VB-Courant Algebroids, E-Courant Algebroids and Generalized Geometry

Honglei Lang, Yunhe Sheng, and Aïssa Wade

Abstract

In this paper, we first discuss the relation between VB-Courant algebroids and E-Courant algebroids, and we construct some examples of E-Courant algebroids. Then we introduce the notion of a generalized complex structure on an E-Courant algebroid, unifying the usual generalized complex structures on even-dimensional manifolds and generalized contact structures on odddimensional manifolds. Moreover, we study generalized complex structures on an omni-Lie algebroid in detail. In particular, we show that generalized complex structures on an omni-Lie algebra $\operatorname{gl}(V) \oplus V$ correspond to complex Lie algebra structures on V.

1 Introduction

The theory of Courant algebroids was first introduced by Liu, Weinstein, and Xu [17] providing an extension of Drinfeld's double for Lie bialgebroids. The double of a Lie bialgebroid is a special Courant algebroid $[17,20]$. Jacobi algebroids are natural extensions of Lie algebroids. Courant-Jacobi algebroids were considered by Grabowski and Marmo [7], and they can be viewed as generalizations of Courant algebroids. Both Courant algebroids and Courant-Jacobi algebroids have been extensively studied in the last decade, since these are crucial geometric tools in Poisson geometry and mathematical physics. It is known that they both belong to a more general framework, namely that of E-Courant algebroids. Indeed, E-Courant algebroids were introduced by Chen, Liu, and the second author in [5] as a differential geometric object encompassing Courant algebroids [17], Courant-Jacobi algebroids [7], omni-Lie algebroids [4], conformal Courant algebroids [2], and $A V$-Courant algebroids [14]. It turns out that E-Courant algebroids are related to more geometric structures such as VB-Courant algebroids [15].

The aim of this paper is two-fold. First, we illuminate the relationship between VB-Courant algebroids and E-Courant algebroids. Second, we study generalized complex structures on E-Courant algebroids. Recall that a generalized almost complex structure on a manifold M is an endomorphism \mathcal{J} of the generalized tangent bundle $\mathbb{T} M:=T M \oplus T^{*} M$ that preserves the natural pairing on $\mathbb{T} M$ and such that $\mathcal{J}^{2}=-$ id. If, additionally, the $\sqrt{-1}$-eigenbundle of \mathcal{J} in the complexification $\mathbb{T} M \otimes \mathbb{C}$ is involutive relative to the Dorfman (equivalently, the Courant) bracket, then \mathcal{J} is said

[^0]to be integrable, and (M, \mathcal{J}) is called a generalized complex manifold. See $[3,6,8,9,22]$ for more details.

Given a vector bundle $E \xrightarrow{q} M$, we consider its gauge Lie algebroid $\mathfrak{D} E$, i.e., the gauge Lie algebroid of the frame bundle $\mathcal{F}(E)$. It is known that $\mathfrak{D E}$ is a transitive Lie algebroid over M and the first jet bundle $\mathfrak{J} E$ is its E-dual bundle. In fact, $\mathfrak{o l}(E)=$ $\mathfrak{D} E \oplus \mathfrak{J} E$ is called an omni-Lie algebroid [4], which is a generalization of Weinstein's concept of an omni-Lie algebra [25]. In particular, the line bundle case where E comes from a contact distribution brings us to the concept of a generalized contact bundle. To have a better grasp of the concept of a generalized contact bundle, we briefly review the line bundle approach to contact geometry. By definition, a contact structure on an odd-dimensional manifold M is a maximal non-integrable hyperplane distribution $H \subset T M$. In a dual way, any hyperplane distribution H on M can be regarded as a nowhere vanishing 1-form $\theta: T M \rightarrow L$ (its structure form) with values in the line bundle $L=T M / H$, such that $H=\operatorname{ker} \theta$. Replacing the tangent algebroid with the Atiyah algebroid of a line bundle in the definition of a generalized complex manifold, we obtain the notion of a generalized contact bundle. In this paper, we extend the concept of a generalized contact bundle to the context of E-Courant algebroids.

The paper is organized as follows. Section 2 contains basic definitions used in the sequel. Section 3 highlights the importance and naturality of the notion of E-Courant algebroids. Explicitly, the fat Courant algebroid associated with a VB-Courant algebroid (see the definition of a VB-Courant algebroid below) is an E-Courant algebroid. We observe the following facts:

- Given a crossed module of Lie algebras ($\mathfrak{m}, \mathfrak{g}$), we get an \mathfrak{m}-Courant algebroid $\operatorname{Hom}(\mathfrak{g}, \mathfrak{m}) \oplus \mathfrak{g}$, which was given in [13] as a generalization of an omni-Lie algebra.
- The omni-Lie algebroid $\mathfrak{o l}(E)=\mathfrak{D} E \oplus \mathfrak{J} E$ is the linearization of the VB-Courant algebroid $T E^{*} \oplus T^{*} E^{*}$. This generalizes the fact that an omni-Lie algebra is the linearization of the standard Courant algebroid.
- For a Courant algebroid $\mathcal{C}, T \mathcal{C}$ is a VB-Courant algebroid. The associated fat Courant algebroid $\mathfrak{J C}$ is a $T^{*} M$-Courant algebroid. The fact that $\mathfrak{J C}$ is a $T^{*} M$-Courant algebroid was first obtained in [5, Theorem 2.13].
In Section 4, we introduce generalized complex structures on E-Courant algebroids and provide examples. In Sections 5, we describe generalized complex structures on omni-Lie algebroids. In Section 6, we show that generalized complex structures on the omni-Lie algebra $\mathfrak{o l}(V)$ are in one-to-one correspondence with complex Lie algebra structures on V.

2 Preliminaries

Throughout the paper, M is a smooth manifold, d is the usual differential operator on forms, and $E \rightarrow M$ is a vector bundle. In this section, we recall the notions of E-Courant algebroids [5], omni-Lie algebroids [4], generalized complex structures [8,9], and generalized contact structures [23].

2.1 E-Courant Algebroids and Omni-Lie Algebroids

For a vector bundle $E \rightarrow M$, its gauge Lie algebroid $\mathfrak{D E}$ with the commutator bracket $[\cdot, \cdot]_{\mathfrak{D}}$ is just the gauge Lie algebroid of the frame bundle $\mathcal{F}(E)$, which is also called the covariant differential operator bundle of E (see [18, Example 3.3.4]). The corresponding Atiyah sequence is

$$
\begin{equation*}
0 \longrightarrow \operatorname{gl}(E) \xrightarrow{i} \mathfrak{D} E \xrightarrow{j} L M \longrightarrow 0 . \tag{2.1}
\end{equation*}
$$

In [4], the authors proved that the jet bundle $\mathfrak{J} E$ can be considered as an E-dual bundle of $\mathfrak{D E}$:

$$
\begin{equation*}
\mathfrak{J} E \cong\left\{v \in \operatorname{Hom}(\mathfrak{D} E, E) \mid v(\Phi)=\Phi \circ v\left(\mathrm{id}_{E}\right) \text { for all } \Phi \in \operatorname{gl}(E)\right\} \tag{2.2}
\end{equation*}
$$

Associated with the jet bundle $\mathfrak{J} E$, there is a jet sequence given by

$$
\begin{equation*}
0 \longrightarrow \operatorname{Hom}(T M, E) \xrightarrow{\mathbb{C}} \mathfrak{J} E \xrightarrow{\mathbb{P}} E \longrightarrow 0 . \tag{2.3}
\end{equation*}
$$

Define the operator $\mathfrak{d}: \Gamma(E) \rightarrow \Gamma(\mathfrak{J} E)$ by

$$
\mathfrak{d} u(\mathfrak{d}):=\mathfrak{d}(u) \text { for all } u \in \Gamma(E), \quad \mathfrak{d} \in \Gamma(\mathfrak{D} E)
$$

An important formula that will be often used is

$$
\mathbb{d}(f u)=\mathrm{d} f \otimes u+f d u \quad \text { for all } u \in \Gamma(E), f \in C^{\infty}(M) .
$$

In fact, there is an E-valued pairing between $\mathfrak{J} E$ and $\mathfrak{D E}$ by setting

$$
\begin{equation*}
\langle\mu, \mathfrak{d}\rangle_{E} \triangleq \mathfrak{d}(u) \quad \text { for all } \mu \in(\mathfrak{J} E)_{m}, \mathfrak{d} \in(\mathfrak{D} E)_{m} \tag{2.4}
\end{equation*}
$$

where $u \in \Gamma(E)$ satisfies $\mu=[u]_{m}$. In particular, one has

$$
\begin{aligned}
\langle\mu, \Phi\rangle_{E} & =\Phi \circ \mathfrak{p}(\mu) & & \text { for all } \Phi \in \operatorname{gl}(E), \mu \in \mathfrak{J} E ; \\
\langle\mathfrak{y}, \mathfrak{d}\rangle_{E} & =\mathfrak{y} \circ \mathfrak{j}(\mathfrak{d}) & & \text { for all } \mathfrak{y} \in \operatorname{Hom}(T M, E), \mathfrak{d} \in \mathfrak{D} E .
\end{aligned}
$$

For vector bundles P, Q over M and a bundle map $\rho: P \rightarrow Q$, we denote the induced E-dual bundle map by ρ^{\star}, i.e.,

$$
\rho^{\star}: \operatorname{Hom}(Q, E) \longrightarrow \operatorname{Hom}(P, E), \quad \rho^{\star}(v)(k)=v(\rho(k)) \text { for } k \in P, v \in \operatorname{Hom}(Q, E)
$$

Definition 2.1 ([5]) An E-Courant algebroid is a quadruple $\left(\mathcal{K},[\cdot, \cdot]_{\mathcal{K}},(\cdot, \cdot)_{E}, \rho\right)$, where \mathcal{K} is a vector bundle over M such that $\left(\Gamma(\mathcal{K}),[\cdot, \cdot]_{\mathcal{K}}\right)$ is a Leibniz algebra, $(\cdot, \cdot)_{E}: \mathcal{K} \otimes \mathcal{K} \rightarrow E$ a nondegenerate symmetric E-valued pairing that induces an embedding: $\mathcal{K} \hookrightarrow \operatorname{Hom}(\mathcal{K}, E)$ via $Y(X)=2(X, Y)_{E}$, and $\rho: \mathcal{K} \rightarrow \mathfrak{D E}$ a bundle map called the anchor, such that for all $X, Y, Z \in \Gamma(\mathcal{K})$, the following properties hold:

$$
\begin{equation*}
\rho[X, Y]_{\mathcal{K}}=[\rho(X), \rho(Y)]_{\mathfrak{D}} ; \tag{EC-1}
\end{equation*}
$$

$$
\begin{equation*}
[X, X]_{\mathcal{K}}=\rho^{\star} \mathbb{d}(X, X)_{E} ; \tag{EC-2}
\end{equation*}
$$

$$
\begin{equation*}
\rho(X)(Y, Z)_{E}=\left([X, Y]_{\mathcal{K}}, Z\right)_{E}+\left(Y,[X, Z]_{\mathcal{K}}\right)_{E} \tag{EC-3}
\end{equation*}
$$

$$
(\mathrm{EC}-4) \quad \rho^{\star}(\mathfrak{J} E) \subset \mathcal{K}, \quad \text { i.e., }\left(\rho^{\star}(\mu), X\right)_{E}=\frac{1}{2} \mu(\rho(X)) \text { for all } \mu \in \mathfrak{J} E \text {; }
$$

$$
\begin{equation*}
\rho \circ \rho^{\star}=0 . \tag{EC-5}
\end{equation*}
$$

Obviously, a Courant algebroid is an E-Courant algebroid, where $E=M \times \mathbb{R}$, the trivial line bundle. Similar to the proof for Courant algebroids ([20, Lemma 2.6.2]), we have the following lemma.

Lemma 2.2 For an E-Courant algebroid \mathcal{K}, one has

$$
\left[X, \rho^{\star} \mathrm{d} u\right]_{\mathcal{K}}=2 \rho^{\star} \mathbb{d}\left(X, \rho^{\star} \mathbb{d} u\right)_{E}, \quad\left[\rho^{\star} \mathbb{d} u, X\right]_{\mathcal{K}}=0 \text { for all } X \in \Gamma(\mathcal{K}), u \in \Gamma(E) .
$$

An omni-Lie algebroid, which was introduced in [4], is a very interesting example of E-Courant algebroids. Let us recall it briefly. There is an E-valued pairing $(\cdot, \cdot)_{E}$ on $\mathfrak{D} E \oplus \mathfrak{J} E$ defined by

$$
\begin{equation*}
(\mathfrak{d}+\mu, \mathfrak{t}+v)_{E}=\frac{1}{2}\left(\langle\mu, \mathfrak{t}\rangle_{E}+\langle v, \mathfrak{d}\rangle_{E}\right) \quad \text { for all } \mathfrak{d}+\mu, \mathfrak{t}+v \in \mathfrak{D} E \oplus \mathfrak{J} E \tag{2.5}
\end{equation*}
$$

Furthermore, $\Gamma(\mathfrak{J} E)$ is invariant under the Lie derivative $\mathfrak{L}_{\mathfrak{d}}$ for any $\mathfrak{d} \in \Gamma(\mathfrak{D} E)$ that is defined by the Leibniz rule:

$$
\left\langle\mathfrak{L}_{\mathfrak{d}} \mu, \mathfrak{d}^{\prime}\right\rangle_{E} \triangleq \mathfrak{d}\left\langle\mu, \mathfrak{d}^{\prime}\right\rangle_{E}-\left\langle\mu,\left[\mathfrak{d}, \mathfrak{d}^{\prime}\right]_{\mathfrak{D}}\right\rangle_{E} \quad \text { for all } \mu \in \Gamma(\mathfrak{J} E), \mathfrak{d}^{\prime} \in \Gamma(\mathfrak{D} E)
$$

On the section space $\Gamma(\mathfrak{D} E \oplus \mathfrak{J} E)$, we can define a bracket as follows:

$$
\begin{equation*}
\llbracket[\mathfrak{d}+\mu, \mathfrak{r}+v] \rrbracket \triangleq[\mathfrak{d}, \mathfrak{r}]_{\mathfrak{D}}+\mathfrak{L}_{\mathfrak{d}} v-\mathfrak{L}_{\mathfrak{r}} \mu+\mathbb{d} \mu(\mathfrak{r}) \tag{2.6}
\end{equation*}
$$

Definition 2.3 ([4]) The quadruple $\left(\mathfrak{D} E \oplus \mathfrak{J} E,[[\cdot, \cdot]],(\cdot, \cdot)_{E}, \rho\right)$ is called an omniLie algebroid, where ρ is the projection from $\mathfrak{D E} \oplus \mathfrak{J} E$ to $\mathfrak{D E},(\cdot, \cdot)_{E}$ and $[[\cdot, \cdot]]$ are given by (2.5) and (2.6), respectively.

We will denote an omni-Lie algebroid by $\mathfrak{o l}(E)$.

2.2 Generalized Complex Structures and Generalized Contact Structures

The notion of a Courant algebroid was introduced in [17]. A Courant algebroid is a quadruple $\left(\mathcal{C},[[\cdot, \cdot]],(\cdot, \cdot)_{+}, \rho\right)$, where \mathcal{C} is a vector bundle over $M,[[\cdot, \cdot]]$ a bracket operation on $\Gamma(\mathcal{C}),(\cdot, \cdot)_{+}$a nondegenerate symmetric bilinear form on \mathcal{C}, and $\rho: \mathcal{C} \rightarrow T M$ a bundle map called the anchor, such that some compatibility conditions are satisfied. See [20] for more details. Consider the generalized tangent bundle

$$
\mathbb{T} M:=T M \oplus T^{*} M
$$

On its section space $\Gamma(\mathbb{T} M)$, there is a Dorfman bracket

$$
\begin{equation*}
[[X+\xi, Y+\eta]]=[X, Y]+\mathcal{L}_{X} \eta-i_{Y} \mathrm{~d} \xi \quad \text { for all } X+\xi, Y+\eta \in \Gamma(\mathbb{T} M) \tag{2.7}
\end{equation*}
$$

Furthermore, there is a canonical nondegenerate symmetric bilinear form on $\mathbb{T} M$:

$$
\begin{equation*}
(X+\xi, Y+\eta)_{+}=\frac{1}{2}(\eta(X)+\xi(Y)) . \tag{2.8}
\end{equation*}
$$

We call $\left(\mathbb{T} M,[[\cdot, \cdot]],(\cdot, \cdot)_{+}, \operatorname{pr}_{T M}\right)$ the standard Courant algebroid.
Definition 2.4 A generalized complex structure on a manifold M is a bundle map $\mathcal{J}: \mathbb{T} M \rightarrow \mathbb{T} M$ satisfying the algebraic properties:

$$
\mathcal{J}^{2}=-\mathrm{id} \quad \text { and } \quad(\mathcal{J}(u), \mathcal{J}(v))_{+}=(u, v)_{+}
$$

and the integrability condition

$$
\llbracket \mathcal{J}(u), \mathcal{J}(v) \rrbracket-\llbracket u, v]-\mathcal{J}(\llbracket \mathcal{J}(u), v]]+[[u, \mathcal{O}(v)]])=0 \quad \text { for all } u, v \in \Gamma(\mathbb{T} M)
$$

Here, $(\cdot, \cdot)_{+}$and $[[\cdot, \cdot]]$ are given by (2.8) and (2.7), respectively.
See [8, 9] for more details. Note that only even-dimensional manifolds can have generalized complex structures. In [23], the authors give the odd-dimensional analogue of the concept of a generalized complex structures extending the definition given in [10]. We now recall the definition of a generalized contact bundle from [23]. A generalized contact bundle is a line bundle $L \rightarrow M$ equipped with a generalized contact structure, i.e., a vector bundle endomorphism $\mathfrak{J}: \mathfrak{D} L \oplus \mathfrak{J} L \rightarrow \mathfrak{D} L \oplus \mathfrak{J} L$ such that

- J is almost complex, i.e., $\mathrm{J}^{2}=-\mathrm{id}$;
- J is skew-symmetric, i.e.,

$$
(\mathcal{J} \alpha, \beta)_{L}+(\alpha, \mathcal{J} \beta)_{L}=0 \quad \text { for all } \alpha, \beta \in \Gamma(\mathfrak{D} L \oplus \mathfrak{J} L)
$$

- J is integrable, i.e.,

$$
[[\mathcal{J} \alpha, \mathcal{J} \beta]]-[[\alpha, \beta]]-\mathcal{J}[[\mathcal{J} \alpha, \beta]]-\mathcal{J}[[\alpha, \mathcal{J} \beta]]=0 \quad \text { for all } \alpha, \beta \in \Gamma(\mathfrak{D} L \oplus \mathfrak{J} L) .
$$

Let $(L \rightarrow M, \mathcal{J})$ be a generalized contact bundle. Using the direct sum $\mathfrak{o l}(L)=\mathfrak{D} L \oplus$ $\mathfrak{J} L$ and the definition, one can see that

$$
\mathcal{J}=\left(\begin{array}{cc}
\phi & J^{\sharp} \\
\omega_{b} & -\phi^{\dagger}
\end{array}\right)
$$

where J is a Jacobi bi-derivation, ϕ is an endomorphism of $\mathfrak{D L}$ compatible with J, and the 2-form $\omega: \wedge^{2} \mathfrak{D} L \rightarrow L$ and its associated vector bundle morphism $\omega_{b}: \mathfrak{D} L \rightarrow \mathfrak{J} L$ satisfy additional compatibility conditions [23].

3 VB-Courant Algebroids and E-Courant Algebroids

In this section, we highlight the relation between VB-Courant algebroids and E -Courant algebroids and give more examples of E-Courant algebroids.

Denote a double vector bundle

with core C by $(D ; A, B ; M)$. The space of sections $\Gamma_{B}(D)$ is generated as a $C^{\infty}(B)$-module by core sections $\Gamma_{B}^{c}(D)$ and linear sections $\Gamma_{B}^{l}(D)$. See [19] for more details. For a section $c: M \rightarrow C$, the corresponding core section $c^{\dagger}: B \rightarrow D$ is defined as

$$
c^{\dagger}\left(b_{m}\right)=\widetilde{0}_{b_{m}}+_{A} \overline{c(m)} \quad \text { for all } m \in M, b_{m} \in B_{m}
$$

where ' means the inclusion $C \rightarrow D$. A section $\xi: B \rightarrow D$ is called linear if it is a bundle morphism from $B \rightarrow M$ to $D \rightarrow A$ over a section $a \in \Gamma(A)$. Given $\psi \in \Gamma\left(B^{*} \otimes C\right)$, there is a linear section $\widetilde{\psi}: B \rightarrow D$ over the zero section $0^{A}: M \rightarrow A$ given by

$$
\widetilde{\psi}\left(b_{m}\right)=\widetilde{0}_{b_{m}}+{ }_{A} \overline{\psi\left(b_{m}\right)}
$$

Note that $\Gamma_{B}^{l}(D)$ is locally free as a $C^{\infty}(M)$-module. Therefore, $\Gamma_{B}^{l}(D)$ is equal to $\Gamma(\widehat{A})$ for some vector bundle $\widehat{A} \rightarrow M$. Moreover, we have the following short exact sequence of vector bundles over M :

$$
\begin{equation*}
0 \longrightarrow B^{*} \otimes C \longrightarrow \widehat{A} \longrightarrow A \longrightarrow 0 \tag{3.1}
\end{equation*}
$$

Example 3.1 Let E be a vector bundle over M.
(i) The tangent bundle (TE;TM,E;M) is a double vector bundle with core E. Then \widehat{A} is the gauge bundle $\mathfrak{D E}$ and the exact sequence (3.1) is exactly the Atiyah sequence (2.1).
(ii) The cotangent bundle ($\left.T^{*} E ; E^{*}, E ; M\right)$ is a double vector bundle with core $T^{*} M$. In this case, \widehat{A} is exactly the jet bundle $\mathfrak{J} E^{*}$ and the exact sequence (3.1) is indeed the jet sequence (2.3).

Definition 3.2 ([15]) A VB-Courant algebroid is a metric double vector bundle

with core C such that $\mathbb{E} \rightarrow B$ is a Courant algebroid and the following conditions are satisfied:
(i) The anchor map $\Theta: \mathbb{E} \rightarrow$ TB is linear; that is,

$$
\Theta:(\mathbb{E} ; A, B ; M) \longrightarrow(T B ; T M, B ; M)
$$

is a morphism of double vector bundles.
(ii) The Courant bracket is linear; that is,

$$
\left[\left[\Gamma_{B}^{l}(\mathbb{E}), \Gamma_{B}^{l}(\mathbb{E})\right] \subseteq \Gamma_{B}^{l}(\mathbb{E}), \quad\left[\left[\Gamma_{B}^{l}(\mathbb{E}), \Gamma_{B}^{c}(\mathbb{E})\right] \subseteq \Gamma_{B}^{c}(\mathbb{E}), \quad\left[\left[\Gamma_{B}^{c}(\mathbb{E}), \Gamma_{B}^{c}(\mathbb{E})\right]\right]=0\right.\right.
$$

For a VB-Courant algebroid \mathbb{E}, we have the exact sequence (3.1). Note that the restriction of the pairing on \mathbb{E} to linear sections of \mathbb{E} defines a nondegenerate pairing on \widehat{A} with values in B^{*}, which is guaranteed by the metric double vector bundle structure; see [11]. Coupled with the fact that the Courant bracket is closed on linear sections, one gets the following result.

Proposition 3.3 ([11]) The vector bundle \widehat{A} inherits a Courant algebroid structure with the pairing taking values in B^{*}, which is called the fat Courant algebroid of this VB-Courant algebroid.

Alternatively, we have the following proposition.
Proposition 3.4 For a VB-Courant algebroid ($\mathbb{E} ; A, B ; M$), its associated fat Courant algebroid is a B^{*}-Courant algebroid.

Example 3.5 (Standard VB-Courant algebroid over a vector bundle) For a vector bundle E, there is a standard VB-Courant algebroid

with base E^{*} and core $E^{*} \oplus T^{*} M \rightarrow M$. The corresponding exact sequence is given by

$$
0 \longrightarrow \operatorname{gl}(E) \oplus T^{*} M \otimes E \longrightarrow \widehat{A} \longrightarrow T M \oplus E \longrightarrow 0
$$

Actually, by Example 3.1, the corresponding fat Courant algebroid \widehat{A} here is exactly the omni-Lie algebroid $\mathfrak{o l}(E)=\mathfrak{D} E \oplus \mathfrak{J} E$. So the omni-Lie algebroid is the linearization of the standard VB-Courant algebroid.

Example 3.6 (Tangent VB-Courant algebroid) The tangent bundle TC of a Courant algebroid $\mathcal{C} \rightarrow M$

carries a VB-Courant algebroid structure with base $T M$ and core $\mathcal{C} \rightarrow M$. The associated exact sequence is

$$
0 \longrightarrow T^{*} M \otimes \mathcal{C} \longrightarrow \widehat{\mathcal{C}} \longrightarrow \mathcal{C} \longrightarrow 0
$$

Actually, the fat Courant algebroid $\widehat{\mathcal{C}}$ is $\mathfrak{J} \mathcal{C}$, which is a $T^{*} M$-Courant algebroid by Proposition 3.4. So we get that on the jet bundle of a Courant algebroid, there is a $T^{*} M$-Courant algebroid structure. This result was first given in [5].

A crossed module of Lie algebras consists of a pair of Lie algebras ($\mathfrak{m}, \mathfrak{g}$), an action \triangleright of \mathfrak{g} on \mathfrak{m} and a Lie algebra morphism $\phi: \mathfrak{m} \rightarrow \mathfrak{g}$ such that

$$
\phi(\xi) \triangleright \eta=[\xi, \eta]_{\mathfrak{m}}, \quad \phi(x \triangleright \xi)=[x, \phi(\xi)]_{\mathfrak{g}}
$$

for all $x \in \mathfrak{g}, \xi, \eta \in \mathfrak{m}$.
Given a crossed module, there is an action $\rho: \mathfrak{g} \ltimes \mathfrak{g}^{*} \rightarrow \mathfrak{X}\left(\mathfrak{m}^{*}\right)$ of the natural quadratic Lie algebra $\mathfrak{g} \ltimes \mathfrak{g}^{*}$ on \mathfrak{m}^{*} given by

$$
\rho(u+\alpha)=u \triangleright \cdot+\phi^{*} \alpha
$$

where $u \triangleright \cdot \epsilon \operatorname{gl}(\mathfrak{m})$ is viewed as a linear vector field on \mathfrak{m}^{*} and $\phi^{*} \alpha \in \mathfrak{m}^{*}$ is viewed as a constant vector field on \mathfrak{m}^{*}. Note that this action is coisotropic. We get the action Courant algebroid [16] $\left(\mathfrak{g} \ltimes \mathfrak{g}^{*}\right) \times \mathfrak{m}^{*}$ over \mathfrak{m}^{*} with the anchor given by ρ and the Dorfman bracket given by

$$
\begin{equation*}
\left[e_{1}, e_{2}\right]=\mathcal{L}_{\rho\left(e_{1}\right)} e_{2}-\mathcal{L}_{\rho\left(e_{2}\right)} e_{1}+\left[e_{1}, e_{2}\right]_{\mathfrak{g} \propto \mathfrak{g}^{*}}+\rho^{*}\left\langle\mathrm{~d} e_{1}, e_{2}\right\rangle \tag{3.2}
\end{equation*}
$$

for any $e_{1}, e_{2} \in \Gamma\left(\left(\mathfrak{g} \ltimes \mathfrak{g}^{*}\right) \times \mathfrak{m}^{*}\right)$. Here, $\mathrm{d} e_{1} \in \Omega^{1}\left(\mathfrak{m}^{*}, \mathfrak{g} \ltimes \mathfrak{g}^{*}\right)$ is given by Lie derivatives $\left(\mathrm{d} e_{1}\right)(X)=\mathcal{L}_{X} e_{1}$ for $X \in \mathfrak{X}\left(\mathfrak{m}^{*}\right)$. Moreover, it is a VB-Courant algebroid

with base \mathfrak{m}^{*} and core \mathfrak{g}^{*}. See [15] for details. The associated exact sequence is

$$
0 \longrightarrow \mathfrak{m} \otimes \mathfrak{g}^{*} \cong \operatorname{Hom}(\mathfrak{g}, \mathfrak{m}) \longrightarrow \widehat{A} \longrightarrow \mathfrak{g} \longrightarrow 0
$$

Since the double vector bundle is trivial, we have $\widehat{A}=\operatorname{Hom}(\mathfrak{g}, \mathfrak{m}) \oplus \mathfrak{g}$.
Moreover, applying (3.2), we get the Dorfman bracket on $\operatorname{Hom}(\mathfrak{g}, \mathfrak{m}) \oplus \mathfrak{g}$.
Proposition 3.7 With the above notation, $\left(\operatorname{Hom}(\mathfrak{g}, \mathfrak{m}) \oplus \mathfrak{g},[\cdot, \cdot],(\cdot, \cdot)_{\mathfrak{m}}, \rho=0\right)$ is an \mathfrak{m}-Courant algebroid, where the pairing $(\cdot, \cdot)_{\mathfrak{m}}$ is given by

$$
(A+u, B+v)_{\mathfrak{m}}=\frac{1}{2}(A v+B u)
$$

and the Dorfman bracket is given by

$$
\begin{aligned}
{[u, v] } & =[u, v]_{\mathfrak{g}} ; \\
{[A, B] } & =A \circ \phi \circ B-B \circ \phi \circ A ; \\
{[A, v] } & =A \circ \operatorname{ad}_{v}^{0}-\operatorname{ad}_{v}^{1} \circ A+\cdot \triangleright A v+\phi(A v) ; \\
{[v, A] } & =\operatorname{ad}_{v}^{1} \circ A-A \circ \operatorname{ad}_{v}^{0}
\end{aligned}
$$

for all $A, B \in \operatorname{Hom}(\mathfrak{g}, \mathfrak{m}), u, v \in \mathfrak{g}$. Here, $\operatorname{ad}_{v}^{0} \in \operatorname{gl}(\mathfrak{g})$ and $\operatorname{ad}_{v}^{1} \in \operatorname{gl}(\mathfrak{m})$ are given by $\operatorname{ad}_{v}^{0}(u)=[v, u]_{\mathfrak{g}}$ and $\operatorname{ad}_{v}^{1}(a)=v \triangleright a$, respectively, and $\cdot \triangleright A v \in \operatorname{Hom}(\mathfrak{g}, \mathfrak{m})$ is defined by $(\cdot \triangleright A v)(u)=u \triangleright A v$.

Proof By (3.2), it is obvious that $[u, v]=[u, v]_{\mathfrak{g}}$. For $A, B \in \operatorname{Hom}(\mathfrak{g}, \mathfrak{m}), v \in \mathfrak{g}$, applying (3.2), we find

$$
[A, B]=\mathcal{L}_{\rho(A)} B-\mathcal{L}_{\rho(B)} A=\rho(A) B-\rho(B) A=A \circ \phi \circ B-B \circ \phi \circ A .
$$

Observe that $\mathcal{L}_{\rho(v)} A=\operatorname{ad}_{v}^{1}(A)=\operatorname{ad}_{v}^{1} \circ A$ and $[A, v]_{\mathfrak{g} \ltimes \mathfrak{g}^{*}}=-\left(\operatorname{ad}^{0}\right)_{v}^{*} A=A \circ \operatorname{ad}_{v}^{0}$. We have

$$
\begin{aligned}
{[A, v] } & =\mathcal{L}_{\rho(A)} v-\mathcal{L}_{\rho(v)} A+[A, v]_{\mathfrak{g} \ltimes \mathfrak{g}^{*}}+\rho^{*}\langle\mathrm{~d} A, v\rangle \\
& =0-\operatorname{ad}_{v}^{1} \circ A+A \circ \operatorname{ad}_{v}^{0}+\cdot \triangleright A v+\phi(A v),
\end{aligned}
$$

where we have used

$$
\rho^{*}\langle\mathrm{~d} A, v\rangle(u+B)=\rho(u+B)(A v)=u \triangleright A v+B(\phi(A v)) .
$$

Finally, we have

$$
\begin{aligned}
{[v, A] } & =\mathcal{L}_{\rho(v)} A-\mathcal{L}_{\rho(A)} v+[v, A]_{\mathfrak{g} \times \mathfrak{g}^{*}}+\rho^{*}\langle\mathrm{~d} v, A\rangle \\
& =\operatorname{ad}_{v}^{1} \circ A+0-A \circ \operatorname{ad}_{v}^{0}+0 .
\end{aligned}
$$

This completes the proof.

Remark 3.8 This bracket can be viewed as a generalization of an omni-Lie algebra. See [13, Example 5.2] for more details.

More generally, since the category of Lie 2-algebroids and the category of VB-Courant algebroids are equivalent (see [15]), we get an E-Courant algebroid from a Lie 2-algebroid. This construction first appeared in [11, Corollary 6.9]. Explicitly, let $\left(A_{0} \oplus A_{-1}, \rho_{A_{0}}, l_{1}, l_{2}=l_{2}^{0}+l_{2}^{1}, l_{3}\right)$ be a Lie 2-algebroid. Then we have an A_{-1}-Courant algebroid structure on

$$
\operatorname{Hom}\left(A_{0}, A_{-1}\right) \oplus A_{0},
$$

where the pairing is given by

$$
\left(D+u, D^{\prime}+v\right)_{A_{-1}}=\frac{1}{2}\left(D v+D^{\prime} u\right)
$$

for $D, D^{\prime} \in \Gamma\left(\operatorname{Hom}\left(A_{0}, A_{-1}\right)\right)$ and $u, v \in \Gamma\left(A_{0}\right)$, the anchor is

$$
\rho: \operatorname{Hom}\left(A_{0}, A_{-1}\right) \oplus A_{0} \rightarrow \mathfrak{D} A_{-1}, \quad \rho(D+u)=D \circ l_{1}+l_{2}^{1}(u, \cdot)
$$

and the Dorfman bracket is given by

$$
\begin{aligned}
{[u, v] } & =l_{2}^{0}(u, v)+l_{3}(u, v, \cdot) \\
{\left[D, D^{\prime}\right] } & =D \circ l_{1} \circ D^{\prime}-D^{\prime} \circ l_{1} \circ D \\
{[D, v] } & =-l_{2}^{1}(v, D(\cdot))+D\left(l_{2}^{0}(v, \cdot)\right)+l_{2}^{1}(\cdot, D(v))+l_{1}(D(v)), \\
{[v, D] } & =l_{2}^{1}(v, D(\cdot))-D\left(l_{2}^{0}(v, \cdot)\right) .
\end{aligned}
$$

4 Generalized Complex Structures on E-Courant Algebroids

In this section, we introduce the notion of a generalized complex structure on an E-Courant algebroid. We will see that it unifies the usual generalized complex structure on an even-dimensional manifold and the generalized contact structure on an odd-dimensional manifold.

Definition 4.1 A bundle map $\mathcal{J}: \mathcal{K} \rightarrow \mathcal{K}$ is called a generalized almost complex structure on an E-Courant algebroid $\left(\mathcal{K},[\cdot, \cdot]_{\mathcal{K}},(\cdot, \cdot)_{E}, \rho\right)$ if it satisfies the algebraic properties

$$
\begin{equation*}
\mathcal{J}^{2}=-1 \quad \text { and } \quad(\mathcal{J}(X), \mathcal{J}(Y))_{E}=(X, Y)_{E} \tag{4.1}
\end{equation*}
$$

Furthermore, \mathcal{J} is called a generalized complex structure if the following integrability condition is satisfied:

$$
\begin{equation*}
[\mathcal{J}(X), \mathcal{J}(Y)]_{\mathcal{K}}-[X, Y]_{\mathcal{K}}-\mathcal{J}\left([\mathcal{J}(X), Y]_{\mathcal{K}}+[X, \mathcal{J}(Y)]_{\mathcal{K}}\right)=0 \tag{4.2}
\end{equation*}
$$

for all $X, Y \in \Gamma(\mathcal{K})$.
Proposition 4.2 Let $\mathcal{J}: \mathcal{K} \rightarrow \mathcal{K}$ be a generalized almost complex structure on an E Courant algebroid $\left(\mathcal{K},[\cdot, \cdot]_{\mathcal{K}},(\cdot, \cdot)_{E}, \rho\right)$. Then we have $\left.\mathcal{J}^{\star}\right|_{\mathcal{K}}=-\mathcal{J}$.

Proof By (4.1), for all $X, Y \in \Gamma(\mathcal{K})$, we have

$$
\mathcal{J}^{\star}(\mathcal{J}(Y))(X)=\mathcal{J}(Y)(\mathcal{J}(X))=2(\mathcal{J}(X), \mathcal{J}(Y))_{E}=2(X, Y)_{E}=Y(X) .
$$

Since $X \in \Gamma(\mathcal{K})$ is arbitrary, we have

$$
\mathcal{J}^{\star}(\mathcal{J}(Y))=Y \quad \text { for all } Y \in \Gamma(\mathcal{K})
$$

For any $Z \in \Gamma(\mathcal{K})$, let $Y=-\mathcal{J}(Z)$. By (4.1), we have $Z=\mathcal{J}(Y)$. Then we have

$$
\mathcal{J}^{\star}(Z)=\mathcal{J}^{\star}(\mathcal{J}(Y))=Y=-\mathcal{J}(Z)
$$

which implies that $\left.\mathcal{J}^{\star}\right|_{\mathcal{K}}=-\mathcal{J}$.
Remark 4.3 Generalized complex structures on an E-Courant algebroid $\left(\mathcal{K},[\cdot, \cdot]_{\mathcal{K}},(\cdot, \cdot)_{E}, \rho\right)$ are in one-to-one correspondence with Dirac sub-bundles $S \subset \mathcal{K} \otimes \mathbb{C}$ such that $\mathcal{K} \otimes \mathbb{C}=S \oplus \bar{S}$. By a Dirac sub-bundle of \mathcal{K}, we mean a subbundle $S \subset \mathcal{K}$ that is closed under the bracket $[\cdot, \cdot]_{\mathcal{K}}$ and satisfies $S=S^{\perp}$. The pair (S, \bar{S}) is an E-Lie bialgebroid in the sense of [5].

Remark 4.4 Obviously, the notion of a generalized contact bundle associated with L, which was introduced in [23], is a special case of Definition 4.1, where E is the line bundle L. In particular, if E is the trivial line bundle $L^{\circ}=M \times \mathbb{R}$, we have

$$
\mathfrak{D} L^{\circ}=T M \oplus \mathbb{R}, \quad \mathfrak{J} L^{\circ}=T^{*} M \oplus \mathbb{R}
$$

Therefore, $\mathcal{E}^{1}(M)=\mathfrak{D} L^{\circ} \oplus \mathfrak{J} L^{\circ}$. Thus, a generalized complex structure on an E-Courant algebroid unifies generalized complex structures on even-dimensional manifolds and generalized contact bundles on odd-dimensional manifolds

Example 4.5 Consider the E-Courant algebroid $A^{*} \otimes E \oplus A$ given in [5, Example 2.9] for any Lie algebroid $\left(A,[\cdot, \cdot]_{A}, a\right)$ and an A-module E. Twisted by a 3-cocycle $\Theta \in$ $\Gamma\left(\wedge^{3} A^{*}, E\right)$, one obtains the AV-Courant algebroid introduced in [14] by Li-Bland. Consider \mathcal{J} of the form $\mathscr{J}_{D}=\left(\begin{array}{rr}-R_{D} & 0 \\ 0 & D\end{array}\right)$, where $D \in \operatorname{gl}(A)$ and $R_{D}: A^{*} \otimes E \rightarrow A^{*} \otimes E$ is given by $R_{D}(\phi)=\phi \circ D$. We get that \mathcal{J} is a generalized complex structure on the E-Courant algebroid $A^{*} \otimes E \oplus A$ if and only if D is a Nijenhuis operator on the Lie algebroid A and $D^{2}=-1$.

Actually, $D^{2}=-1$ ensures that condition (4.1) holds. The Dorfman bracket on $\mathcal{K}=A^{*} \otimes E \oplus A$ is given by

$$
[u+\Phi, v+\Psi]_{\mathcal{K}}=[u, v]_{A}+\mathcal{L}_{u} \Psi-\mathcal{L}_{v} \Phi+\rho^{\star} d \Phi(v)
$$

for all $u, v \in \Gamma(A), \Phi, \Psi \in \Gamma\left(A^{*} \otimes E\right)$, where $\rho^{\star}: \mathfrak{J} E \rightarrow A^{*} \otimes E$ is the dual of the A-action $\rho: A \rightarrow \mathfrak{D E}$ on E. Then it is straightforward to see that the integrability condition (4.2) holds if and only if D is a Nijenhuis operator on A.

Any generalized complex structure on a Courant algebroid induces a Poisson structure on the base manifold (see e.g., [1]). Similarly, any generalized complex structure on an E-Courant algebroid induces a Lie algebroid or a local Lie algebra structure ([12]) on E.

Theorem 4.6 Let $\mathfrak{J}: \mathcal{K} \rightarrow \mathcal{K}$ be a generalized complex structure on an E -Courant algebroid $\left(\mathcal{K},[\cdot, \cdot]_{\mathcal{K}},(\cdot, \cdot)_{E}, \rho\right)$. Define a bracket operation $[\cdot, \cdot]_{E}: \Gamma(E) \wedge \Gamma(E) \rightarrow$ $\Gamma(E)$ by

$$
\begin{equation*}
[u, v]_{E} \triangleq 2\left(\mathcal{J} \rho^{\star} \mathbb{d} u, \rho^{\star} \mathbb{d} v\right)_{E}=\left(\rho \circ \mathcal{J} \circ \rho^{\star}\right)(\mathbb{d} u)(v) \quad \text { for all } u, v \in \Gamma(E) . \tag{4.3}
\end{equation*}
$$

Then $\left(E,[\cdot, \cdot]_{E}, \mathfrak{j} \circ \rho \circ \mathcal{J} \circ \rho^{\star} \circ \mathbb{d}\right)$ is a Lie algebroid when $\operatorname{rank}(E) \geq 2$ and $\left(E,[\cdot, \cdot]_{E}\right)$ is a local Lie algebra when $\operatorname{rank}(E)=1$.

Proof The bracket is obviously skew-symmetric. By the integrability of \mathcal{O}, we have

$$
\begin{aligned}
{\left[\mathcal{J}\left(\rho^{\star} \mathrm{d} u\right), \mathcal{J}\left(\rho^{\star} \mathrm{d} v\right)\right]_{\mathcal{K}}-[} & \left.\rho^{\star} \mathrm{d} u, \rho^{\star} \mathrm{d} v\right]_{\mathcal{K}} \\
& -\mathcal{J}\left(\left[\mathcal{J}\left(\rho^{\star} \mathrm{d} u\right), \rho^{\star} \mathrm{d} v\right]_{\mathcal{K}}+\left[\rho^{\star} \mathrm{d} u, \mathcal{J}\left(\rho^{\star} \mathrm{d} v\right)\right]_{\mathcal{K}}\right)=0 .
\end{aligned}
$$

Pairing with $\rho^{\star} \mathrm{d} w$ for $w \in \Gamma(E)$, by (EC-3) in Definition 2.1 and the first equation in Lemma 2.2, we have

$$
\begin{aligned}
& \left(\left[\mathcal{J}\left(\rho^{\star} \mathrm{d} u\right), \mathcal{J}\left(\rho^{\star} \mathrm{d} v\right)\right]_{\mathcal{K}}, \rho^{\star} \mathrm{d} w\right)_{E} \\
& \quad=\rho\left(\mathcal{J} \rho^{\star} \mathrm{d} u\right)\left(\mathcal{J} \rho^{\star} \mathrm{d} v, \rho^{\star} \mathrm{d} w\right)_{E}-\left(\mathcal{J} \rho^{\star} \mathrm{d} v,\left[\mathcal{J} \rho^{\star} \mathrm{d} u, \rho^{\star} \mathrm{d} w\right]_{\mathcal{K}}\right)_{E} \\
& \quad=2\left(\rho^{\star} \mathrm{d}\left(\mathcal{J} \rho^{\star} \mathrm{d} v, \rho^{\star} \mathrm{d} w\right)_{E}, \mathcal{J} \rho^{\star} \mathrm{d} u\right)_{E}-2\left(\mathcal{J} \rho^{\star} \mathrm{d} v, \rho^{\star} \mathrm{d}\left(\mathscr{J} \rho^{\star} \mathrm{d} u, \rho^{\star} \mathrm{d} w\right)_{E}\right)_{E} \\
& \quad=\frac{1}{2}\left[u,[v, w]_{E}\right]_{E}-\frac{1}{2}\left[v,[u, w]_{E}\right]_{E} .
\end{aligned}
$$

By (EC-1) and (EC-5) in Definition 2.1, we have

$$
\left(\left[\rho^{\star} \mathrm{d} u, \rho^{\star} \mathrm{d} v\right]_{\mathcal{K}}, \rho^{\star} \mathrm{d} w\right)_{E}=0
$$

Finally, using Lemma 2.2, we have

$$
\begin{aligned}
& \left(\left[\mathcal{J}\left(\rho^{\star} \mathrm{d} u\right), \rho^{\star} \mathrm{d} v\right]_{\mathcal{K}}+\left[\rho^{\star} \mathrm{d} u, \mathcal{J}\left(\rho^{\star} \mathrm{d} v\right)\right]_{\mathcal{K}}, \mathcal{J} \rho^{\star} \mathrm{d} w\right)_{E} \\
& \quad=2\left(\rho^{\star} \mathrm{d}\left(\mathcal{J} \rho^{\star} \mathrm{d} u, \rho^{t} \star \mathrm{~d} v\right)_{E}, \mathcal{J} \rho^{\star} \mathrm{d} w\right)_{E}+0 \\
& \quad=\frac{1}{2}\left[w,[u, v]_{E}\right]_{E}
\end{aligned}
$$

Thus, we get the Jacobi identity for $[\cdot, \cdot]_{E}$. To see the Leibniz rule, by definition, we have

$$
[u, f v]_{E}=f[u, v]_{E}+\dot{j} \rho \partial \rho^{\star} \mathrm{d}(u)(f) v .
$$

So it is a Lie algebroid structure if and only if $\dot{j} \circ \rho \circ \mathcal{J} \circ \rho^{\star} \circ \mathbb{d}: E \rightarrow T M$ is a bundle map, which is always true when $\operatorname{rank}(E) \geq 2$ (see the proof of [4, Theorem 3.11]).

5 Generalized Complex Structures on Omni-Lie Algebroids

In this section, we study generalized complex structures on the omni-Lie algebroid $\mathfrak{o l}(E)$. We view $\mathfrak{o l}(E)$ as a sub-bundle of $\operatorname{Hom}(\mathfrak{o l}(E), E)$ by the nondegenerate E-valued pairing $(\cdot, \cdot)_{E}$, i.e.,

$$
e_{2}\left(e_{1}\right) \triangleq 2\left(e_{1}, e_{2}\right)_{E} \quad \text { for all } e_{1}, e_{2} \in \Gamma(\mathfrak{o l}(E))
$$

By Proposition 4.2, we have the following corollary.
Corollary 5.1 A bundle map $\mathfrak{f}: \mathfrak{o l}(E) \rightarrow \mathfrak{o l}(E)$ is a generalized almost complex structure on the omni-Lie algebroid $\mathfrak{o l}(E)$ if and only if the following conditions are satisfied:

$$
\mathcal{J}^{2}=-\mathrm{id},\left.\quad \mathcal{J}^{\star}\right|_{\mathfrak{O l}(E)}=-\mathcal{J}
$$

Since $\mathfrak{o l}(E)$ is the direct sum of $\mathfrak{D E}$ and $\mathfrak{J} E$, we can write a generalized almost complex structure \mathcal{J} in the form of a matrix. To do that requires some preparation.

Vector bundles $\operatorname{Hom}\left(\wedge^{k} \mathfrak{D} E, E\right)_{\mathfrak{J} E}$ and $\operatorname{Hom}\left(\wedge^{k} \mathfrak{J} E, E\right)_{\mathfrak{D} E}$ are introduced in [5, 21] to study deformations of omni-Lie algebroids and deformations of Lie algebroids respectively. More precisely, we have

$$
\begin{array}{ll}
\operatorname{Hom}\left(\wedge^{k} \mathfrak{D} E, E\right)_{\mathfrak{J} E} \triangleq\left\{\mu \in \operatorname{Hom}\left(\wedge^{k} \mathfrak{D} E, E\right) \mid \operatorname{Im}\left(\mu_{\text {দ }}\right) \subset \mathfrak{J} E\right\}, & (k \geq 2), \\
\operatorname{Hom}\left(\wedge^{k} \mathfrak{J} E, E\right)_{\mathfrak{D} E} \triangleq\left\{\mathfrak{d} \in \operatorname{Hom}\left(\wedge^{k} \mathfrak{J} E, E\right) \mid \operatorname{Im}\left(\mathfrak{d}^{\sharp}\right) \subset \mathfrak{D} E\right\}, & (k \geq 2),
\end{array}
$$

in which $\mu_{\natural}: \wedge^{k-1} \mathfrak{D} E \rightarrow \operatorname{Hom}(\mathfrak{D} E, E)$ is given by

$$
\mu_{\mathfrak{h}}\left(\mathfrak{d}_{1}, \ldots, \mathfrak{d}_{k-1}\right)\left(\mathfrak{d}_{k}\right)=\mu\left(\mathfrak{d}_{1}, \ldots, \mathfrak{d}_{k-1}, \mathfrak{d}_{k}\right) \quad \text { for } \mathfrak{d}_{1}, \ldots, \mathfrak{d}_{k} \in \mathfrak{D} E \text {, }
$$

and \mathfrak{d}^{\sharp} is defined similarly. By (2.2), for any $\mu \in \operatorname{Hom}\left(\wedge^{k} \mathfrak{D} E, E\right)_{\mathfrak{J} E}$, we have

$$
\begin{equation*}
\mu\left(\mathfrak{d}_{1}, \ldots, \mathfrak{d}_{k-1}, \Phi\right)=\Phi \circ \mu\left(\mathfrak{d}_{1}, \ldots, \mathfrak{d}_{k-1}, \mathrm{id}_{E}\right) \tag{5.1}
\end{equation*}
$$

Furthermore, $\left(\Gamma\left(\operatorname{Hom}\left(\wedge^{\bullet} \mathfrak{D} E, E\right)_{\mathfrak{J} E}\right), \mathbb{d}\right)$ is a subcomplex of $\left(\Gamma\left(\operatorname{Hom}\left(\wedge^{\bullet} \mathfrak{D} E, E\right), \mathbb{d}\right)\right.$, where d is the coboundary operator of the gauge Lie algebroid $\mathfrak{D} E$ with the obvious action on E.

Proposition 5.2 Any generalized almost complex structure \mathcal{J} on the omni-Lie algebroid $\mathfrak{o l}(E)$ must be of the form

$$
\mathcal{J}=\left(\begin{array}{cc}
N & \pi^{\sharp} \tag{5.2}\\
\sigma_{\mathrm{\natural}} & -N^{\star}
\end{array}\right),
$$

where $N: \mathfrak{D E} \rightarrow \mathfrak{D E}$ is a bundle map satisfying

$$
N^{\star}(\mathfrak{J} E) \subset \mathfrak{J} E, \quad \pi \in \Gamma\left(\operatorname{Hom}\left(\wedge^{2} \mathfrak{J} E, E\right)_{\mathfrak{D} E}\right), \quad \sigma \in \Gamma\left(\operatorname{Hom}\left(\wedge^{2} \mathfrak{D} E, E\right)_{\mathfrak{J} E}\right)
$$

such that the following conditions hold:

$$
\pi^{\sharp} \circ \sigma_{\natural}+N^{2}=-\mathrm{id}, \quad N \circ \pi^{\sharp}=\pi^{\sharp} \circ N^{\star}, \quad \sigma_{\natural} \circ N=N^{\star} \circ \sigma_{\natural} .
$$

Proof By Corollary 5.1, for any generalized almost complex structure \mathcal{J}, we have $\left.\mathcal{J}^{\star}\right|_{\operatorname{or}(E)}=-\mathcal{J}$. Thus, \mathcal{J} must be of the form

$$
\mathcal{J}=\left(\begin{array}{cc}
N & \phi \\
\psi & -N^{\star}
\end{array}\right)
$$

where $N: \mathfrak{D E} \rightarrow \mathfrak{D} E$ is a bundle map satisfying $N^{\star}(\mathfrak{J} E) \subset \mathfrak{J} E, \phi: \mathfrak{J} E \rightarrow \mathfrak{D} E$ and $\psi: \mathfrak{D} E \rightarrow \mathfrak{J} E$ are bundle maps satisfying

$$
-(\phi(\mu), v)_{E}=(\mu, \phi(v))_{E}, \quad-(\psi(\mathfrak{d}), \mathfrak{t})_{E}=(\mathfrak{d}, \psi(\mathfrak{t}))_{E}
$$

Therefore, we have $\phi=\pi^{\sharp}$ for some $\pi \in \Gamma\left(\operatorname{Hom}\left(\wedge^{2} \mathfrak{J} E, E\right)_{\mathfrak{D} E}\right)$, and $\psi=\sigma_{\natural}$ for some $\sigma \in \Gamma\left(\operatorname{Hom}\left(\wedge^{2} \mathfrak{D} E, E\right)_{\mathfrak{J} E}\right)$. This finishes the proof of the first part. As for the second part, it is straightforward to see that the conditions follow from the fact that $\mathcal{J}^{2}=-$ id.

Remark 5.3 A line bundle L satisfies $\mathfrak{J} L=\operatorname{Hom}(\mathfrak{D} L, L)$ and $\mathfrak{D} L=\operatorname{Hom}(\mathfrak{J} L, L)$. Therefore, the condition $N^{\star}(\mathfrak{J} L) \subset \mathfrak{J} L$ always holds.

Theorem 5.4 A generalized almost complex structure \mathcal{J} given by (5.2) is a generalized complex structure on the omni-Lie algebroid $\mathfrak{o l}(E)$ if and only if the following hold:
(i) π satisfies the equation

$$
\begin{equation*}
\pi^{\sharp}\left([\mu, v]_{\pi}\right)=\left[\pi^{\sharp}(\mu), \pi^{\sharp}(v)\right]_{\mathfrak{D}} \quad \text { for all } \mu, v \in \Gamma(\mathfrak{J} E), \tag{5.3}
\end{equation*}
$$

where the bracket $[\cdot, \cdot]_{\pi}$ on $\Gamma(\mathfrak{J} E)$ is defined by

$$
\begin{equation*}
[\mu, v]_{\pi} \triangleq \mathfrak{L}_{\pi^{\sharp}(\mu)} v-\mathfrak{L}_{\pi^{\sharp}(v)} \mu-\mathbb{d}\left\langle\pi^{\sharp}(\mu), v\right\rangle_{E} . \tag{5.4}
\end{equation*}
$$

(ii) π and N are related by the formula

$$
\begin{equation*}
N^{\star}\left([\mu, v]_{\pi}\right)=\mathfrak{L}_{\pi^{\sharp}(\mu)}\left(N^{\star}(v)\right)-\mathfrak{L}_{\pi^{\sharp}(v)}\left(N^{\star}(\mu)\right)-\mathbb{d} \pi\left(N^{\star}(\mu), v\right) . \tag{5.5}
\end{equation*}
$$

(iii) N satisfies the condition

$$
\begin{equation*}
T(N)(\mathfrak{d}, \mathfrak{t})=\pi^{\sharp}\left(i_{\mathfrak{d} \wedge \mathfrak{t}} \mathbb{d} \sigma\right) \quad \text { for all } \mathfrak{d}, \mathfrak{t} \in \Gamma(\mathfrak{D} E) \tag{5.6}
\end{equation*}
$$

where $T(N)$ is the Nijenhuis tensor of N defined by
$T(N)(\mathfrak{d}, \mathfrak{t})=[N(\mathfrak{d}), N(\mathfrak{t})]_{\mathfrak{D}}-N\left([N(\mathfrak{d}), \mathfrak{t}]_{\mathfrak{D}}+[\mathfrak{d}, N(\mathfrak{t})]_{\mathfrak{D}}-N[\mathfrak{d}, \mathfrak{t}]_{\mathfrak{D}}\right)$.
(iv) N and σ are related by the following condition

$$
\begin{equation*}
\mathbb{d} \sigma(N(\mathfrak{d}), \mathfrak{t}, \mathfrak{k})+\mathbb{d} \sigma(\mathfrak{d}, N(\mathfrak{t}), \mathfrak{k})+\mathbb{d} \sigma(\mathfrak{d}, \mathfrak{t}, N(\mathfrak{k}))=\mathbb{d} \sigma_{N}(\mathfrak{d}, \mathfrak{t}, \mathfrak{k}) \tag{5.7}
\end{equation*}
$$

for all $\mathfrak{d}, \mathfrak{t}, \mathfrak{k} \in \Gamma(\mathfrak{D} E)$, where $\sigma_{N} \in \Gamma\left(\operatorname{Hom}\left(\wedge^{2} \mathfrak{D} E, E\right)_{\mathfrak{J} E}\right)$ is defined by $\sigma_{N}(\mathfrak{d}, \mathfrak{t})=$ $\sigma(N(\mathfrak{d}), \mathfrak{t})$.

Proof Consider the integrability condition (4.2). In fact, there are two equations since $\Gamma(\mathfrak{o l}(E))$ has two components $\Gamma(\mathfrak{D} E)$ and $\Gamma(\mathfrak{J} E)$. First let $e_{1}=\mu, e_{2}=v$ be elements in $\Gamma(\mathfrak{J} E)$; then we have $\mathcal{J}(\mu)=\pi^{\sharp}(\mu)-N^{\star}(\mu), \mathcal{J}(v)=\pi^{\sharp}(v)-N^{\star}(v)$ and $[[\mu, v]]=0$. Therefore, we obtain

$$
\begin{aligned}
\llbracket\left[\pi^{\sharp}(\mu)-\right. & \left.N^{\star}(\mu), \pi^{\sharp}(v)-N^{\star}(v)\right] \\
& \left.\quad-\mathcal{J}\left(\llbracket \pi^{\sharp}(\mu)-N^{\star}(\mu), v\right]\right]+\left[\left[\mu, \pi^{\sharp}(v)-N^{\star}(v)\right]\right) \\
= & {\left[\pi^{\sharp}(\mu), \pi^{\sharp}(v)\right]_{\mathfrak{D}}-\pi^{\sharp}\left(\mathfrak{L}_{\pi^{\sharp}(\mu)} v-i_{\pi^{\sharp}(v)} \mathbb{d} \mu\right)+N^{\star}\left(\mathfrak{L}_{\pi^{\sharp}(\mu)} v-i_{\pi^{\sharp}(v)} \mathbb{d} \mu\right) } \\
& -\mathfrak{L}_{\pi^{\sharp}(\mu)} N^{\star}(v)+i_{\pi^{\sharp}(v)} \mathbb{d} N^{\star}(\mu)=0 .
\end{aligned}
$$

Thus, we get conditions (5.3) and (5.5).
Then let $e_{1}=\mathfrak{d} \in \Gamma(\mathfrak{D} E)$ and $e_{2}=\mu \in \Gamma(\mathfrak{J} E)$; we have $\mathcal{J}\left(e_{1}\right)=N(\mathfrak{d})+\sigma_{\text {Ł }}(\mathfrak{d})$ and $\mathcal{J}\left(e_{2}\right)=\pi^{\sharp}(\mu)-N^{\star}(\mu)$. Therefore, we obtain

$$
\begin{aligned}
& {\left[\left[N(\mathfrak{d})+\sigma_{\natural}(\mathfrak{d}), \pi^{\sharp}(\mu)-N^{\star}(\mu)\right]\right]-[[\mathfrak{d}, \mu]} \\
& -\mathcal{J}\left(\left[\left[N(\mathfrak{d})+\sigma_{\natural}(\mathfrak{d})\right), \mu\right]\right]+\left[\left[\mathfrak{d}, \pi^{\sharp}(\mu)-N^{\star}(\mu)\right]\right) \\
& =\left[N(\mathfrak{d}), \pi^{\sharp}(\mu)\right]_{\mathfrak{D}}-N\left[\mathfrak{d}, \pi^{\sharp}(\mu)\right]_{\mathfrak{D}}-\pi^{\sharp}\left(\mathfrak{L}_{N(\mathfrak{d})} \mu-\mathfrak{L}_{\mathfrak{d}} N^{\star}(\mu)\right) \\
& +N^{\star}\left(\mathfrak{L}_{N(\mathfrak{d})} \mu-\mathfrak{L}_{\mathfrak{d}} N^{\star}(\mu)\right)-\mathfrak{L}_{N(\mathfrak{d})} N^{\star}(\mu)-i_{\pi^{\sharp}(\mu)} d \sigma_{\mathfrak{\natural}}(\mathfrak{d}) \\
& -\mathfrak{L}_{\mathfrak{d}} \mu-\sigma_{\natural}\left[\mathfrak{d}, \pi^{\sharp}(\mu)\right]_{\mathfrak{D}}=0 .
\end{aligned}
$$

Thus, we have

$$
\begin{align*}
{\left[N(\mathfrak{d}), \pi^{\sharp}(\mu)\right]_{\mathfrak{D}}=} & N\left[\mathfrak{d}, \pi^{\sharp}(\mu)\right]_{\mathfrak{D}}+\pi^{\sharp}\left(\mathfrak{L}_{N(\mathfrak{d})} \mu-\mathfrak{L}_{\mathfrak{d}} N^{\star}(\mu)\right), \tag{5.8}\\
N^{\star}\left(\mathfrak{L}_{N(\mathfrak{d})} \mu-\mathfrak{L}_{\mathfrak{d}} N^{\star}(\mu)\right)= & \mathfrak{L}_{N(\mathfrak{d})} N^{\star}(\mu) \tag{5.9}\\
& +i_{\pi^{\sharp}(\mu)} d \sigma_{\mathfrak{\natural}}(\mathfrak{d})+\mathfrak{L}_{\mathfrak{d}} \mu+\sigma_{\natural}\left[\mathfrak{d}, \pi^{\sharp}(\mu)\right]_{\mathfrak{D}} .
\end{align*}
$$

We claim that (5.8) is equivalent to (5.5). In fact, applying (5.8) to $v \in \Gamma(\mathfrak{J} E)$ and (5.5) to $\mathfrak{d} \in \Gamma(\mathfrak{D} E)$, we get the same equality.

Next let $e_{1}=\mathfrak{d}$ and $e_{2}=\mathfrak{t}$ be elements in $\Gamma(\mathfrak{D} E)$; we have $\mathcal{J}\left(e_{1}\right)=N(\mathfrak{d})+\sigma_{\text {দ }}(\mathfrak{d})$ and $\mathcal{J}\left(e_{2}\right)=N(\mathfrak{t})+\sigma_{\mathfrak{\natural}}(\mathfrak{t})$. Therefore, we have

$$
\begin{aligned}
& {[[N(\mathfrak{d})+}\left.\left.\sigma_{\mathfrak{\natural}}(\mathfrak{d}), N(\mathfrak{t})+\sigma_{\mathfrak{\natural}}(\mathfrak{t})\right]\right] \\
& \quad-[\mathfrak{d}, \mathfrak{t}]_{\mathfrak{D}}-\mathcal{J}\left(\left[\left[N(\mathfrak{d})+\sigma_{\mathfrak{\natural}}(\mathfrak{d}), \mathfrak{t}\right]+\left[\left[\mathfrak{d}, N(\mathfrak{t})+\sigma_{\mathfrak{h}}(\mathfrak{t})\right]\right]\right)\right. \\
&= {[N(\mathfrak{d}), N(\mathfrak{t})]_{\mathfrak{D}}-[\mathfrak{d}, \mathfrak{t}]_{\mathfrak{D}}-N\left([N(\mathfrak{d}), \mathfrak{t}]_{\mathfrak{D}}+[\mathfrak{d}, N(\mathfrak{t})]_{\mathfrak{D}}\right)-\pi^{\sharp}\left(\mathfrak{L}_{\mathfrak{d}} \sigma_{\mathfrak{\natural}}(\mathfrak{t})\right.} \\
&\left.-i_{\mathfrak{t}} \mathbb{d} \sigma_{\mathfrak{\natural}}(\mathfrak{d})\right)+\mathfrak{L}_{N(\mathfrak{d})} \sigma_{\mathfrak{\natural}}(\mathfrak{t})-i_{N(\mathfrak{t})} d \sigma_{\mathfrak{\natural}}(\mathfrak{d})-\sigma_{\mathfrak{\natural}}\left([N(\mathfrak{d}), \mathfrak{t}]_{\mathfrak{D}}+[\mathfrak{d}, N(\mathfrak{t})]_{\mathfrak{D}}\right) \\
&+N^{\star}\left(\mathfrak{L}_{\mathfrak{d}} \sigma_{\mathfrak{\natural}}(\mathfrak{t})-i_{\mathfrak{t}} \mathfrak{d} \sigma_{\mathfrak{\natural}}(\mathfrak{d})\right) \\
&=0
\end{aligned}
$$

Thus, we have

$$
\begin{align*}
& {[N(\mathfrak{d}), N(\mathfrak{t})]_{\mathfrak{D}}-[\mathfrak{d}, \mathfrak{t}]_{\mathfrak{D}}-N\left([N(\mathfrak{d}), \mathfrak{t}]_{\mathfrak{D}}+[\mathfrak{d}, N(\mathfrak{t})]_{\mathfrak{D}}\right)=} \tag{5.10}\\
& \pi^{\sharp}\left(\mathfrak{L}_{\mathfrak{d}} \sigma_{\mathfrak{h}}(\mathfrak{t})-i_{\mathfrak{t}} d \mathfrak{d} \sigma_{\mathfrak{\natural}}(\mathfrak{d})\right), \\
& \sigma_{\mathfrak{\natural}}\left([N(\mathfrak{d}), \mathfrak{t}]_{\mathfrak{D}}+[\mathfrak{d}, N(\mathfrak{t})]_{\mathfrak{D}}\right)-\mathfrak{L}_{N(\mathfrak{d})} \sigma_{\mathfrak{\natural}}(\mathfrak{t})+i_{N(\mathfrak{t})} \mathbb{d} \sigma_{\mathfrak{\natural}}(\mathfrak{d})= \tag{5.11}\\
& N^{\star}\left(\mathfrak{L}_{\mathfrak{d}} \sigma_{\mathfrak{\natural}}(\mathfrak{t})-i_{\mathfrak{t}} d \mathfrak{d} \sigma_{\mathfrak{h}}(\mathfrak{d})\right) .
\end{align*}
$$

We claim that (5.9) and (5.10) are equivalent. In fact, applying (5.9) and (5.10) to $\mathfrak{t} \in \Gamma(\mathfrak{D} E)$ and $\mu \in \Gamma(\mathfrak{J} E)$, respectively, we get the same equality

$$
\begin{aligned}
& \left\langle[N(\mathfrak{d}), N(\mathfrak{t})]_{\mathfrak{D}}-[\mathfrak{d}, \mathfrak{t}]_{\mathfrak{D}}-N\left([N(\mathfrak{d}), \mathfrak{t}]_{\mathfrak{D}}+[\mathfrak{d}, N(\mathfrak{t})]_{\mathfrak{D}}\right), \mu\right\rangle_{E} \\
& \quad=\mathfrak{d}\left\langle\pi^{\sharp} \sigma_{\sharp}(\mathfrak{t}), \mu\right\rangle_{E}+\left\langle\sigma_{\sharp}(\mathfrak{t}),\left[\mathfrak{d}, \pi^{\sharp} \mu\right]_{\mathfrak{D}}\right\rangle_{E}+\mathfrak{t}\left\langle\sigma_{\sharp}(\mathfrak{d}), \pi^{\sharp}(\mu)\right\rangle_{E}-\pi^{\sharp}(\mu)\left\langle\sigma_{\sharp}(\mathfrak{d}), \mathfrak{t}\right\rangle_{E} \\
& \quad-\left\langle\sigma_{\sharp}(\mathfrak{d}),\left[\mathfrak{t}, \pi^{\sharp}(\mu)\right]_{\mathfrak{D}}\right\rangle_{E} .
\end{aligned}
$$

By the equality $\pi^{\sharp} \circ \sigma_{\natural}+N^{2}=-$ id and (5.10), we have

$$
\begin{aligned}
& {[N(\mathfrak{d}), N(\mathfrak{t})]_{\mathfrak{D}}+N^{2}[\mathfrak{d}, \mathfrak{t}]_{\mathfrak{D}}-N\left([N(\mathfrak{d}), \mathfrak{t}]_{\mathfrak{D}}+\right.} {\left.[\mathfrak{d}, N(\mathfrak{t})]_{\mathfrak{D}}\right)=} \\
& \pi^{\sharp}\left(\mathfrak{L}_{\mathfrak{d}} \sigma_{\mathfrak{\natural}}(\mathfrak{t})-i_{\mathfrak{t}} \mathfrak{d} \sigma_{\mathfrak{\natural}}(\mathfrak{d})-\sigma_{\mathfrak{\natural}}[\mathfrak{d}, \mathfrak{t}]_{\mathfrak{D}}\right),
\end{aligned}
$$

which implies that $T(N)(\mathfrak{d}, \mathfrak{t})=\pi^{\sharp}\left(i_{\mathfrak{d} \wedge \mathfrak{t}} \mathbb{d} \sigma\right)$. Thus, (5.10) is equivalent to (5.6).

Finally, we consider condition (5.11). Acting on an arbitrary $\mathfrak{k} \in \Gamma(\mathfrak{D} E)$, we have

$$
\begin{aligned}
N(\mathfrak{d})\langle & \left.\sigma_{\mathfrak{\natural}}(\mathfrak{t}), \mathfrak{k}\right\rangle_{E}-\left\langle\sigma_{\mathfrak{\natural}}(\mathfrak{t}),[N(\mathfrak{d}), \mathfrak{k}]_{\mathfrak{D}}\right\rangle_{E}+\left\langle\sigma_{\mathfrak{h}}(\mathfrak{k}),[N(\mathfrak{d}), \mathfrak{t}]_{\mathfrak{D}}\right\rangle_{E}-N(\mathfrak{t})\left\langle\sigma_{\mathfrak{h}}(\mathfrak{d}), \mathfrak{k}\right\rangle_{E} \\
& +\mathfrak{k}\left\langle\sigma_{\mathfrak{h}}(\mathfrak{d}), \mathfrak{t}\right\rangle_{E}+\left\langle\sigma_{\mathfrak{h}}(\mathfrak{d}),[N(\mathfrak{t}), \mathfrak{k}]_{\mathfrak{D}}\right\rangle_{E}+\left\langle\sigma_{\mathfrak{h}}(\mathfrak{k}),[\mathfrak{d}, N(\mathfrak{t})]_{\mathfrak{D}}\right\rangle_{E} \\
& +\mathfrak{d}\left\langle\sigma_{\mathfrak{h}}(\mathfrak{t}), N(\mathfrak{k})\right\rangle_{E}-\left\langle\sigma_{\mathfrak{\natural}}(\mathfrak{t}),[\mathfrak{d}, N(\mathfrak{k})]_{\mathfrak{D}}\right\rangle_{E}-\mathfrak{t}\left\langle\sigma_{\mathfrak{h}}(\mathfrak{d}), N(\mathfrak{k})\right\rangle_{E} \\
& +N(\mathfrak{k})\left\langle\sigma_{\mathfrak{h}}(\mathfrak{d}), \mathfrak{t}\right\rangle_{E}+\left\langle\sigma_{\mathfrak{\natural}}(\mathfrak{d}),[\mathfrak{t}, N(\mathfrak{k})]_{\mathfrak{D}}\right\rangle_{E} \\
= & \mathfrak{d} \sigma(N(\mathfrak{d}), \mathfrak{t}, \mathfrak{k})+\mathfrak{t} \sigma(N(\mathfrak{d}), \mathfrak{k})-\mathfrak{k} \sigma(N(\mathfrak{d}), \mathfrak{t})+\sigma\left([\mathfrak{t}, \mathfrak{k}]_{\mathfrak{D}}, N(\mathfrak{d})\right) \\
& +\mathfrak{d} \sigma(\mathfrak{d}, N(\mathfrak{t}), \mathfrak{k})-\mathfrak{d} \sigma(N(\mathfrak{t}), \mathfrak{k})-\sigma\left([\mathfrak{d}, \mathfrak{k}]_{\mathfrak{D}}, N(\mathfrak{t})\right) \\
& +\mathbb{d} \sigma(\mathfrak{d}, \mathfrak{t}, N(\mathfrak{k}))+\sigma\left([\mathfrak{d}, \mathfrak{t}]_{\mathfrak{D}}, N(\mathfrak{k})\right) \\
= & 0 .
\end{aligned}
$$

Note that the following equality holds:

$$
\begin{aligned}
\sigma(\mathfrak{d}, N(\mathfrak{t})) & =-\left\langle\sigma_{\mathfrak{\natural}}(N(\mathfrak{t})), \mathfrak{d}\right\rangle_{E}=-\left\langle N^{\star}\left(\sigma_{\mathfrak{\natural}}(\mathfrak{t})\right), \mathfrak{d}\right\rangle_{E} \\
& =-\left\langle\sigma_{\mathfrak{\natural}}(\mathfrak{t}), N(\mathfrak{d})\right\rangle_{E}=\sigma(N(\mathfrak{d}), \mathfrak{t}) .
\end{aligned}
$$

Therefore, we have

$$
\left(i_{N} \mathbb{d} \sigma\right)(\mathfrak{d}, \mathfrak{t}, \mathfrak{k})=\mathbb{d} \sigma_{N}(\mathfrak{d}, \mathfrak{t}, \mathfrak{k}),
$$

which implies that (5.11) is equivalent to (5.7).
Remark 5.5 Let $\mathcal{J}=\left(\begin{array}{cc}N & \pi^{\sharp} \\ \sigma_{\natural} & -N^{\star}\end{array}\right)$ be a generalized complex structure on the omni-Lie algebroid $\mathfrak{o l}(E)$. Then π satisfies (5.3). On one hand, in [4], the authors showed that such π will give rise to a Lie bracket $[\cdot, \cdot]_{E}$ on $\Gamma(E)$ via

$$
[u, v]_{E}=\pi^{\sharp}(\mathbb{d} u)(v) \quad \text { for all } u, v \in \Gamma(E)
$$

On the other hand, by Theorem 4.6, the generalized complex structure \mathcal{I} will also induce a Lie algebroid structure on E by (4.3). By the equality

$$
\pi^{\sharp}=\rho \circ \mathcal{J} \circ \rho^{\star},
$$

these two Lie algebroid structures on E are the same.
Remark 5.6 Recall that any $b \in \Gamma\left(\operatorname{Hom}\left(\wedge^{2} \mathfrak{D} E, E\right)_{\mathfrak{J} E}\right)$ defines a transformation $e^{b}: \mathfrak{o l}(E) \rightarrow \mathfrak{o l}(E)$, defined by

$$
e^{b}\binom{\mathfrak{d}}{\mu}=\left(\begin{array}{cc}
\mathrm{id} & 0 \\
b_{\natural} & \text { id }
\end{array}\right)\binom{\mathfrak{d}}{\mu}=\binom{c \mathfrak{d}}{\mu+i_{\mathfrak{d}} b} .
$$

Thus, e^{b} is an automorphism of the omni-Lie algebroid $\mathfrak{o l}(E)$ if and only if $d b=0$. In this case, e^{b} is called a B-field transformation. Actually, an automorphism of the omni-Lie algebroid $\mathfrak{o l}(E)$ is just the composition of an automorphism of the vector bundle E and a B-field transformation. In fact, B-field transformations map generalized complex structures on $\mathfrak{o l}(E)$ into new generalized complex structures as follows:

$$
\mathcal{J}^{b}=\left(\begin{array}{cc}
\text { id } & 0 \\
b_{\natural} & \text { id }
\end{array}\right) \circ \mathcal{J} \circ\left(\begin{array}{cc}
\text { id } & 0 \\
-b_{\natural} & \text { id }
\end{array}\right) .
$$

Example 5.7 Let $D: E \rightarrow E$ be a bundle map satisfying $D^{2}=-$ id. Define $R_{D}: \mathfrak{D} E \rightarrow$ $\mathfrak{D} E$ by $R_{D}(\mathfrak{d})=\mathfrak{d} \circ D$ and $\widehat{D}: \mathfrak{J} E \rightarrow \mathfrak{J} E$ by $\widehat{D}(\mathbb{d} u)=\mathbb{d}(D u)$ for $u \in \Gamma(E)$. Then

$$
\mathcal{J}=\left(\begin{array}{cc}
R_{D} & 0 \\
0 & -\widehat{D}
\end{array}\right)
$$

is a generalized complex structure on $\mathfrak{o l}(E)$. In fact, since

$$
\left\langle R_{D}^{\star}(\mathbb{d} u), \mathfrak{d}\right\rangle_{E}=\langle\mathbb{d} u, \mathfrak{d} \circ D\rangle_{E}=\mathfrak{d}(D(u))=\langle\widehat{D}(\mathbb{d} u), \mathfrak{d}\rangle_{E}
$$

we have $R_{D}^{\star}=\widehat{D}$. It is straightforward to check that the Nijenhuis tensor $T\left(R_{D}\right)$ vanishes, and the condition $D^{2}=-$ id ensures that $R_{D}^{2}=-i d$.

Let $\pi \in \Gamma\left(\operatorname{Hom}\left(\wedge^{2} \mathfrak{J} E, E\right)_{\mathfrak{D} E}\right)$ and suppose that the induced map $\pi^{\sharp}: \mathfrak{J} E \rightarrow \mathfrak{D} E$ is an isomorphism of vector bundles. Then the rank of E is 1 or is equal to the dimension of M. We denote by $\left(\pi^{\sharp}\right)^{-1}$ the inverse of π^{\sharp} and by π^{-1} the corresponding element in $\Gamma\left(\operatorname{Hom}\left(\wedge^{2} \mathfrak{D} E, E\right)_{\mathfrak{J} E}\right)$.

Lemma 5.8 With the above notation, the following two statements are equivalent:
(i) $\pi \in \Gamma\left(\operatorname{Hom}\left(\wedge^{2} \mathfrak{J} E, E\right)_{\mathfrak{D} E}\right)$ satisfies (5.3);
(ii) π^{-1} is closed, i.e., $\mathbb{d} \pi^{-1}=0$.

Proof The conclusion follows from the following equality:

$$
\left\langle\pi^{\sharp}\left([\mu, v]_{\pi}\right)-\left[\pi^{\sharp}(\mu), \pi^{\sharp}(v)\right]_{\mathfrak{D}}, \gamma\right\rangle_{E}=-\mathbb{d} \pi^{-1}\left(\pi^{\sharp}(\mu), \pi^{\sharp}(v), \pi^{\sharp}(\gamma)\right),
$$

for all $\mu, v, \gamma \in \Gamma(\mathfrak{J} E)$, which can be obtained by straightforward computations.
Let $\left(E,[\cdot, \cdot]_{E}, a\right)$ be a Lie algebroid. Define $\pi^{\sharp}: \mathfrak{J} E \rightarrow \mathfrak{D} E$ by

$$
\begin{equation*}
\pi^{\sharp}(\mathbb{d} u)(\cdot)=[u, \cdot]_{E} \quad \text { for all } u \in \Gamma(E) \tag{5.12}
\end{equation*}
$$

Then π^{\sharp} satisfies (5.3). Furthermore, $\left(\mathfrak{J} E,[\cdot, \cdot]_{\pi}, \mathfrak{j} \circ \pi^{\sharp}\right)$ is a Lie algebroid, where the bracket $[\cdot, \cdot]_{\pi}$ is given by (5.4). By Theorem 5.4 and Lemma 5.8 , we have the following corollary.

Corollary 5.9 Let $\left(E,[\cdot, \cdot]_{E}, a\right)$ be a Lie algebroid such that the induced map $\pi^{\sharp}: \mathfrak{J} E \rightarrow \mathfrak{D} E$ is an isomorphism. Then

$$
\mathcal{J}=\left(\begin{array}{cc}
0 & \pi^{\sharp} \\
-\left(\pi^{\sharp}\right)^{-1} & 0
\end{array}\right)
$$

is a generalized complex structure on $\mathfrak{o l}(E)$.
Example 5.10 Let $\left(T M,[\cdot, \cdot]_{T M}\right.$, id) be the tangent Lie algebroid. Define $\pi^{\sharp}: \mathfrak{J}(T M) \rightarrow \mathfrak{D}(T M)$ by $\pi^{\sharp}(\mathbb{d} u)=[u, \cdot]_{T M}$. Then π^{\sharp} is an isomorphism. See [4, Corollary 3.9] for details. Then

$$
\mathcal{J}=\left(\begin{array}{cc}
0 & \pi^{\sharp} \\
-\left(\pi^{\sharp}\right)^{-1} & 0
\end{array}\right)
$$

is a generalized complex structure on the omni-Lie algebroid $\mathfrak{o l}(T M)$.

Example 5.11 Let (M, ω) be a symplectic manifold and let $\left(T^{*} M,[\cdot, \cdot]_{\omega^{-1}},\left(\omega^{\sharp}\right)^{-1}\right)$ be the associated natural Lie algebroid. Define $\pi^{\sharp}: \mathfrak{J}\left(T^{*} M\right) \rightarrow \mathfrak{D}\left(T^{*} M\right)$ by

$$
\pi^{\sharp}(\mathbb{d} u)=[u, \cdot]_{\omega^{-1}},
$$

which is an isomorphism (see [4, Corollary 3.10]). Then

$$
\mathcal{J}=\left(\begin{array}{cc}
0 & \pi^{\sharp} \\
-\left(\pi^{\sharp}\right)^{-1} & 0
\end{array}\right)
$$

is a generalized complex structure on the omni-Lie algebroid $\mathfrak{o l}\left(T^{*} M\right)$.
To conclude this section, we introduce the notion of an algebroid-Nijenhuis structure, which can give rise to generalized complex structures on the omni-Lie algebroid $\mathfrak{o l}(E)$.

Definition 5.12 Let $\left(E,[\cdot, \cdot]_{E}, a\right)$ be a Lie algebroid, let $N: \mathfrak{D} E \rightarrow \mathfrak{D} E$ be a Nijenhuis operator on the Lie algebroid $\left(\mathfrak{D} E,[\cdot, \cdot]_{\mathfrak{D}}, \mathfrak{j}\right)$ satisfying $N^{\star}(\mathfrak{J} E) \subset \mathfrak{J} E$, and let $\pi: \mathfrak{J} E \rightarrow \mathfrak{D} E$ be given by (5.12). Then N and π are said to be compatible if

$$
N \circ \pi^{\sharp}=\pi^{\sharp} \circ N^{\star} \quad \text { and } \quad C(\pi, N)=0,
$$

where

$$
C(\pi, N)(\mu, v) \triangleq[\mu, v]_{\pi_{N}}-\left(\left[N^{\star}(\mu), v\right]_{\pi}+\left[\mu, N^{\star}(v)\right]_{\pi}-N^{\star}[\mu, v]_{\pi}\right)
$$

for all $\mu, v \in \Gamma(\mathfrak{J} E)$. Here, $\pi_{N} \in \Gamma\left(\operatorname{Hom}\left(\wedge^{2} \mathfrak{J} E, E\right)_{\mathfrak{D} E}\right)$ is given by

$$
\pi_{N}(\mu, v)=\left\langle v, N \pi^{\sharp}(\mu)\right\rangle_{E} \quad \text { for all } \mu, v \in \Gamma(\mathfrak{J} E) .
$$

If N and π are compatible, we call the pair (π, N) an algebroid-Nijenhuis structure on the Lie algebroid $\left(E,[\cdot, \cdot]_{E}, a\right)$.

The following lemma is straightforward, so we omit the proof.
Lemma 5.13 Let $\left(E,[\cdot, \cdot]_{E}\right.$, a) be a Lie algebroid, let π be given by (5.12), and let $N: \mathfrak{D E} \rightarrow \mathfrak{D E}$ be a Nijenhuis structure. Then (π, N) is an algebroid-Nijenhuis structure on the Lie algebroid $\left(E,[\cdot, \cdot]_{E}, a\right)$ if and only if $N \circ \pi^{\sharp}=\pi^{\sharp} \circ N^{\star}$ and

$$
N^{\star}[\mu, v]_{\pi}=\mathfrak{L}_{\pi(\mu)} N^{\star}(v)-\mathfrak{L}_{\pi(v)} N^{\star}(\mu)-\mathbb{d} \pi\left(N^{\star}(\mu), v\right)
$$

By Theorem 5.4 and Lemma 5.13, we have the following theorem.
Theorem 5.14 Let $\left(E,[\cdot, \cdot]_{E}\right.$, a) be a Lie algebroid, let π be given by (5.12), and let

(i) (π, N) is an algebroid-Nijenhuis structure and $N^{2}=-\mathrm{id}$;
(ii) $\mathcal{J}=\left(\begin{array}{cc}N & \pi^{\sharp} \\ 0 & -N^{\star}\end{array}\right)$ is a generalized complex structure on the omni-Lie algebroid $\mathfrak{o l}(E)$.

Remark 5.15 An interesting special case is that where $E=L$ is a line bundle. Then (π, N) becomes a Jacobi-Nijenhuis structure on M. Jacobi-Nijenhuis structures were studied by L. Vitagliano and the third author in [24]. In this case, π defines a Jacobi biderivation $\{\cdot, \cdot\}$ of L (i.e., a skew-symmetric bracket that is a first order differential
operator, hence a derivation, in each argument). Moreover, this bi-derivation is compatible with N in the sense that $\pi^{\sharp} \circ N^{\star}=N \circ \pi^{\sharp}$ and $C(\pi, N)=0$. It defines a new Jacobi bi-derivation $\{\cdot, \cdot\}_{N}$. Furthermore, $\left(\{\cdot, \cdot\},\{\cdot, \cdot\}_{N}\right)$ is a Jacobi bi-Hamiltonian structure; i.e., $\{\cdot, \cdot\},\{\cdot, \cdot\}_{N}$ and $\{\cdot, \cdot\}+\{\cdot, \cdot\}_{N}$ are all Jacobi brackets.

6 Generalized Complex Structures on Omni-Lie Algebras

In this section, we consider the case where E reduces to a vector space V. Then we have

$$
\mathfrak{D} V=\operatorname{gl}(V), \quad \mathfrak{J} V=V
$$

Furthermore, the pairing (2.4) reduces to

$$
\langle A, u\rangle_{V}=A u \quad \text { for all } A \in \operatorname{gl}(V), u \in V
$$

Any $u \in V$ is a linear map from $\operatorname{gl}(V)$ to V,

$$
u(A)=\langle A, u\rangle_{V}=A u
$$

Therefore, an omni-Lie algebroid reduces to an omni-Lie algebra, which was introduced by Weinstein in [25] to study the linearization of the standard Courant algebroid.

Definition 6.1 An omni-Lie algebra associated with V is a triple

$$
\left(\operatorname{gl}(V) \oplus V,[[\cdot, \cdot]],(\cdot, \cdot)_{V}\right)
$$

where $(\cdot, \cdot)_{V}$ is a nondegenerate symmetric pairing given by

$$
(A+u, B+v)_{V}=\frac{1}{2}(A v+B u) \quad \text { for all } A, B \in \operatorname{gl}(V), u, v \in V
$$

and $[[\cdot, \cdot]]$ is a bracket operation given by

$$
[[A+u, B+v]]=[A, B]+A v
$$

We will simply denote an omni-Lie algebra associated with a vector space V by $\mathfrak{o l}(V)$.

Lemma 6.2 For any vector space V, we have

$$
\begin{aligned}
\operatorname{Hom}\left(\wedge^{2} \operatorname{gl}(V), V\right)_{V} & =0 \\
\operatorname{Hom}\left(\wedge^{2} V, V\right)_{\mathrm{gl}(V)} & =\operatorname{Hom}\left(\wedge^{2} V, V\right)
\end{aligned}
$$

Proof In fact, for any $\phi \in \operatorname{Hom}\left(\wedge^{2} \operatorname{gl}(V), V\right)_{V}$ and $A, B \in \operatorname{gl}(V)$, by (5.1), we have

$$
\phi(A \wedge B)=B \circ \phi\left(A \wedge \mathrm{id}_{V}\right)=-B \circ A \circ \phi\left(\mathrm{id}_{V} \wedge \operatorname{id}_{V}\right)=0
$$

Therefore, $\phi=0$, which implies that $\operatorname{Hom}\left(\wedge^{2} \operatorname{gl}(V), V\right)_{V}=0$. The second equality is obvious.

Proposition 6.3 Any generalized almost complex structure $\mathcal{J}: \mathrm{gl}(V) \oplus V \rightarrow \operatorname{gl}(V) \oplus V$ on the omni-Lie algebra $\mathfrak{o l}(V)$ is of the form

$$
\left(\begin{array}{cc}
-R_{D} & \pi^{\sharp} \tag{6.1}\\
0 & D
\end{array}\right)
$$

where $\pi \in \operatorname{Hom}\left(\wedge^{2} V, V\right), D \in \operatorname{gl}(V)$ satisfying $D^{2}=-\operatorname{id}_{V}$ and $\pi(D u, v)=\pi(u, D v)$, and $R_{D}: \operatorname{gl}(V) \rightarrow \mathrm{gl}(V)$ is the right multiplication, i.e., $R_{D}(A)=A \circ D$.

Proof By Proposition 5.2 and Lemma 6.2, we can assume that a generalized almost complex structure is of the form $\left(\begin{array}{cc}N & \pi^{\sharp} \\ 0 & -N^{\star}\end{array}\right)$, where $N: \operatorname{gl}(V) \rightarrow \operatorname{gl}(V)$ satisfies $N^{\star} \in$ $\operatorname{gl}(V)$ and $N^{2}=-\operatorname{id}_{\mathrm{gl}(V)}$, and $\pi \in \operatorname{Hom}\left(\wedge^{2} V, V\right)$. Let $D=-N^{\star}$; then we have

$$
(D v)(A)=-N^{\star}(v)(A)=-v(N(A))=-N(A) v
$$

On the other hand, we have $(D v)(A)=A D v$, which implies that $N(A)=-R_{D}(A)$. It is obvious that $N^{2}=-\mathrm{id}_{\mathrm{gl}(V)}$ is equivalent to $D^{2}=-\mathrm{id}_{V}$. The proof is complete.

Theorem 6.4 A generalized almost complex structure $\mathcal{J}: \mathrm{gl}(V) \oplus V \rightarrow \operatorname{gl}(V) \oplus V$ on the omni-Lie algebra $\mathfrak{o l}(V)$ given by (6.1) is a generalized complex structure if and only if the following hold:
(i) π defines a Lie algebra structure $[\cdot, \cdot]_{\pi}$ on V;
(ii) $D^{2}=-\mathrm{id}_{V}$ and $D[u, v]_{\pi}=[u, D v]_{\pi}$ for $u, v \in V$.

Thus, a generalized complex structure on the omni-Lie algebra $\mathfrak{o l}(V)$ gives rise to a complex Lie algebra structure on V.

Proof By Theorem 5.4, we have

$$
[u, v]_{\pi}=\pi^{\sharp}(u)(v)=\pi(u, v) .
$$

Condition (5.3) implies that $[\cdot, \cdot]_{\pi}$ gives a Lie algebra structure on V. Condition (5.5) implies that $D[u, v]_{\pi}=[u, D v]_{\pi}$. The other conditions are valid.

The conditions $D^{2}=-\mathrm{id}_{V}$ and $D[u, v]_{\pi}=[u, D v]_{\pi}$ say by definition that D is a complex Lie algebra structure on $\left(V,[\cdot, \cdot]_{\pi}\right)$. This finishes the proof.

References

[1] J. Barton and M. Stiénon, Generalized complex submanifolds. Pacific J. Math. 236(2008), no. 1, 23-44. http://dx.doi.org/10.2140/pjm.2008.236.23
[2] D. Baraglia, Conformal Courant algebroids and orientifold T-duality. Int. J. Geom. Methods Mod. Phys. 10(2013), no. 2, 1250084. http://dx.doi.org/10.1142/S0219887812500843
[3] H. Bursztyn, G. Cavalcanti, and M. Gualtieri, Reduction of Courant algebroids and generalized complex structures. Adv. Math. 211(2007), no. 2, 726-765.
http://dx.doi.org/10.1016/j.aim.2006.09.008
[4] Z. Chen and Z. J. Liu, Omni-Lie algebroids. J. Geom. Phys. 60(2010), no. 5, 799-808. http://dx.doi.org/10.1016/j.geomphys.2010.01.007
[5] Z. Chen, Z. J. Liu, and Y. H. Sheng, E-Courant algebroids. Int. Math. Res. Not. IMRN 2010, no. 22, 4334-4376. http://dx.doi.org/10.1093/imrn/rnq053
[6] M. Crainic, Generalized complex structures and Lie brackets. Bull. Braz. Math. Soc. (N.S.) 42(2011), no. 4, 559-578. http://dx.doi.org/10.1007/s00574-011-0029-0
[7] J. Grabowski and G. Marmo, The graded Jacobi algebras and (co)homology. J. Phys. A 36(2003), no. 2, 161-181. http://dx.doi.org/10.1088/0305-4470/36/1/311
[8] M. Gualtieri, Generalized complex geometry. Ann. of Math. (2) 174(2011), no. 1, 75-123. http://dx.doi.org/10.4007/annals.2011.174.1.3
[9] N. J. Hitchin, Generalized Calabi-Yau manifolds. Q. J. Math. 54(2003), no. 3, 281-308. http://dx.doi.org/10.1093/qjmath/54.3.281
[10] D. Iglesias-Ponte and A. Wade, Contact manifold and generalized complex structures. J. Geom. Phys. 53(2005), no. 3, 249-258. http://dx.doi.org/10.1016/j.geomphys.2004.06.006
[11] M. Jotz Lean, N-manifolds of degree 2 and metric double vector bundles. arxiv:1504.00880
[12] A. Kirillov, Local Lie algebras. Russian Math. Surveys 31(1976), 55-76. http://dx.doi.org/10.1070/RM1976v031n04ABEH001556
[13] H. Lang, Y. Sheng, and X. Xu, Nonabelian omni-Lie algebras. In: Geometry of jets and fields, Banach Center Publ., 110, Polish Acad. Sci. Inst. Math., Warsaw, 2016, pp. 167-176.
[14] D. Li-Bland, AV-Courant algebroids and generalized CR structures. Canad. J. Math. 63(2011), no. 4, 938-960. http://dx.doi.org/10.4153/CJM-2011-009-1
$[15] \longrightarrow, \mathcal{L} \mathcal{A}$-Courant algebroids and their applications. Thesis, University of Toronto, 2012. arxiv:1204.2796v1
[16] D. Li-Bland and E. Meinrenken, Courant algebroids and Poisson geometry. Int. Math. Res. Not. IMRN 11(2009), 2106-2145. http://dx.doi.org/10.1093/imrn/rnp048
[17] Z. J. Liu, A. Weinstein, and P. Xu, Manin triples for Lie bialgebroids. J. Differential Geom. 45(1997), no. 3, 547-574.
[18] K. Mackenzie, General theories of Lie groupoids and Lie algebroids. London Mathematical Society Lecture Note Series, 213, Cambridge University Press, Cambridge, 2005. http://dx.doi.org/10.1017/CBO9781107325883
[19] , Ehresmann doubles and Drindel'd doubles for Lie algebroids and Lie bialgebroids. J. Reine Angew. Math. 658(2011), 193-245. http://dx.doi.org/10.1515/CRELLE.2011.092
[20] D. Roytenberg, Courant algebroids, derived brackets and even symplectic supermanifolds. PhD thesis, University of California Berkeley, 1999. arxiv:math.DG/9910078
[21] Y. Sheng, On deformations of Lie algebroids. Results. Math. 62(2012), no. 1-2, 103-120. http://dx.doi.org/10.1007/s00025-011-0133-x
[22] M. Stiénon and P. Xu, Reduction of generalized complex structures. J. Geom. Phys. 58(2008), no. 1, 105-121. http://dx.doi.org/10.1016/j.geomphys.2007.09.009
[23] L. Vitagliano and A. Wade, Generalized contact bundles. C. R. Math. Acad. Sci. Paris 354(2016), no. 3, 313-317. http://dx.doi.org/10.1016/j.crma.2015.12.009
[24]
[25] A. Weinstein, Omni-Lie algebras. Microlocal analysis of the Schrödinger equation and related topics. (Japanese) (Kyoto, 1999), Sūrikaisekikenkyūsho Kōkyūroku 1176(2000), 95-102.
Max Planck Institute for Mathematics, Bonn D-53111, Germany
e-mail: hllang@mpim-bonn.mpg.de
Department of Mathematics, Jilin University, Changchun, 130012, Jilin, China
e-mail: shengyh@jlu.edu.cn
Mathematics Department, Penn State University, University Park, Pennsylvania 16802, USA
e-mail: wade@math.psu.edu

[^0]: Received by the editors May 27, 2017; revised September 30, 2017.
 Published electronically March 8, 2018.
 Research supported by NSFC (11471139) and NSF of Jilin Province (20170101050JC).
 AMS subject classification: 53D17, 18B40, 58H05.
 Keywords: VB-Courant algebroid, E-Courant algebroid, omni-Lie algebroid, generalized complex structure, algebroid-Nijenhuis structure.

