TENSOR PRODUCTS OF CLEAN RINGS

MASSOUD TOUSIabc and SIAMAK YASSEMIabc*

a Department of Mathematics, University of Tehran, Tehran, Iran
b Department of Mathematics, Shahid Beheshti University, Tehran, Iran
c Institute for Studies in Theoretical Physics and Mathematics, Tehran, Iran

(Received 26 January, 2005; accepted 9 June, 2005)

Abstract. A ring is called clean if every element is the sum of an idempotent and a unit. It is an open question whether the tensor products of two clean algebras over a field is clean. In this note we study the tensor product of clean algebras over a field and we provide some examples to show that the tensor product of two clean algebras over a field need not be clean.

2002 Mathematics Subject Classification. 13A99, 13F99.

1. Introduction. Throughout this paper, \(R \) is commutative ring and we use \(\text{Min}(R) \) to denote the set of minimal prime ideals of \(R \). We say \(R \) is quasi-local (resp. semi-local) if the set of maximal ideals of \(R \) has only one element (resp. finitely many elements). An element in \(R \) is called clean if it is the sum of a unit and an idempotent. Following Nicholson, cf. \([4]\), we call the ring \(R \) clean if every element in \(R \) is clean. Examples of clean rings include all zero-dimensional rings (i.e. every prime ideal is maximal) and local rings. Clean rings have been studied by several authors, for example \([4]\), \([2]\), and \([1]\). It is an open question whether the tensor product of two clean algebras over a field is clean, cf. \([2\text{, Question 3}]\). The main purpose of this note is to prove Theorem 1, while Theorem 2 and Proposition 3 are used in the proof of Theorem 1. As an application of Theorem 1 we use it to give an example of two clean algebras \(A \) and \(B \) over a field \(F \) where the tensor product \(A \otimes_F B \) is not clean, see Example 4. In this paper all algebras are unital.

THEOREM 1. Let \(F \) be an algebraically closed field. Let \(A \) and \(B \) be algebras over \(F \). If \(A \) and \(B \) have a finite number of minimal prime ideals (e.g. \(A \) and \(B \) Noetherian) then the following statements are equivalent:

(i) \(A \otimes_F B \) is clean.
(ii) The following hold
 (a) \(A \) and \(B \) are clean.
 (b) \(A \) or \(B \) is algebraic over \(F \).

To prove the above Theorem we first recall the following result from \([1]\) and prove Proposition 3.

THEOREM 2. ([1, Theorem 5]) Let \(R \) have a finite number of minimal prime ideals (e.g., \(R \) is Noetherian). Then the following conditions are equivalent.

The research of the first author was supported by a grant from IPM (No. 84130214).
The second author was supported by a grant from IPM (No. 84130216).
*Corresponding author. E-mail: yassemi@ipm.ir
(i) R is a finite direct product of quasi-local rings.
(ii) R is a clean ring.
(iii) R/p is quasi-local for each prime ideal p of R.

Proposition 3. Let A and B be algebras over a field F. Let $\text{Min}(A \otimes_F B)$ be a finite set and assume that $A \otimes_F B$ is clean. Then the following hold.

(i) A or B is algebraic over F.
(ii) A and B are clean.
(iii) For any $m \in \text{Max}(A)$ and $n \in \text{Max}(B)$ the ring $A/m \otimes_F B/n$ is semi-local.

Proof. (i) By Theorem 2 we know that $A \otimes_F B$ is semi-local and hence by [3, Theorem 6] A or B is algebraic over F.

(ii) Assume that A is algebraic over F. Then $\dim(A) = \dim(F) = 0$ and so A is clean, cf. [1, Corollary 11]. We know that $\varphi : B \rightarrow (A \otimes_F B)$ is integral. Assume that $p_2 \in \text{Spec}(B)$. Since φ is faithfully flat there exists $q \in \text{Spec}(A \otimes_F B)$ such that $q \cap B = p_2$. Since $\tilde{\varphi} : B/p_2 \rightarrow (A \otimes_F B)/q$ is integral and $(A \otimes_F B)/q$ is quasi-local, B/p_2 is quasi-local. On the other hand, since φ is faithfully flat and $\text{Min}(A \otimes_F B)$ is finite, $\text{Min}(B)$ is finite too. Therefore, by Theorem 2, B is clean.

(iii) By Theorem 2, $A \otimes_F B$ is semi-local and so $A/m \otimes_F B/n \cong (A \otimes_F B)/(m \otimes_F B + A \otimes_F n)$ is semi-local. □

Proof of Theorem 1. (i) \implies (ii) First we show that $A \otimes_F B$ has a finite number of minimal prime ideals. Assume $q \in \text{Min}(A \otimes_F B)$ and set $q \cap A = p_1$ and $q \cap B = p_2$. Since $A \rightarrow A \otimes_F B$ is a faithfully flat homomorphism we have that $p_1 \in \text{Min}(A)$ and for the same reason $p_2 \in \text{Min}(B)$. In addition, $q \in \text{Min}(p_1 \otimes_F B + A \otimes_F p_2)$. Since F is algebraically closed $A \otimes_F B/(p_1 \otimes_F B + A \otimes_F p_2) \cong A/p_1 \otimes_F B/p_2$ is an integral domain. Therefore $q = p_1 \otimes_F B + A \otimes_F p_2$. Now the assertion follows from Proposition 3.

(ii) \implies (i). Assume that $q \in \text{Spec}(A \otimes_F B)$ and set $q \cap A = p_1$ and $q \cap B = p_2$. Then $p_1 \otimes_F B + A \otimes_F p_2 \subseteq q$. Since A and B are clean and $\text{Min}(A)$ and $\text{Min}(B)$ are finite we have that A/p_1 and B/p_2 are quasi-local. Let m/p_1 (resp. n/p_2) be the unique maximal ideal of A/p_1 (resp. B/p_2). Since one of A or B is algebraic over F we have that one of A/p_1 or B/p_2 is algebraic over F. Since one of A/m or B/n is algebraic over F we have $\dim(A/m \otimes_F B/n) = 0$. On the other hand, F is algebraically closed so $A/m \otimes_F B/n$ is an integral domain. Therefore $A/m \otimes_F B/n$ is a field. Now by [5] the ring $A/p_1 \otimes_F B/p_2$ is quasi-local and hence $A \otimes_F B/(p_1 \otimes_F B + A \otimes_F p_2)$ is quasi-local. Now the assertion follows from Theorem 2. □

Example 4. Assume that $F = \mathbb{C}$ and $A = B = \mathbb{C}[x]$. Then by [1, Proposition 12] A and B are clean. We claim that $A \otimes_F B$ is not clean. Otherwise, since \mathbb{C} is an algebraically closed field and $A(= B)$ is Noetherian, by Theorem 1, we have that A or B is algebraic over \mathbb{C} and hence $A(= B)$ is equal to \mathbb{C}. That is a contradiction.

Acknowledgment. It is a pleasure to acknowledge correspondence with W. K. Nicholson who pointed out that the question of Han–Nicholson, cf. [2, Question 3], had not been answered yet. This served to motivate the work reported here. The authors would like to thank the referee for his/her useful comments.
REFERENCES