
A multispecies approach for comparing sequence evolution
of X-linked and autosomal sites in Drosophila

BEATRIZ VICOSO*, PENELOPE R. HADDRILL AND BRIAN CHARLESWORTH
Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, UK

(Received 21 May 2008 and in revised form 2 September 2008 )

Summary

Population genetics models show that, under certain conditions, the X chromosome is expected to
be under more efficient selection than the autosomes. This could lead to ‘faster-X evolution’, if a
large proportion of mutations are fixed by positive selection, as suggested by recent studies in
Drosophila. We used a multispecies approach to test this : Muller’s element D, an autosomal arm,
is fused to the ancestral X chromosome in Drosophila pseudoobscura and its sister species, Drosophila
affinis. We tested whether the same set of genes had higher rates of non-synonymous evolution when
they were X-linked (in the D. pseudoobscura/D. affinis comparison) than when they were autosomal
(in Drosophila melanogaster/Drosophila yakuba). Although not significant, our results suggest this
may be the case, but only for genes under particularly strong positive selection/weak purifying
selection. They also suggest that genes that have become X-linked have higher levels of codon bias
and slower synonymous site evolution, consistent with more effective selection on codon usage at
X-linked sites.

1. Introduction

In species with X Y or W Z sex determination, posi-
tive selection may be more effective at fixing favour-
able mutations that arise on the X or Z chromosome
compared with the autosomes, because rare recessive
or partially recessive mutations are fully expressed in
the heterogametic sex, whereas in the homogametic
sex they are mostly present as heterozygotes with
wild-type alleles (Haldane, 1924). This can result in a
higher rate of substitution of beneficial mutations
at X-linked or Z-linked loci, provided that relevant
conditions on dominance coefficients, dosage com-
pensation, sex-specific mutation rates and initial
frequencies of the mutations are met (Rice, 1984;
Charlesworth et al., 1987; Orr & Betancourt, 2001;
Kirkpatrick & Hall, 2004; for a recent review, see
Vicoso & Charlesworth, 2006). In contrast, under most
conditions, recessive or partially recessive slightly

deleterious mutations will experience a faster rate of
substitution on the autosomes than on the X or Z
chromosome, as a result of less effective selection
against them (Charlesworth et al., 1987; McVean &
Charlesworth, 1999).

A major factor in determining whether X-linked
loci will evolve faster or slower than autosomal loci is
the fraction of mutations that are fixed by positive
selection versus genetic drift (from now on, we will
simply refer to X chromosomes, since the same results
apply to Z chromosomes with a switch of gender).
Recent studies of Drosophila suggest that 25–50%
of divergent non-synonymous sites among related
species were fixed by positive selection (Smith & Eyre-
Walker, 2002; Bierne & Eyre-Walker, 2004; Welch,
2006; Andolfatto, 2007; Begun et al., 2007). Accord-
ingly, we might expect to observe faster-X evolution,
provided that new beneficial mutations are, on aver-
age, at least partially recessive. There is little relevant
information on the levels of dominance of beneficial
mutations, although indirect evidence from the gen-
etics of species differences in highly selfing taxa of
plants (Charlesworth, 1992), and from comparisons
of rates of adaptive evolution of haploid and diploid
laboratory populations of yeast (Zeyl et al., 2003;
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Anderson et al., 2004), is consistent with a predomi-
nance of at least partial recessivity of new, selectively
favourable mutations.

The current availability of large DNA sequence
datasets has facilitated comparative analyses of the
rates of molecular evolution of the X chromosome
and the autosomes. In particular, from between-
species comparisons, we can estimate Ka and Ks,
the rates of non-synonymous and synonymous diver-
gence per nucleotide site, respectively. It is commonly
assumed that Ks mostly reflects nearly neutral or
neutral evolution, and the ratio Ka/Ks is used to esti-
mate the overall effect of selective forces. Neutral
sequences evolve with Ka/KsB1, and negative (pu-
rifying) selection reduces this ratio, whereas recurrent
positive selection increases it (Graur & Li, 2000). If
positive selection is more effective on the X chromo-
some, we might thus expect X-linked sites to show
higher Ka/Ks values than autosomal sites. This test
can be combined with other evidence, such as the
McDonald–Kreitman test (McDonald & Kreitman,
1991), to discriminate between alternative interpreta-
tions of differences in Ka and Ks between X chromo-
somes and autosomes, such as increased positive
selection, relaxation of constraint and differences in
mutation rates. Currently, the evidence for higher
Ka/Ks on the Drosophila X chromosome is conflicting,
with some studies finding evidence for adaptively
driven faster-X effects (Thornton & Long, 2002, 2005;
Clark et al., 2007; Singh et al., 2007), and others fail-
ing to detect such effects (Betancourt et al., 2002;
Begun et al., 2007; Connallon, 2007).

The drawback of this approach is that the X chro-
mosome differs considerably in its gene content from
the autosomes; for example, in Drosophila, male-
biased genes are rarely found on the X (Parisi et al.,
2003; Sturgill et al., 2007), and this could lead to sys-
tematic biases in the mean sex-specificity of selection
coefficients of X-linked and autosomal mutations.
Since the expected values of Ka and Ks for the X
versus the autosomes are strongly affected by such
sex-specificity (Rice, 1984; Charlesworth et al., 1987;
Vicoso & Charlesworth, 2006), differences among
chromosomes in these coefficients could mask an
underlying faster-X effect, and this may be of concern
in some of the previous studies. If genes with similar
functions have similar selection coefficients, then
focusing on gene groups with similar expected sex-
specific effects could reveal faster-X evolution, as in
the case of mammalian sperm proteins (Torgerson &
Singh, 2003) and Drosophila melanogaster sex-specific
genes (Pröschel et al., 2006; Baines et al., 2008).

Another approach is to study the same group of
genes in an autosomal and an X-linked context. The
genus Drosophila is particularly favourable for this
purpose, since its species vary both in the number and
organization of their chromosomes. Muller (1940)

noted that genes linked in one species also appeared
to be linked in others, and proposed that all karyo-
typic differences among Drosophila species could be
explained by different combinations of the six basic
chromosomal arms. The chromosomal arms involved
have become known as Muller’s elements A–F.
Comparative analyses of Drosophila genomes have
confirmed that, despite extensive within-arm rear-
rangements, only small fragments of DNA have been
transposed between arms (Powell, 1997; Richards
et al., 2005; Clark et al., 2007).

A rearrangement that is particularly useful for
investigating faster-X effects is found in species of
the Drosophila pseudoobscura clade. Following the
split from the D. melanogaster group and their sister
Drosophila obscura clade, the D. pseudoobscura clade
ancestor became fixed for a fusion between Muller’s
element D (the autosomal 3L arm of D. melanogaster)
and the homologue of the D. melanogaster X chro-
mosome (element A), to form, respectively, the R and
L arms of the D. pseudoobscura X (Muller, 1940). The
forces shaping the evolution of the X chromosome
should, therefore, also be acting on this new R arm
of the D. pseudoobscura X chromosome. It should be
noted that the XR arm has already acquired dosage
compensation, and transcription levels are therefore
similar on both arms of the X chromosome (Abraham
& Lucchesi, 1974; Steinemann et al., 1996).

This system was used to explore the question of
faster-X evolution by Counterman et al. (2004), who
compared the Ka/Ks values of genes on element D
for D. pseudoobscura/D. melanogaster with those for
Drosophila simulans/D. melanogaster. As expected
under faster-X evolution, they found a significant
excess of 3L-XR genes with higher Ka/Ks for the
D. pseudoobscura/D. melanogaster comparison rela-
tive to the D. simulans/D. melanogaster comparison.
However, Musters et al. (2006) found no difference
between element D genes and autosomal genes with
respect to Ka using D. pseudoobscura/D. melanogaster
genomewide data. Counterman et al. (2004) also
examined two different pairs of species, D. melano-
gaster/D. simulans and D. pseudoobscura/Drosophila
miranda. D. miranda is a close relative of D. pseudo-
obscura and shares the new XR (Muller, 1940;
Steinemann & Steinemann, 1998). They found that
the fraction of genes with higher Ka/Ks in the
D. pseudoobscura/D. miranda pair than in D. melano-
gaster/D. simulans was larger for 3L-XR genes,
although not significantly so. Thornton et al. (2006)
used a similar approach with a larger dataset, but
found no evidence for faster-X evolution. The lack of
statistically significant evidence for faster-X effects in
this case could be due to the species pairs used, since
they have very low levels of divergence (about 4% for
D. pseudoobscura/D. miranda at synonymous sites in
Bartolomé et al., 2005). As such they may not be ideal
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for sequence comparisons, especially as some ap-
parent inter-species differences may reflect polymor-
phisms within species (Bartolomé & Charlesworth,
2006). Similarly, the evidence for faster-X evol-
ution found in a whole genome comparison using
D. melanogaster/D. simulans and D. pseudoobscura/
Drosophila persimilis should be interpreted with cau-
tion, asD. persimilis is even closer toD. pseudoobscura
than D. miranda (Singh et al., 2007), so that effects of
polymorphism levels may be confounded with true
divergence.

Accordingly, we have used sequence data from the
more distant species Drosophila affinis, with an aver-
age Ks of about 23% from both D. pseudoobscura and
D. miranda (Bartolomé et al., 2005; Bartolomé &
Charlesworth, 2006), in order to obtain more reliable
estimates of sequence divergence. We used D. melano-
gaster and Drosophila yakuba for the control com-
parison, since their mean synonymous divergence is
similar to that for D. pseudoobscura and D. affinis (see
Table 1 below).

2. Materials and Methods

(i) Gene selection

Our sample consisted of D. pseudoobscura, D. affinis,
D. melanogaster and D. yakuba coding sequences for
69 3L-XR genes: 39 genes that are autosomal in both
groups and 27 genes that are X-linked in both groups
(from the X-XL chromosomal arm).

Carolina Bartolomé provided the coding sequence
for the 39 autosomal D. affinis genes, for seven X-XL
genes and for three 3L-XR genes (Bartolomé et al.,
2005; Bartolomé & Charlesworth, 2006). The hom-
ologous sequences from other species were retrieved
directly from the published genomes of D. melano-
gaster, D. yakuba and D. pseudoobscura with the
NCBI Blast algorithm (http://www.ncbi.nlm.nih.gov/
BLAST/).

For the other genes,D. melanogaster protein coding
genes were downloaded from the FlyBase website
(http://www.flybase.org). To minimize possible effects
of close linkage to genes under selection, they were

all chosen from regions of normal recombination in
D. melanogaster (cytological region 3C3-15F3 for the
X chromosome and 62A12-71A1 for 3L, as described
by Charlesworth (1996)).

For each gene, we recovered all the corresponding
mRNAs in the NCBI database with the Megablast
algorithm (http://www.ncbi.nlm.nih.gov/BLAST/), and
verified that they had a size between 1000 and 3500
base-pairs (bp), with at least 1000 bp without introns.
We identified the D. yakuba homologue through the
UCSC BLAT server (http://genome.ucsc.edu/cgi-bin/
hgBlat?command=start) and the D. pseudoobscura
homologue through the NCBI BLAST, and kept
only genes whose location was syntenic for all three
species.

(ii) DNA extraction

DNA was extracted from males of a D. affinis line
originally collected from Nebraska (stock number
0141.2; Drosophila Species Resource Center) using a
Qiagen DNA extraction kit (Qiagen, Crawley, West
Sussex, UK).

(iii) DNA sequencing

Primers were designed with the DNAstar package and
the Primer3 software (http://frodo.wi.mit.edu/cgi-
bin/primer3/primer3_www.cgi), using the D. pseudo-
obscura sequence to amplify 1000–1300 bp of the
gene from D. affinis. Additional internal primers were
designed for sequencing. Since the D. affinis sequences
of the 39 autosomal genes we used were provided
by Carolina Bartolomé (Bartolomé et al., 2005;
Bartolomé & Charlesworth, 2006), all the genes we
sequenced were on the D. pseudoobscura/D. affinis X
chromosome (66 on the 3L-XR arm and 20 on the
X-XL arm). PCR products were therefore directly
sequenced on both strands using the BigDye (version
3) sequencing kit and run on an ABI 3730 Genetic
Analyser (Applied Biosystems, Foster City, CA,
USA) by the sequencing service of the School of
Biological Sciences, University of Edinburgh. The
sequences generated as part of this study have been

Table 1. Average rates of DNA sequence evolution for the species pairs D. pseudoobscura/D. affinis and
D. melanogaster/D. yakuba

D. pseudoobscura/D. affinis D. melanogaster/D. yakuba

Ka Ks Ka/Ks Ka Ks Ka/Ks

3L-XR 0.036 (0.004)a 0.253 (0.008) 0.138 (0.015) 0.031 (0.003) 0.323 (0.011) 0.096 (0.01)
Autosomal 0.020 (0.003) 0.251 (0.01) 0.080 (0.013) 0.018 (0.003) 0.269 (0.015) 0.074 (0.014)
X-XL 0.037 (0.007) 0.263 (0.017) 0.126 (0.019) 0.038 (0.008) 0.298 (0.023) 0.115 (0.021)

The average Ka/Ks is estimated from the ratio of the averages of Ka and Ks.
a S.E. values are given in parentheses.
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deposited in the GenBank Data Libraries under
accession numbers EU931120–EU931205.

(iv) Estimation of Ka and Ks

All sequences were translated and virtual protein
sequences were aligned with the European Bio-
informatics Institute ClustalW interface (http://www.
ebi.ac.uk/Tools/clustalw/index.html). The resulting
alignment was used to align the DNA sequences
with Tranalign (http://phytophthora.vbi.vt.edu/cgi-bin/
emboss.pl?_action=input&_app=tranalign), which
aligns coding DNA according to a protein alignment.
The Ks and Ka were calculated using Nei & Gojobori’s
(1986) model of substitution (Nei & Gojobori, 1986),
implemented in DnaSP version 4.50 (Rozas et al.,
2003; http://www.ub.es/dnasp/), with the Jukes–
Cantor correction for multiple hits. Since several
models of substitution can lead to artifactual biases in
Ks when there are differences in codon usage bias
(Bierne & Eyre-Walker, 2003), we also analysed the
data using the Goldman & Yang (1994) model of sub-
stitution (using the PAML software package: http://
abacus.gene.ucl.ac.uk/software/paml.html). The re-
sults from tests using the Goldman & Young (1994)
dN and dS measures are given in the Supplementary
Material.

(v) Codon usage

The alignments obtained for the Ka and Ks analyses
were used to estimate the frequency of optimal
codons, Fop, using CodonW (http://codonw.source-
forge.net/). We used the D. melanogaster table of
preferred codons (Shields et al., 1988), as patterns of
codon usage have been shown to be highly conserved
between Drosophila species (Powell & Moriyama,
1997; Clark et al., 2007), and we needed to have the
same set of codons for the different species under
comparison.

(vi) Statistical analysis

Descriptive statistics and statistical tests were carried
out using the StatView software (version 4.5, http://
www.statview.com).

3. Results

(i) Within-clade comparisons

We obtained and aligned sequences for 69 3L-XR
and 66 non-3L-XR (27 X-XL and 39 autosomal)
genes for the species pairs D. pseudoobscura/D. affinis
and D. melanogaster/D. yakuba (see Materials and
Methods section). The average Ka, Ks and Ka/Ks

values are shown in Table 1 and Fig. 1 (the values
for individual genes are given in the Supplementary

Material). Overall, the mean values seem to support
the faster-X hypothesis : both Ka and Ka/Ks values
are higher for X-linked chromosomal arms than
autosomal arms in both the D. pseudoobscura and
D. melanogaster groups.

It should, however, be noted that, while the higher
Ka and Ka/Ks of the 3L-XR genes in the D. pseudo-
obscura group is in apparent agreement with the
faster-X hypothesis, these genes also exhibit particu-
larly high Ka and Ka/Ks values in the D. melanogaster
group when compared with the rest of the autosomes
(Table 2 and Fig. 1). This is likely to be caused by
a sampling bias, as most of the autosomal genes
were chosen from long, well-studied genes (Bartolomé
et al., 2005). In contrast, the genes that we selected for
sequencing (most of the 3L-XRsample) correspond to
small, unnamed (mostly unstudied) transcripts with
no known function. Genes with no annotated func-
tion have been shown to be less constrained than
genes with known functions (Clark et al., 2007).
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Fig. 1. Mean Ka, Ks and Ka/Ks for 3L-XR, X-XL and
autosomal genes in the two clades.
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Consistent with this, pairwise Mann–Whitney tests
(Table 2) show that the autosomal sample has sig-
nificantly lower Ka values than the 3L-XR sample,
and a lower Ka/Ks in the D. pseudoobscura/D. affinis
comparison. This should, however, not affect the
comparison of rates of evolution on the same chro-
mosomal arm between the two clades, since we have
the same set of genes in all four species.

(ii) Lower Ks for X-linked genes

Further examination of Fig. 1 shows that the most
striking pattern is the smaller Ks for the 3L-XR genes
in the D. pseudoobscura clade compared with the
D. melanogaster clade, whereas other chromosomal
arms show no significant differences in Ks. A similar
phenomenon was described in a human–chimpanzee
comparison by Lu & Wu (2005), who found that
X-linked genes had significantly lower Ks values
than autosomal genes. However, this is not seen for
X-linked genes in comparisons among members of
the D. melanogaster clade in our data, nor in a
whole-genome analysis (Begun et al., 2007). Since the
corresponding Ka values do not differ significantly
among the two clades, this comparison indicates that
the faster-X effect suggested by the Ka/Ks results is in
fact caused by a lower Ks for XR genes, not by faster

non-synonymous site evolution. This could be a result
of more effective selection to maintain codon usage
bias in X-linked genes (McVean & Charlesworth,
1999) ; we examine this possibility below.

(iii) Comparisons of codon usage

We evaluated the frequency of optimal codons (Fop),
a measure of codon usage bias (see the Materials
and Methods section), for all genes in the sample
(Table 3). Although X-XL genes have the highest
levels of codon bias in each species, 3L-XR genes have
similar levels of Fop to the autosomes in D. pseudo-
obscura and D. affinis. This might simply reflect sam-
pling bias, since our D. melanogaster and D. yakuba
3L genes have lower levels of Fop than other auto-
somal genes, suggesting that direct comparisons be-
tween different chromosomal arms are, once again,
unreliable. A more interesting result comes from
comparisons between the same chromosomal arm in
the two clades. D. melanogaster is known to have
experienced a reduction in codon usage bias, thought
to be due to a reduction in effective population size
resulting in less efficient selection on this lineage
(Akashi, 1995, 1996). We find, in agreement with
previous studies, that D. melanogaster has signifi-
cantly reduced levels of codon usage for all the

Table 2. Significance values for comparisons of different chromosomal arms within species pairs

Mann–Whitney test P-value

D. pseudoobscura/D. affinis D. melanogaster/D. yakuba

Ka Ks Ka/Ks Ka Ks Ka/Ks

3L-XR, XL 0.938 0.594 0.791 0.968 0.359 0.651
3L-XR, auto 0.004 0.941 0.006 0.005 0.009 0.036
X-XL, auto 0.099 0.588 0.065 0.077 0.306 0.069

Significant P-values are shown in boldface.

Table 3. Average values of Fop for 3L-XR, X-XL and autosomal genes

D. affinis D. pseudoobscura D. melanogaster D. yakuba

3L-XR 0.559 (0.01)a 0.568 (0.01) 0.506 (0.009) 0.527 (0.009)
P=0.0001

X-XL 0.589 (0.016) 0.596 (0.015) 0.557 (0.019) 0.579 (0.015)

P=0.1301

Autosomes 0.563 (0.017) 0.562 (0.017) 0.540 (0.019) 0.553 (0.019)
P=0.7219

Boldface values indicate X-linked genes. Since D. melanogaster has significantly reduced levels of codon usage for all the
chromosomes compared with D. yakuba (not shown), we used D. yakuba/D. pseudoobscura to compare the Fop values in the
two clades (using D. yakuba/D. affinis yields similar results). The P-values were obtained using Wilcoxon Signed Rank tests.
a S.E. values are given in parentheses.

Faster-X evolution in Drosophila 425

https://doi.org/10.1017/S0016672308009804 Published online by Cambridge University Press

https://doi.org/10.1017/S0016672308009804


chromosomes compared with D. yakuba (not shown).
We therefore used D. pseudoobscura/D. yakuba to
compare the Fop values in the two clades (use of
D. affinis/D. yakuba yields similar results). While Fop
values are similar in the two clades for our control
genes (Table 3), they are significantly higher for XR in
the D. pseudoobscura/D. affinis pair than for 3L in
D. yakuba (P<0.001), consistent with the hypothesis
that selection to maintain optimal codon usage is
more efficient when loci are X-linked than when
they are autosomal. These results will be considered
further in the Discussion section.

(iv) Pairwise comparisons

In order to test whether the behaviour of the 3L-XR
genes is different from that of the control genes, we
also examined the proportion of genes that were
evolving faster (genes that have higher Ka or Ka/Ks) in
the D. pseudoobscura/D. affinis pair than in D. melano-
gaster/D. yakuba. In the absence of a faster-X
effect, this value will be similar for 3L-XR and non-
3L-XR genes. If, on the other hand, there is faster-X
evolution, this proportion will be higher for 3L-XR
genes. The values are presented in Table 4. Unlike
previous observations (Counterman et al., 2004), there
is no detectable faster-X effect for non-synonymous
changes; despite the fact that the proportion of genes
with higher Ka/Ks in the D. pseudoobscura group
is slightly higher for 3L-XR genes, this effect is not
significant, and the opposite is observed for the
Ka values. Once again, a lower Ks for 3L-XR genes
in D. pseudoobscura/D. affinis is the only significant
pattern.

(v) Is there a faster-X effect in faster evolving genes?

Various factors could have contributed to this failure
to detect a faster-X effect for non-synonymous mu-
tations (see the Introduction section). If a high Ka/Ks

at least partially reflects a prevalence of positive over
purifying selection, then we might expect genes with
high Ka/Ks when autosomal to experience faster-X
evolution when they become X-linked. Genes with
low Ka/Ks, on the other hand, might experience
slower-X evolution due to more efficient purifying

selection (Charlesworth et al., 1987; McVean &
Charlesworth, 1999). To test for this, we divided our
sample into fast, medium and slow evolving genes
in the following way: we ordered our 3L-XR genes
according to their Ka/Ks in the D. melanogaster/
D. yakuba pair, and classified the first 23 as slow-
evolving genes, the next 23 as medium-, and the last
23 as fast-evolving genes. We then repeated the
analysis for these three classes, using as controls the
non-3L-XR genes that had Ka/Ks values in D. melano-
gaster/D. yakuba in the same range as the 3L-XR
genes. The resulting sample contains 39 fast-evolving
genes (23 3L-XR and 16 non-3L-XR), 46 medium
(23 3L-XR and 23 non-3L-XR) and 50 slow evolving
genes (23 3L-XR and 27 non-3L-XR). The propor-
tion of genes with higher Ka, Ks and Ka/Ks in the
D. pseudoobscura/D. affinis pair is shown in Fig. 2 (the
numbers of genes involved is given in Table 5).

Although our sample size is now drastically re-
duced, the proportion of genes evolving faster in the
D. pseudoobscura/D. affinis pair is behaving in the
predicted direction, but the results are not statistically
significant. For fast-evolving genes, 61%of the 3L-XR
loci have higher Ka/Ks in D. pseudoobscura/D. affinis,
compared with 44% of the non-3L-XR loci,

Table 4. Proportions of genes with higher rates of
evolution in the D. pseudoobscura/D. affinis pair
compared with D. melanogaster/D. yakuba

Ka/Ks

(P=0.45)
Ka

(P=0.38)
Ks

(P=0.002)

3L-XR 70% 54% 19%
Others 61% 59% 45%

The P-values were obtained using Fisher’s exact tests.
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consistent with the faster-X hypothesis. Slow-evolving
genes, on the other hand, do indeed show a moderate
‘slow-X’ effect : 70% of 3L-XR genes have higher Ka/
Ks in the D. pseudoobscura group, versus 78% for the
control genes. This trend is partially caused by dif-
ferences in Ks (3L-XR fast-evolving genes have the
lowest Ks in the D. pseudoobscura group), but the va-
lues for Ka are also consistent with the faster-X hy-
pothesis. For fast-evolving genes, the 3L-XR arm has
a higher proportion of genes with higher Ka in the D.
pseudoobscura group than the non-3L-XR sample.
For slow evolving genes, we observe the opposite.
None of these differences are, however, statistically
significant. It should also be noted that, when we use
the values of dN and dS obtained with PAML
(Supplementary Material), we obtain similar patterns
for Ka and Ks, but not for dN/dS : in this case, there is a
faster-X effect for all classes of gene, although it is
closer to significance for fast-evolving genes.

4. Discussion

(i) Is selection more efficient on the X chromosome?

We have found that genes located onMuller’s element
D, which is X-linked in the D. pseudoobscura clade
but autosomal in the D. melanogaster clade, have a
significantly lower Ks when they are X-linked than
when they are autosomal (Fig. 1), whereas other genes
do not differ in Ks between the two clades. It is poss-
ible that this effect could be accounted for by a dif-
ference in mutation rate between X and autosomes.
A higher mutation rate in males than in females
leads to a lower rate of neutral evolution for the X
chromosome, because the X is transmitted by females
two-thirds of the time, whereas autosomes are trans-
mitted by females only one-half of the time (Miyata
et al., 1987; Vicoso & Charlesworth, 2006). In mam-
mals and some lineages of Drosophila, there is evi-
dence for this effect (Ebersberger et al., 2002; Singh

Table 5. Numbers of slow-, medium- and fast-evolving genes with different Ka, Ks and Ka/Ks values in the
two clades

D. pseudoobscura/
D. affinis

D. melanogaster/
D. yakuba P-value

Ka

Number of slow-evolving genes with a higher Ka

Non-3L-XR 20 4 0.111
3L-XR 14 9

Number of medium-evolving genes with a higher Ka

Non-3L-XR 13 10 0.768
3L-XR 11 12

Number of fast-evolving genes with a higher Ka

Non-3L-XR 6 10 0.516
3L-XR 12 11

Ks

Number of slow-evolving genes with a higher Ks

Non-3L-XR 11 16 0.121
3L-XR 4 19

Number of medium-evolving genes with a higher Ks

Non-3L-XR 9 14 0.337
3L-XR 5 18

Number of fast-evolving genes with a higher Ks

Non-3L-XR 10 6 0.007

3L-XR 4 19

Ka/Ks

Number of slow-evolving genes with a higher Ka/Ks

Non-3L-XR 21 4 0.196
3L-XR 16 9

Number of medium-evolving genes with a higher Ka/Ks

Non-3L-XR 12 11 0.120
3L-XR 18 5

Number of fast-evolving genes with a higher Ka/Ks

Non-3L-XR 7 9 0.342
3L-XR 14 9

P-values were obtained using a Fisher’s exact test.
Significant P-values are shown in boldface.
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et al., 2007), but no statistically significant evidence
supporting it has been found in X-autosome com-
parisons in D. melanogaster, D. yakuba or D. pseudo-
obscura (Bauer & Aquadro, 1997; Richards et al.,
2005; Begun et al., 2007; Singh et al., 2007). While a
higher rate of substitution of silent mutations has
been found on the neo-Y chromosome of D. miranda
compared with the neo-X, consistent with male-
driven evolution (Bachtrog, 2008), this can be acc-
ounted for by the fixation of ancestral polymorphisms
on the neo-Y, caused by its greatly reduced effective
population size (Bartolomé & Charlesworth, 2006). It
therefore seems unlikely that a male–female mutation
rate difference could account for our observations
on Ks.

The other possibility is that there is more effective
selection to maintain codon usage on X-linked genes
than on autosomal genes. Although synonymous
substitutions are often treated as effectively neutral,
there is ample evidence in Drosophila that synony-
mous codons are used in genes at different fre-
quencies, because of selection for ‘preferred’ codons
with higher efficiency or accuracy of translation
(Powell & Moriyama, 1997; Clark et al., 2007).
McVean & Charlesworth (1999) investigated the ex-
pected influence of X-linkage on codon usage bias,
under the Li–Bulmer model of selection, genetic
drift and reversible mutation between preferred and
unpreferred codons (Li, 1987; Bulmer, 1991). If un-
preferred codons are, on average, recessive or par-
tially recessive in their effect on fitness, they will be
selected out of the population more efficiently when
they are on the X, leading to higher codon usage bias
(McVean & Charlesworth, 1999). As we discuss in the
next section, another (not mutually exclusive) possi-
bility is that differences in effective population size
between the X chromosome and the autosomes could
be increasing the level of codon usage bias on the X.

Singh et al. (2005) estimated codon bias levels in
D. melanogaster,D. pseudoobscura andCaenorhabditis
elegans and found that these were higher on the X
chromosome than on the autosomes in all three
species. They excluded other factors that are corre-
lated with codon usage bias, such as gene expression,
gene length, recombination rate, gene density and
protein evolution as possible causes for the X-auto-
some difference, suggesting that more efficient selec-
tion on the hemizygous male X is the main cause of
increased codon usage bias on the X. They also com-
pared D. pseudoobscura with D. melanogaster, and
found a significant increase in codon bias for XR
genes compared with their autosomal counterparts,
consistent with the results in Table 3. More recently,
the analysis of 12 Drosophila genomes has confirmed
that the X chromosome has consistently higher levels
of codon usage bias than the autosomes (Clark et al.,
2007; Singh et al., 2007).

This evidence suggests at first sight that the reduced
Ks we have detected for genes on XR in the D. pseudo-
obscura clade, compared with the same genes on 3L
in the D. melanogaster clade, reflects more effective
selection to maintain codon usage bias, as a result
of these genes becoming X-linked. A puzzle that
arises from this observation, though, is why Ks for
the ancestral X is, if anything, slightly higher (but
not significantly so) than for the autosomes in the
D. melanogaster/D. yakuba comparison in both our
data and in the genomewide comparison of the
sequenced members of the D. melanogaster group
(Begun et al., 2007) ; in particular, looking at diver-
gence along the branch leading to D. melanogaster
from D. simulans, Ks for the X chromosome is ap-
proximately 1.1 times larger than for the autosomes
(Begun et al., 2007).

One possible explanation is that codon usage in the
D. melanogaster group is not in equilibrium, perhaps
because of a historical reduction in population size,
for which there is support from the genome sequence
comparisons, especially for the D. melanogaster
branch of the phylogeny (Akashi, 1995, 1996; Akashi
et al., 2006; Begun et al., 2007; Nielsen et al., 2007).
Takano-Shimizu (1999) showed that a reduction in
effective population size is expected to result in a
transient increase in the substitution rate above the
equilibrium level, which is largest for genes with high
levels of codon usage bias, since these depart the most
from their final equilibrium. If the X chromosome has
higher codon usage bias than the autosomes, X-linked
genes would therefore show a higher transient substi-
tution rate. The difference between XR and 3L that
we have detected may, therefore, be primarily caused
by an inflated rate of synonymous substitutions in
the D. melanogaster group, with Ks for XR in the
D. pseudoobscura clade reflecting a level that is closer
to the equilibrium value.

(ii) The effective population sizes of the X
chromosome and the autosomes

The ratio of Fop between the X and major autosomes
in Drosophila is of the order of 1.1 (Table 3 and Singh
et al., 2005). This is much larger than the maximum
value predicted by McVean & Charlesworth (1999),
who assumed that the effective population size Ne for
the X (NeX) is three-quarters of that for the autosomes
(NeA). An even larger effect can, however, arise under
a wide range of conditions, if the effective population
size for the X chromosome is much bigger than this,
as selection is less efficient on chromosomes with
small effective population sizes.

Demographic effects (such as a female-biased sex
ratio), increased recombination on the X chromo-
some, and increased variance of male reproductive
success have all been shown be potential causes of

B. Vicoso et al. 428

https://doi.org/10.1017/S0016672308009804 Published online by Cambridge University Press

https://doi.org/10.1017/S0016672308009804


increased NeX/NeA. One way to assess if Ne for the X
chromosome is higher or lower than the autosomalNe

is to compare neutral or nearly neutral polymorphism
levels at X-linked and autosomal sites, since neutral
polymorphism levels are proportional to the effective
population size (p, the pairwise average diversity,
is equal to 4Nem, where m is the neutral mutation
rate). Although they are not strictly neutral, synony-
mous sites are commonly used to approximate
neutral polymorphism levels in Drosophila. Several
studies have found that, in African populations of
D. melanogaster, X-linked synonymous sites have
higher levels of polymorphism than autosomal sites
(Andolfatto, 2001; Kauer et al., 2002; Mousset &
Derome, 2004), suggesting that the effective popu-
lation of the X is indeed higher than the expected
three-fourth of the autosomal effective population
size (Hutter et al., 2007). This is likely to be con-
tributing to the patterns of evolution we observe on
the X chromosome, as it has a more powerful effect on
the ratio of equilibrium codon usages for the X and
autosomes than recessivity of deleterious mutational
effects (Singh et al., 2005).

(iii) Is there a faster-X effect for non-synonymous
sites?

Our data show a faster rate of non-synonymous site
evolution for the ancestral X chromosome compared
with the autosomes in both species comparisons
(Tables 1 and 2), as has also been found in a
genomewide comparison of the sequenced members
of the D. melanogaster group (Begun et al., 2007). For
the reasons given in the first part of the Results
section, however, this apparent support for faster-X
evolution should be treated with some caution. The
more critical test is to compare Ka for 3L-XR between
the two species pairs, and we found no significant
effect ; the significant difference in Ka/Ks was entirely
due to the difference in Ks (Fig. 1), as discussed above.
In fast-evolving genes, however, there was a sugges-
tion of higher Ka for XR-linked loci, and the opposite
was observed for slow-evolving genes, but neither of
these patterns was significant (Table 5 and Fig. 2).

Although they are not conclusive, these results are
of interest in view of the contradictory results ob-
tained by previous studies on faster-X evolution, as
they suggest that such an effect might only be ob-
served for genes that are under particularly strong
positive selection and/or relaxed negative selection. In
fact, all the studies that previously detected faster-X
evolution in Drosophila were in some way biased to-
wards fast-evolving genes. For example, Counterman
et al. (2004) obtained part of their sample from
a male-specific expressed sequence tag (EST) screen
(Swanson et al., 2001). Male-specific genes are
not only expected to show an enhanced faster-X

evolution, but it has also been claimed that they
have a faster evolution than non-sex-biased genes in
Drosophila, possibly as a consequence of increased
positive selection (Zhang et al., 2004). Consistent with
this, several studies of male-biased or male repro-
ductive genes have detected faster rates of evolution
on the X (Torgerson & Singh, 2003; Wang & Zhang,
2004; Pröschel et al., 2006; Baines et al., 2008).
Thornton et al. (2006), while following a similar
approach to that of Counterman et al. (2004), chose
their genes randomly, and observed no faster-X effect.
This suggests that further studies on faster-X evol-
ution should focus on fast-evolving genes, and that
some of the discrepancies among different studies
described in the Introduction section may arise from
the use of different types of genes.
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