i) Mi)

Mi) MO 'Mi)
(3.5)

We shall not pursue the evaluation of the general determinant (3.5) here, but
shall look at what happens when a -* 0. Replace t by t/a2. The derivatives of hj
are easy to estimate and we have

h(t/a2):=
( 0 -

(1 +
4ibv (

(0,0,

(0,0,

(0,1,
(av,-

O(a2)

V2 + \

0)
-\/v

0)

-I,")

)
) '

gi(0
) I

\
-i

g2(/)

I
iv

iv(iv —

g3(0
1

1) iv(iv+l)

where gy(0 := hj(t/a2). Since »> > 0, g2
 = £3- Adding v2 times the second row,

and the third, to the fourth produces an orthonormal set of vectors in the first
column. Expanding by minors of this column gives a result that we write as

O(a2)
8 = 2bv

-(0,0,l)Reg2+(0,l,0)Img2

(v2a,0,0)
(v2 + 1/4)

Now g • g = R2 = a'2 = (4v2b2)~l. This condition, that the curve lies on a
sphere, implies an exotic relation between certain j/^ 's. To find it, we let a -* 0,
replace t by t/v2, and take the dot product. The result is the identity (t > 0)

F1 2
lv

iv,\ 2iv - t
v2t

- t = 1.

(3.6)
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Another interesting formula involving lF2's results on choosing

A(s) = (s + e)'1.
Making the change of variable

s + e=t, p(*) = h(/) (3.7)

gives a differential equation whose scalar analogue is

th'" + h" + al{t + l/t)h' + a2h = 0.

This has a basis of solutions

1, (o, + l ) / 2

(a, + 2)/2, (o-. + 1 + i«)/2, (oj+1- ia)/2

al = 0, a2 = 1 + ia, a3 = 1 — ia,

and s = 0 corresponds to t = e and p"(0) = (a/e,0, a). Estimating /^(e) is easy.
Also W(t) = -2ia(l + a2) / / . We find, as before, that h may be represented by
the vector determinant

t\F, - a2t2/4

h = O(e))

2/a(l + a2)

(0,0,0) h, h2

(0,0,-I/a) 1 0 0

(0,1,0) 0 (1 + a)e'a (1 - ia)t-"

(a,0,0) 0 ia(l + ia)e'a -ia(l - ia)e-a

Expanding the determinant, taking its dot product with itself and letting e -* 0
gives

• _ J_ _ h± 1 . .2
" a2 ~ a2 + (1 + a2) ' 2' "

Through straightforward series manipulations using the formulas in [5, volume
2, page 11] we may express the lF2's in terms of Bessel functions. Letting
/ -> 2t/a, v = a/2 gives an unexpected result which, however, is a "natural"
geometric generalization of

sin21 + cos2/ = 1.
It is

(3.8)v > 0, t > 0,

and the former equation results on putting v = 0.
As a referee has pointed out, this formula may also be demonstrated by using

the known differential properties (Wronskian relations) for Bessel functions.
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[7) Spherical curves 117

Whether the other formulas obtained in this paper also imply or express certain
differential properties of the functions involved is not known. It seems doubtful,
however, that this could be the case since these functions do not satisfy second
order differential equations; nor are they, generally, expressible as products of
functions that do, so the Wronskians involved must be expected to involve
products of three, rather than two, functions.

4. Horn functions

The next choice is A(s) = (s + e)'1/2. Making again the substitution (3.7) gives
an equation whose scalar counterpart is

th '" + \h" + a2(l + t)h' + \a2h = 0. (4.1)

The method of Frobenius reveals that this equation has a basis of solutions near
t = 0 with the behaviour,

ht = l + Olt+ • • • , h2 = t + V 2 + • • • , * 3 - ' 3 / 2 + c^5 / 2 + • • • . (4.2)

(It seems not to be feasible to find the coefficients in these expansions directly.
We shall return later to the identification of hr) We form the vector determinant
exactly as before, estimating things to order e1/2, take dot products and let e -» 0.
We find

( / I l - a 1 / l 2 ) 2 + a2/i2 + ^ a 4 / I f = l . (4.3)

We now return to the hj. The equation may be solved by Laplace integrals of
the form

h(t)= ( e'u<j>(u)du, (4.4)
•'r

where T is a path in the complex w-plane. Substituting (4.4) in (4.1) and
performing a single integration by parts on the terms containing f (this, by the
way, requires that e'uu(u2 + a2)<J> vanish at the endpoints of F, which will turn
out to be true) gives

j e'u{-[u(u2 + a2)<t>(u)]' +(u2/2 + a2u + a2/2)<j>(u)} du = 0.

Thus <j> must satisfy the first order equation

u(u2 + a2)<t>' + ( | « 2 - a2u + a2/2)<i> = 0.

We have

u - iaXX~"{u + j«)-1+iT, T = a /2 .
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A change of variable yields

h{t) = f eua"u-1/2(l - it)-1"*, r = a/2.
JQ

Our three paths will be (0,l+), (0,-1+), (zoo, - l + , 0 + , l + ) , in the standard
notation for loop paths. The resulting functions can be identified from the work
in [4], and we take as solutions, respectively

vi = $1(2.1 - it, \ - ir, ita),

v2 = vl = $ j ( i , 1 + IT, \ + IT, - 1 , -/7a),

v3 = r 3 / 2$2( l + IT, 1 - IT, f, ita, -ita).

We write

vx = Xo + Xxat + • • • .

The standard series representation for v1 (see [5, volume 1, page 225]) shows Xn

may be written

n + i, l - I T
2^1n 1 \ • \ i 2 II 1 . ,

or, after an application of Kummer's transformation,

- I T , 1 -

Note, however, that the formulas [5, volume 1, page 225(2), (21)] are incorrect. In
the first, (/?)„ should read ()3)m. In the second, (fi')m should read (/?')„•

For n = 0, 1, Xn may be evaluated by formulas due to Mitra [8, page 272].

= 2"-V5rr(i-iT)( - + -), (4.5)
n - " - - / r ) / 2 ) 2 Tr(-/T/2)2/

1 2i ] (4-6)

By using elementary properties of the gamma function, it is found that

| lm( \ 0 \ 1 ) | = 1/4 cosh ITT.

We are now ready to identify the hj in terms of the Vj. We identify hx with
UJ/AQ, SO ax = aX1/X0. Thus

« j = T — , « 2 = —7—— ——\" = ~ 7 — \" •
Ao a{X1X0- XQX^ alm(X0X1)

A short computation shows
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Letting t -» t/a and using these in (4.3) gives the relationship

1 2 i2 2T/ 3

16 cosh2 ITT

where Xo, X1 are as in (4.5), (4.6) and

* i = $1(2. 1 - ir, 2 - ir, - 1 , '')>

O2
 = ^2(1 + 'T> 1 ~ ir, f>''» ~ ' ' ) -

Letting T -» 0 gives (1.1).

-<D2, (4.7)

5. More Horn functions

This example is involved, but also important because of its application to the
theory of nonlinear splines. It results from the simple choice A = s + e. (The e
subterfuge is required here because, although the solutions of the equation are
analytic (in fact, entire), the vectors py(e) are linearly dependent for e = 0.)

The equation is

(s + e)p'" - p" + a2(s + e)[l +(s + e)2] p' - a2p = 0. (5.1)

It is preferable to work in the variable s. The scalar equation has a basis of
solutions

px(s + e) = (J + e) + ax(5 + e)3 + a2(s + e)5 +

p2(s + e) = (s + e)3 + b^s + e)5 + b2(s + e)7 +

p3(s + e) = 1 + cx(j + e)2 + c2(s + e)4 +

We have Cj = a2 /2.
Proceeding as before, we get

(0,0,0)

. -(1 + O(e2))

(5.2)

6e

Pi
(0,0, -I/a) e

Pi P3

0 1

0 -a e
6e -a2

(5.3)
(0,1,0)

(«e,0,o)

Adding a2 times the second row to the last, expanding and letting e -* 0 gives

p(s) = -(0,0, p3/a) -(0,(flx + a2/6)p2 - P l ,0 ) +(a P 2 /6 ,0 ,0) , (5.4)

so

I / a 2 = p\/a2 + [(a, + a2/6)p2 - P l ] 2 + o2p^/36. (5.5)
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120 Even Mehlum and Jet Wimp

There remains the problem of identifying py. Let

l i o ]

The appropriate scalar equation is

8th'" + 20h" + 2 a 2 ( l + t)h' + a2h = 0.

Assume

(5.6)

h = f e'"<j>(u) du

and proceed as in the previous section. <j> is easily determined and, after a change
of variable, we have

h = f e
2lT'uu-^2(l - UyiT(l + u)'Tdu, T = a/4.

Jo

The solutions we shall use are

vi = $ i ( i .

v2 = U1 = ̂ ( 1 , IT, | + IT, - 1 , -2irt),

Write

2 ~

V3 = /T, -IT, \, 2iTt, -2iTt).

Then

- 1

r(-/T/2)r(i - IT/2) r((i-/T)/2)2 I (5-7)

>, -IT
- 1

21Ti 1 — IT, —IT

— IT

By the use of contiguous relationships for the 2Fl (see [5, volume 1, page 103
(30)]) we may write

8/2'T 1 — IT, —ir
(5.8)

1 - IT, - I T
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so the formulas in [8] may now be applied to get

2/T) (1/2 - 2 I T )

1 / 2 ) +x1 = ^r(3/2 „),{ r ( . / T / 2 ) r ( 1 _ .T/2) + r ( l / 2 _ /

For future reference, we need

We make the identification
ai = KTAo

and take

Pl(s + e) =

= t1/2(j + e) = t
T ( X 1 X 0 - X 0 X 1 ) T ^ X Q X J )

p3(5 + e) = / ^ , .

A simple computation gives

O1P2 ~ Pi = -'1/2Im(X1i;1)lm(X1X0).

Letting e -» 0 and replacing s by s/ JT in (5.5) gives another quadratic relation
for $ j , <&2:

<^(*J - 1) + f !

where X0Xt are as in (5.7), (5.8) and

$ i = *I(2»-'"T, I - 'T,-1

$ 2 = <M'T> -'T» 2. 2 " 2 . ~ :

If T -» 0 the result is trivial. If higher order terms are incorporated, a result for
Fresnel integrals is obtained. We can compute a T estimate on $2 by splitting the
defining sum up as follows:

*2=L ("IT x")^," + ? "l") ^. + ^ •

We obtain, after some series manipulations,

* 2 = 1 - 8 T J 2
2 F 3 J ' ]

\ 2i 4. 4
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* i ( i , 0, §, - 1 , 2is2) = * ( i , f; 2w2), \ 0 = 1, \ = 2i/3,

and, using the formulas [5, volume 1, page 267(29), (30)] we find, in the standard
notation for Fresnel integrals,

R e * 2 + Im<D2 = f [C2(2s2) + S2(2s2)].

Now dividing by T, letting r -» 0 and introducing a change of variable gives

( 0 + ( ' ) - — 2 * 3 i l l ~ " 4 " ' r > 0 -
1 2 ' 4 ' 4 /

This result is not so obscure as it may seem. In fact, it is a direct consequence of
the formula [5, volume 1, page 186(5)] which gives

( R e * ) 2 + ( I m $ ) 2 = 2 F 3

wherep is such that the 2-F3 is defined,/?, 0

Thus

2 * 3

a,p - a

n P P +
P, j ' 2

a,/?

.,§,-
, are real

p; it).

1 t2

4

— a

2

and

>o.

/2
4

an elementary positivity result for a 2*3- This should be compared with the
positivity statements for 1ir

2's given in [6], which, however, are much deeper.

6. Nonlinear splines

The geometrical aspect of the work in the previous sections has a direct
connection with the theory of splines.

In an earlier paper [9], one of us showed how to obtain the intrinsic equations,
i.e. the equations specifying K and T, for a basic spline element p, from a
variational criterion:

f K2 ds = j |p"| ds = min.

A differential equation was obtained for K2,

[ ( K 2 ) ' ] 2 + K2[(/C2 - AD)2 - AA2\ + 4C2 = 0

(6-1)

(6-2)
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where A, D, C are arbitrary parameters, and for T,

K2T = C. (6.3)

Equation (6.2) was reduced to the standard differential equation for the
^-function of Weierstrass, and it was shown how p($) could be found as a
solution of the standard Lame differential equation.

For planar curves this result simplifies considerably. The torsion vanishes
identically and C is zero. The curve p may then be written in terms in standard
elliptic integrals. If K2 <S: 4£>, K2 satisfies an approximate equation

[ ( K 2 ) ' ] 2 - 4 a V + 4C 2 = 0 (6.4)

whose solution is

K2 = a2(s - af + C2/a2, (6.5)
where a an integration constant. Again, the matter simplifies considerably for the
planar curve, and the result is the Cornu spiral, where p has coordinates which
can be expressed in terms of the Fresnel integrals.

With K and T known from (6.3) and (6.5), n and b can be eliminated from the
Frenet-Serret formulas to get a third order differential equation for t = p':

t'" + ( a V + C2/a2)t ' + 3a2st = 0

or

pry+(a2s2 + C2/a2)p" + 3a V = 0.

After multiplication by s the left hand side of this equation becomes an exact
differential which can be integrated to yield

sp '" - p" + s(a2s2 + C2/a2)p ' - ( C 2 / « 2 ) p ' - ( - C 2 / a 2 ) p 0

where the constant of integration has been denoted (-C2/a2)p0. If we define a
new vector TJ by

*l = P - Po
then

JIT" " t|" - «M*2 + C2/a2)i\' -(C2/a2)i\ = 0.
One can, without loss of generality, take C = a2 (for, let s -» sC/a and redefine
a). One then obtains the equation of Section 5. The relevant spline element thus
lies on a sphere centered at p0, and its coordinates satisfy essentially the
relationship given in (5.9).

7. Conclusions

The previous analysis admits to a natural generalization to four dimensions.
The condition for the radius vector to touch the hypersphere is the same, but the
intrinsic equation is more complicated, containing an additional " hyper" torsion
term which measures how the curve twists through four-space.
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124 Even Mehlum and Jet Wimp [ 141

Another approach is to require the curve to lie on an ellipsoid of revolution.
The final equations will then express the fact that |p — a|2 4- |p — b|2 = c2 for
some constant vectors a and b.
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