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Quasi proximal continuity

Panayotis Th. Lambrinos

Conditions are given, under which a quasi-proximally continuous
function is quasi-uniformly continuous, or a continuous function
is qQuasi-proximally continuous. Thus, basic results on uniform
and proximal continuity are extended and some new results are
obtained. Three results in the literature are shown to be
false.

According to [§] and [9], a quasi-proximity space is a pair (X, 8) ,
where X is a non empty set and 6 is a binary relation on the power set

of X which satisfies:
(P.1) Af9 , @8A for every AC X ;
(p.2) {x}6{x} for every =z € X ;
(P.3) CS4A UB iff CS4 or CS8B and A v BSC iff ASC or B&C

(P.4) if AJB then there exists a subset E such that A$E and
(X-E)$B .

The pair (X, 6) becomes a proximity space when:

(P.5) ASB iff B6A .

Pervin showed in [ §] that if the closure operator ¢ is defined by
e(A) = {z : {x}84} , then each quasi-proximity space (X, §) gives rise to
a topology r{8) on X and that every topological space (X, r) is

quasi-proximizeble, that is, there exists a quasi-proximity 6 on X such
that »r(S) = r .,

Given a quasi-uniformity @ on X (for definitions see [6], [7] or

[3]) the quasi-proximity & induced by & is defined by: AS8B ifr
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(4xB) nU # p for every U in @ ([7]1, p. 107). If & is induced by
@ , then @ 1is said to be compatible with §

It has been shown in [Z] that for every quasi-proximity space (X, )

there exists a unique totally bounded quasi-uniformity Qt which is
compatible with & . Moreover, Qt is the coarsest quasi-uniformity which
is compatible with 6 and a base for Qt is the collection of all the

n n

sets of the form U B.x4, , wvhere X = U Bi » 7 a natural number and

1=1 v =1

Bi¢ (X-Ai) forevery 7, 1<71=n.
Clearly, 6 is a proximity on X iff Qt is the unique totally

bounded uniformity which is compatible with &8 ([2]). Therefore, since
the Pervin quasi-uniformity P is totally bounded ([6], p. 51), one can
get, using Theorem S in [!], examples of quasi-proximity spaces (X, &)
(even compact spaces) such that the guasi-proximity & is not a proximity.

In fact it is sufficient for this to consider the quasi-proximity 6?
induced by P .
Now, as a natural extension of Definition 4.1 of [7], we have:
DEFINITION. Let (X, 61] and (X, 62) be two qQuasi-proximity spaces.
A function f : X +Y 1is said to be guasi-proximally continuous iff AcSlB

implies f(A)Gef(B) or equivalently iff C;32D implies f_l(C)dlf—l(D) .

Clearly if 61, $ are proximities then a quasi-proximelly continuous

2
function is just a proximally continuous one (a proximity mapping in the

terminology of [71).

The next two theorems can be proved similarly to Theorems 10.8 and
4.2 of [7].

THEOREM 1. Let f : (X, Ql) -~ (¥, Q2] be a quasi-uniformly
continuous function; then f : (X, 61) + (¥, 62) i8 quasi-prozimally

continuous, where 61, 8, are the quasi-proximities induced respectively

2
by the quasi-uniformities Ql, Q2 .
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THEGREM 2. A quasi-proximally continuous function
o {x, 61) + (¥, 62) is continuous with respect to r(él) and r(62)

The converses of the above two theorems do not hold without special

conditions even if 61, 8§, are proximities (see [7], pp. 66, 20),.

2

However, as regards the converSé-of Theorem 1 above, we have the

following.

oA

LEMMA 1. Let @* be a quasi-uniformity compatible with the quasi-
proxtmty &* and Qt the unique totally bounded quasti-uniformity

compatible with & . If & c §*, thenithe supremum quasi-uniformity
Qt v @* 1is compatible with & . ;

Proof. Let 61 be the quasi-proximity induced by €, V €* . Since
Qt V @* contains Qt , it follows from Theorem 1 that Gl € 4§ . Let now

AdlB ; hence there exist a basic member W ooof Qt and a member V of @*

such that (AXB) nWn V=9 ,6 W=

o3

m
. (B;x4;) . X= U B, ana

i=1 i=1 °

Biﬁ(X—Ai] for every 7 , 1% =m.
Therefore
m

U (4xB) n (BiXAi) nv=U
1=1 1=1

[(ars,)x(ara,)] 0 7 = 9
or
[(ae8,)x(B0d )] n v = 9,

for every 1 , 1 =1 =m .

Consequently A4 n Bid*B n Ai and thus A4 0 BiﬁB n Ai . Now, by axiom
P.3, B.$ (X-Ai) implies that A4 N B.$B n (X-Ai) . By axiom P.3 again,
AnB#BNA, end AnBJEn (X-4;) imply A n BB [(x-4,)ua,] , that
is, AN BiﬁB for every 1 , 1571 =m . Applying again axiom P.3 we get

m m m
U (4mB.)§B or 4 n [ u B.]ﬁB . Finally, since X = U B, we have
. 1 . 1 . 1
1=1 1=1 1=1
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A3B . We have already shown that & = 6. and thus Qt v @* is compatible

1
with 6 .

THEOREM 3. Let f : (X, 61) - (v, 62) be a quasi-proximally
continuous function and e, an arbitrary quasi-uniformity compatible with
52 . Then there exists a quasi-uniformity Ql compatible with 61 such
that f : (X, Ql) - (¥, Q2) 18 quasi-uniformly continuous. If 2, i8

totally bounded, then Q, may be chosen to be also totally bounded.

Proof. It is well known that the quasi-uniformity @* generated by
the family {(fxf)-l(V) V€ Qz} is the coarsest quasi-uniformity on X
such that f : (X, @*) - (¥, Q2) is quasi-uniformly continuous and that if

Q is totally bounded, then so is @* .

2
Let 6* be the quasi-proximity induced by @* . Now, one can easily

show that 61 < 8* (see, for example, [6], p. 75). By the previous lemma,
if Qt is the unique totally bounded quasi-uniformity compatible with 61 .
then Qt v @t = Ql is also compatible with 61 and clearly the function

f (% Ql) - (v, Q2) is quasi-uniformly continuous.

If Q, is totally bounded, then so is @, v @* =¢q, ([5], p. 50) end
thus Q1=QtVQ*=Qt .
COROLLARY 1. Let (x, 61) and (¥, 62) be quasi-proximity spaces
and Qt2 the witque totally bounded quasi-wniformity which is compatible
with 62 . Then, for every quasi-uniformity @ compatible with 51 > a
funetion f : (X, 61) - (v, 62) s quasi-proximally continuous iff it is

quasi-wuniformly continuous with respect to @ and Qp -

COROLLARY 2. [Let él, 8, be two quasi-proximities on X and let

2
Qs be the unique totally bounded quasi-uniformity compatible with 611 s

1 =1, 2., If GlCG then we have QtlDQt2.

2.‘
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Proof. Use the identity function % : (X, 61) > (x, 62) and
Corollary 1 above.

COROLLARY 3. The Pervin quasi-uniformity P 1is the largest totally
bounded quasi-uniformity which is compatible with the topology r of a

space (X, r) .

Proof. This follows by Corollary 2 above and the fact that every
quasi-proximity & compatible with r contains the Pervin quasi-

proximity 6p (see [7], Theorems 19.1k4, 19.7).

For an example of a totally bounded quasi-uniformity which (by
Corollary 3) not only does not contain P but is strictly contained in it,
see [1], p. 399.

PROPOSITION 1. For every non discrete T, space (X, r) , if & 1is

0
a proximity compatible with the topology r and ép is the quasi-
proximity induced by the Pervin quasi-uniformity P of the space, then
§¢ 6 .
¢ p
Proof. Let & c 6p for a proximity & compatible with » . Since

the Pervin quasi-uniformity P is totally bounded, it follows by Corocllary
1 above, that the identity function 7 : (X, &) + (X, (‘Sp) is quasi-

uniformly continuous with respect to every uniformity U compatible with

8§ and to P . Henece U> P , a contradiction to Theorem 5, [1].

LEMMA 2. Let @, @, be quasi-uniformities compatible with the

t
quasi-proximity & on X and let 2 be totally bounded. Then, if @*
is a quast-uniformity such that e, < Q*c @ , it follows that @* 4is also
compatible with § .

Proof. Using the identity function and Theorem 1 above we have that

Qt CQ*c Q implies 8§ D> 8* D8 , where 6* is the quasi~proximity
induced by @* . Hence &% = &8 , that is, @* is compatible with &

THEOREM 4. For cvery quasi-uniformity @ compatible with a given
quasti-proximity & , the unique totally bounded quasi-uniformity 2

compatible with & 48 the largest totally bounded quasi-uniformity
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contaitned in @ .

Proof. Let @* be any totally bounded quasi-uniformity contained in

€ ; then the supremum quasi-uniformity @* v Qt is totally bounded and
Qt c @* v Qt < ¢ . By the previous lemma g% v Qt is compatible with §

and since & is the unique totally bounded quasi-uniformity compatible

t
with & it follows that @* < Qt .

As regards the inverse of Theorem 2 above we have:

THEOREM 5. FEvery continuous function from a compact quasi-prozimity
space (X, 61) into a proximity space (Y, 62) i8 quasi-proximally
continuous.

Proof. Let us consider a gquasi-uniformity compatible with 51 and a
uniformity compatible with 52 . Now; because of Theorem 1 above, it is

sufficient to recall the fact that a continuous function from a compact
quasi-uniform space into a uniform space is quasi-uniformly continuous

(CL3], Theorem 1).

By the above theorem, we get as a special case the well known result
that every continuous function from a compact proximity space into a

proximity space is proximally continuous ([7], Theorem k4.L).

Of course, a generalization of Theorem 5 above may be given by means

of r-bounded sets by analogy to Theorem 2 in [3].

COUNTEREXAMPLE. A continuous function from a compact quasi-proximity
space (even a compact proximity space) into a quasi-proximity space is not
necessarily quasi-proximally continuous, as the following show:

1. Let us take the space X = [0, 1] with the usual topology r and
let 61 be the proximity compatible with r , defined by: AélB iff

AnB#@ ([7], p. 13). Let now, 62 be the quasi-proximity compatible
with r defined by: A§,8 iff A n B# ¢ ([8]). It is clear that
61 ¢ 62 . Therefore, the identity function % : (X, 51) > (x, 62) is

continuous on the compact space (X, r) but is not quasi-proximally

continuous. We can get the same conclusion using instead of 61 the
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proximity 6{ defined by: AG;B iff

d(a, B) = inf{|a-b| : a €4, b € B} =0
([7], p. 14).

2. Let & bve the proximity on X = [0, 1] induced by the metric
uniformity U on it. Hence, ASB iff (4xB) n U # @ , for every

U, = {(z, y) : |la-y| <€}, €>0 . Let also 8, be the quasi-proximity
compatible with » on X , induced by the quasi-uniformity QF having as

" a base the family B={v, :0<a<1},
v,={z, x) sz €xtullz,y) t 2, y#0,1 and |zy| <a} v

v {0} x {y : 1-a'< y <1l v {1} x{y : 0 <y < a}

(C1]1, p. 399). Now it is clear thet the sets A4 = {1} , B = (1/2, 1) are
such that (4AxB) n U€ # @ for every € >0 , that is, AS6B but AdFB ,

since for a = 1/2 we have (4xB) n Ka = @ . It follows that the identity
function % : (X, §) - (X, 6FJ is continuous, but is not quasi-proximally
continuous, although X is compact.

Another large class of counterexamples of the above type may be

obtained by Proposition 1.

REMARK I. In the light of Theorem 1, this counterexample contradicts
the assertion of the Corollary, p. 56, [6], that "a continuocus function
from a compact uniform space into a guasi-uniform space is quasi-uniformly
continuous". Hence, Theorem 4.23, p. 56, and Lemma 4.22, p. 55, in [6],

are both false.

In fact, false is the underlying assertion in line 2, p. 56, that: if
a subset G containing the diagonal A = {(x, =) : x € X} is open in the
(wh ere

product topology rQ xr are the topologies induced

r.,r
-1 ? -1
Q e
by the quasi-uniformities & and Q_l ), then G(x) 1is a neighbourhood c¢f

the point x in the topology r In fact, the following hold.

0

THEOREM 6. Under the above conditions G{z) is r _"%pen for every
Q
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x € X , but 18 not necessarily an rQ—neighbourhood of the point x .

Proof. Let y € G(x) , that is, (x, y) € G . Then, there exist

V, W € @ such that (x, y) € V(x) X W_l(y) C G and thus

G(x) o [V(:c)xh’-l(y)](x) = W-l(y) . Therefore G(x) is an »r _,~neighbour-
e
hood of every point y € G(x) . It follows that G(x) is r _y~open
q
for every x € X .
Now, we shall give a counterexample showing that G(x) 1is not
necessarily an »r,-neighbourhood of x .

Q

Let & Dbe the quasi-uniformity on the set R of the reals, generated
by the family UE: = {(z, y) 1y < x+€} , € >0 . Then a basis for the

topology 7, is the family {(-®, a) : @ € R} and a basis for the topology

r _, is the family {(b, @) : b € R} . Obviously, the set
Q
G = U[{-=, at1)x(a-1, ©)] is »r. *xr _-open and contains A , but
Q@ -1
a€R Q
Glx) = U (a-1, ©) = (z-2, ) which does not contain ro-open sets;
r<a+l

that is, sets of the form (-, a) .

COROLLARY 4. et M be a closed set in the product topology
ryxr ;- Then, M(x) is r _l—cZosed for every =z € X , but not
Q

necessarily r,-closed.

Q
Proof. M{xz) = X - (XxX-M)(x) for every x € X .
THEOREM 7. 4 function f : (X, rl) - (v, rg) is continuous i1ff it

18 quasi-proximally continuous with respect to the Pervin quasi-proximities

on the spaces 6P1’ 6P2 .

Proof. Sufficiency is obvious by Theorem 2. Necessity follows by
Theorem 1 and the fact that a continuous function is quasi-uniformly
continuous with respect to the Pervin quasi-uniformities Pl’ P2 (£41,
Theorem 4.1).
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Note added in proof (30 June 1973). During the correction of the
proofs the author found that Theorem 3 above has been announced by Metzger
[5, Theorem 2, p. 131]. However, Metzger's proof of the theorem is mainly
based on his Lemma 4, p. 125, the proof of which is not correct, because

the claim in line 1, p. 126, that B, uB . u Bh DB is not true.

2U.

EXAMPLE. Take X = [0, 2] and T the usual topology,

v = ([0, 1]x[0, 1] u ((J, $)x(3, 3)) v ((1, 2]x(1, 2])

Then, since V is open in the product space X X X and contains the

diagonal, for every A cC X , AﬁpX - V(4A) wvhere & is the Pervin quasi-

p
proximity. Let 4 =1(}, 3}, B=1(2 % » A =13, %] » By =1

2 L3
4 ? 1 1 8> 8§ 1 °
Clearly, A4 x Bc (XxX-V) u (4,%B,]) , Ald!pBl but B¢ B .
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