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CHARACTERISTIC CYCLES IN
HERMITIAN SYMMETRIC SPACES

BRIAN D. BOE AND JOSEPH H. G. FU

ABSTRACT. We give explicit combinatorial expresssions for the characteristic cy-
cles associated to certain canonical sheaves on Schubert varieties X in the classical Her-
mitian symmetric spaces: namely the intersection homology sheaves IHX and the con-
stant sheaves CX . The three main cases of interest are the Hermitian symmetric spaces
for groups of type An (the standard Grassmannian), Cn (the Lagrangian Grassmannian)
and Dn. In particular we find that CC(IHX) is irreducible for all Schubert varieties X if
and only if the associated Dynkin diagram is simply laced. The result for Schubert vari-
eties in the standard Grassmannian had been established earlier by Bressler, Finkelberg
and Lunts, while the computations in the Cn and Dn cases are new.

Our approach is to compute CC(CX) by a direct geometric method, then to use the
combinatorics of the Kazhdan-Lusztig polynomials (simplified for Hermitian symmet-
ric spaces) to compute CC(IHX). The geometric method is based on the fundamental
formula

CC(CX) ≥ lim
r#0

CC(CXr ),

where the Xr # X constitute a family of tubes around the variety X. This formula leads
at once to an expression for the coefficients of CC(CX) as the degrees of certain singular
maps between spheres.

Introduction. In the chapter of representation theory pioneered by Kahzdan and
Lusztig [KL1, 2], Schubert varieties in generalized flag manifolds play a fundamental
role. In particular, the proof of the Kazhdan-Lusztig conjectures due to [BB] and [BK] has
brought the intersection homology (IH) sheaves of these varieties, and the characteristic
cycles of these sheaves, to the center of the subject.

A later conjecture of Kazhdan and Lusztig [KL3] states that the characteristic cycle
of the IH sheaf associated to any Schubert variety in the manifold of complete flags in
Cn (i.e. the flag manifold associated to the group of type An�1), is irreducible. A special
case of this conjecture was proved by Bressler-Finkelberg-Lunts [BFL], who showed
that the statement is true when the complete flag manifold is replaced by the correspond-
ing maximally degenerate flag manifold (the Grassmannian). Tanisaki [Tan] was able to
compute characteristic cycles in some other low-dimensional cases, and his examples
show in particular that the conjecture is false for the (full) flag manifold associated to the
group of type Cn. Quite recently, Kashiwara and Saito [Ka] have constructed counterex-
amples to the original (An) conjecture. Nevertheless, a complete determination of these
characteristic cycles remains of serious interest to other areas of mathematics.
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In this paper we present algorithms for the characteristic cycles of the IH sheaves
associated to the Schubert varieties lying in the Hermitian symmetric spaces of the clas-
sical groups; of these, the interesting cases are the spaces associated to the pairs (An,
Am ð An�m�1) (the standard Grassmannian), (Cn, An�1) (the Lagrangian Grassmannian)
and (Dn, An�1). Thus our really new results concern the latter two cases—it is our un-
derstanding that before now no one had succeeded in making these calculations, despite
several attempts (at least for Cn).

Our results may be summed up as follows:

THEOREM (THEOREM 7.1A). Let HG be a Hermitian symmetric space associated to
a classical Lie group G. The characteristic cycles of the intersection homology sheaves
associated to the Schubert varieties X ² HG are all irreducible iff the Dynkin diagram
of G is simply laced.

In particular the characteristic cycles of the IH sheaves for Schubert varieties in the
Hermitian symmetric space associated to the pair (Dn, An�1) are irreducible.

We also have the following positive result which includes the Cn case:

THEOREM (COROLLARY 7.1E). Let HG be a Hermitian symmetric space associated
to a classical Lie group G. The multiplicities mX

Y of the characteristic cycles of the inter-
section homology sheaves associated to Schubert varieties Y ² X ² HG are all either 0
or 1. Moreover, mX

Y ≥ 0 unless codimX Y is even.

Our approach to these problems seems very different from the usual one. In particular,
intersection homology and sheaf theory are pushed off-stage and only enter the scene in
the form of the Kazhdan-Lusztig polynomials, which by [KL2] are the Poincaré polyno-
mials of the IH sheaves. We work instead in terms of the normal cycle N(X) [Fu1, 2, 3]
of a Schubert variety X in one of the spaces under consideration. This cycle is equivalent
to the characteristic cycle of the constant sheaf on X, but admits a simple geometric con-
struction (cf. Section 2.2). Our first main result (Theorem 4.2E) gives an algorithm for
the coefficients (which we call MacPherson coefficients) in the decomposition of N(X)
in terms of the normal bundles of the strata of X. The main tool used in the proof is
Theorem 2.2A, which expresses the MacPherson coefficients as the degrees of certain
(singular) mappings of spheres.

As is well-known, the array of MacPherson coefficients (associated to pairs of sub-
varieties of X) determines the array of Euler obstructions associated to pairs of strata in
X. In our second main result (Theorem 6.2A) we use this relation to produce from the
algorithm of Theorem 4.2E an algorithm for the Euler obstructions for pairs of Schubert
strata in the classical Hermitian symmetric spaces. The combinatorial structure of these
algorithms is compatible with that of the formulas for the Kazhdan-Lusztig polynomials
(in the Hermitian symmetric cases) due to [LS] and [Boe]. Thus we are able (in (7.1.1)
and Theorems 7.1A and 7.1B) to produce from Theorem 6.2A a simple algorithm for the
multiplicities of the IH sheaves.
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In short, the method is to compute by geometric means the coefficients of the charac-
teristic cycle of the constant sheaf, combining these with the Kazhdan-Lusztig polynomi-
als to produce the desired multiplicities. It would of course in many ways be preferable
to be able to compute these multiplicities by a direct geometric procedure, bypassing the
combinatorics, as was done in [BFL] for the An case. Unfortunately our method does not
seem to provide any hints in this direction.
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1. Notation, conventions and background.
1.1. Generalities. Let M be a Riemannian manifold. The tangent and cotangent bundles
of M are denoted TM and TŁM respectively. The sphere bundle of unit tangents is written

UM :≥ fò 2 TM : jòj ≥ 1g,

andUŁM is the bundle of unit cotangents. Given a submanifold V ² M, the vector bundle
of normals to V is denoted ǫ́V or ǫ́MV, and the unit normal bundle is written

óV ≥ óMV :≥ ǫ́MV \ UM.

The corresponding conormal bundles are denoted ǫ́ŁV, óŁV :≥ ǫ́ŁV \ UŁM.
Projection maps will sometimes be denoted by ôA, where A is the target of the pro-

jection. Thus the projection TM ! M is written ôM. In the case of a product A ð B
we will often write instead ô1,ô2 for the projections onto the first and second factors,
respectively.

The topological closure of a set A is denoted Ā.
If A is a finite set then we put CA for the complex vector space of functions A ! C.

We equip this space with the standard Hermitian inner product hv, wi :≥
P
ã2A

vãw̄ã. If

B ² A we regard CB as a subspace of CA by extending x 2 CB by zero to all of A. If
x 2 CA then xB denotes the orthogonal projection of x into CB. The unit sphere of CA is
denoted SA, and the complex projective space on CA by PA.

The set of regular points of a variety Y is denoted YŽ. If S is a stratification of a space
X and x 2 X then the stratum containing x is denoted Σx.

1.2. Geometric measure theory. Many constructions in this paper are based on the
theory of integral currents of Federer and Fleming, [Fe, Chapter 4], and its specialization
to semialgebraic currents (that is, currents given by integration over semialgebraic chains
with Z coefficients). Formally, currents are linear operators on differential forms. The
group of integral currents of dimension k in a manifold M is denoted Ik(M). If U is a
semialgebraic open subset of an oriented submanifold V ² M of dimension k, then we
denote the current given by integration over U by [[U]] 2 Ik(M).

Some important operations in this theory are as follows.
(1) Push-forward. If f : M ! N is a proper locally Lipschitz map and T 2 Ik(M),

then the current fŁT on N given by

(fŁT)(û) :≥ T(f Łû)

for k-forms û on N, is an integral current on N.
More generally, if T is semialgebraic and f is a semialgebraic function (i.e.
a continuous function with semialgebraic graph) on the support of T then
the push forward may be defined as follows. There is a unique semialgebraic
current Γ supported on the graph of f j spt T such that ôMŁΓ ≥ T. Then fŁT :≥
ôNŁΓ.
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(2) Restriction. Given an integral current T 2 Ik(M) on M and an open set U ² M,
we denote by TjU the element of Ik(U) given by restricting the domain of
the operator T to (the natural inclusion of) the space of differential forms
supported in U. Putting iU: U ! M for the inclusion map, we have also

TbU :≥ iUŁ(TjU).

(3) Boundary. ∂T(û) :≥ T(dû). Note that fŁ∂ ≥ ∂fŁ for f as in (1) above.
(4) Slicing. Given a locally Lipschitz function f : M ! R, the slice of T by f at

r 2 R is

hT, f , ri :≥ ∂
�
Tb f�1(�1, r)

�
� (∂T)b f�1(�1, r).

For T, f semialgebraic this defines a current-valued function of r that is con-
tinuous off of a finite set of jump discontinuities. If T ≥ [[V]] is integration
over a smooth oriented submanifold V and r is a regular value of f jV then the
slice hT, f , ri ≥ [[V \ f�1(r)]].

1.3. Łojasiewicz inequality. We will use the following fundamental inequality. Let
g:Rn ! R be an analytic function, and let x1, x2, Ð Ð Ð ! x0 in Rn, where g(x0) ≥ 0.
Then there are constants ã 2 (0, 1), c Ù 0 such that

jrg(xi)j ½ cg(xi)
ã, i ≥ 1, 2, . . . .

For a proof, see [KP].
In fact we will only need this in case g is polynomial, and moreover we will only use

the weaker statement:

(1. 3. 1) lim
i!1

g(xi)
jrg(xi)j

≥ 0

provided rg(xi) Â≥ 0 for i ≥ 1, 2 . . ..

2. Characteristic cycles and normal cycles.
2.1. CC(IH) and CC(C). In this subsection, we introduce the basic objects of study—
characteristic cycles, (co)normal cycles, MacPherson coefficients, Euler obstructions,
and Kazhdan-Lusztig numbers—as well as the relations between them.

Associated to any constructible sheaf (or complex of sheaves) F on a complex man-
ifold Hn is its characteristic cycle CC(F ), a conic Lagrangian cycle living in the cotan-
gent bundle TŁH (cf. [KS]). The operation CC factors through the Grothendieck group
K(DbH), which is isomorphic via the map F 7! üF , the fiberwise Euler characteristic
of F , to the group C-Func(H) of constructible functions on H. Thus for any subvariety
X ² H, the constant sheafCX corresponds to the characteristic function 1X 2 C-Func(H).
The corresponding map from C-Func(H) to the additive group Lag(H) of conic La-
grangian cycles is a homomorphism of abelian groups. However we find it more con-
venient to work directly with varieties rather than constructible functions.
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PROPOSITION 2.1A. The constructible function operation CC: C-Func(H) !

Lag(H) is the unique group homomorphism satisfying

CC(1X) ≥ N̨Ł(X)

for all closed varieties X ² H, where N̨Ł is the conormal cycle operation of [Fu3].

PROOF. Cf. [Fu3, 4.2].
Recall that the conormal cycle N̨Ł(X) decomposes as

(2. 1. 1) N̨Ł(X) ≥
X
Σ2S

dX
Σ N̨Ł(Σ)

where S is any Whitney stratification of X, dX
Σ 2 Z and each current N̨Ł(Σ) is given by

integration over the manifold óŁΣ of conormals to the stratum Σ. Note that the closure
of ǫ́ŁX ² TŁH is a closed analytic subvariety; however, we give this variety a canoni-
cal orientation that is distinct from the orientation induced from the complex structure,
cf. [Fu2] and Section 2.2 below. We will call dX

Σ the MacPherson coefficient of Σ in X;
abusing notation we put also dX

Σ
:≥ dX

Σ . With this convention we have always dX
X ≥ 1.

Since any constructible function f 2 C-Func(H) may be expressed as a locally finite
sum f ≥

P
X nX1X, where X ranges over the closed subvarieties of H and nX 2 Z, the

characteristic cycle CC(f ) admits an expression

CC(f ) ≥
X
Σ2S

ãΣN̨Ł(Σ),

ãΣ ≥
P

X nXdX
Σ , for some Whitney stratification of H. If there is a stratum Σ0 2 S such

that ãΣ0 ≥ 1 and ãΣ ≥ 0 for Σ Â≥ Σ0, we say that CC(f ) is irreducible.
Now let H be a (possibly degenerate) flag manifold and S the Whitney stratification

of H by Schubert cells, with the usual partial order on S given by Σ ¹ Σ0 , Σ̄ ¦ Σ0.
The subgroups of C-Func(H) and Lag(H) generated respectively by f1Σ j Σ 2 Sg and

fN̨Ł(Σ) j Σ 2 Sg are obviously both isomorphic to ZS via the maps F:ZS ! C-Func(H)

and L:ZS ! Lag(H) determined by F(éΣ) ≥ 1Σ, L(éΣ) ≥ N̨Ł(Σ), where éΣ 2 ZS is the
Kronecker delta: éΣ

Σ0 ≥ 1 if Σ ≥ Σ0, and ≥ 0 otherwise. Let ch:ZS ! ZS be the induced
map

(2. 1. 2)
ZS ch

�! ZS

F
??y L

??y
C-Func(H)

CC
�! Lag(H).

If f is a constructible function in the span of f1Σ j Σ 2 Sg then CC(f ) is irreducible iff
ch
�
F�1(f )

�
≥ éΣ0 for some Σ0 2 S.

For each Schubert cell Σ 2 S, define êΣ, pΣ, mΣ 2 ZS by

(2.1.3)

êΣ
Σ0 ≥

(
1, Σ0 ¼ Σ
0, otherwise,

pΣ
Σ0 ≥ PΣ̄

Σ̄0(1),

mΣ ≥ ch(pΣ),

https://doi.org/10.4153/CJM-1997-021-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1997-021-7


CHARACTERISTIC CYCLES IN HERMITIAN SYMMETRIC SPACES 423

where PX
Y(q) is the Kazhdan-Lusztig polynomial of the pair (X, Y) of Schubert varieties

(cf. [KL1]). Recall that PX
Y ≥ 0 unless Y ² X. Thus F(pΣ) is the constructible function

associated to the intersection homology sheaf IHΣ̄ of Σ̄ [KL2], and mΣ
Σ0 is the coeffi-

cient of N̨Ł(Σ0) in CC(IHΣ). Furthermore êΣ ≥ F�1(1Σ̄), with ch(êΣ) ≥ dΣ̄, the vector

of MacPherson coefficients of Σ̄ (by (2.1.1)). Each of the collections fêΣg, fdΣ̄g, fpΣg,
fmΣg is a basis for ZS .

Denote by e ≥ (eΣ
Σ0) the matrix expressing the ê basis in terms of the d basis:

(2. 1. 4) (e Ð dΣ̄)Σ00 :≥
X
Σ0

eΣ0

Σ00dΣ̄
Σ0 ≥ êΣ

Σ00

(thus eΣ
Σ0 is the Euler obstruction of Σ at a generic point of Σ0, cf. [Mac, BDK, Gin]). Now

(2. 1. 5) ch(e Ð dΣ̄) ≥ ch(êΣ) ≥ dΣ̄, Σ 2 S,

and therefore

(2. 1. 6) ch�1(ã) ≥ e Ð ã

for any ã 2 ZS . In particular,

ch�1(éΣ) ≥ e Ð éΣ ≥ eΣ,

and similarly

(2. 1. 7) ch�1(mΣ) ≥ e Ð mΣ ≥ pΣ,

for all Schubert cells Σ. The first relation here means: the unique constructible function
f with irreducible characteristic cycle CC(f ) ≥ N̨Ł(Σ) is f ≥

P
Σ0 eΣ

Σ01Σ0 .
Our method for computing the CC(IHX) for Schubert varieties X ≥ Σ̄ is based on

a computation of the MacPherson coefficients dX
Y . From the dX

Y we compute the Euler
obstructions e using (2.1.4). If these are equal to the Kazhdan-Lusztig numbers then the
characteristic cycles of the IH sheaves are irreducible, and we are done. If not, we solve
the relation (2.1.7) to find the coefficients m.

2.2. The normal cycle of a variety with conic singularities. It is convenient to work not
with the full conormal cycle N̨Ł(X) but with the unit normal cycle N(X) 2 I2n�1(UH),
where n ≥ dimCH. Putting ì: TŁH ! TH for the isomorphism induced by the metric
and ö: TH ! R for the length function, this is given by

(2. 2. 1) N(X) ≥ hìŁN̨Ł(X), ö, 1i.

Thus N̨Ł(X) is the cone over ì�1Ł N(X). On the smooth part of X the normal cycle deter-
mines the standard orientation of the unit normal bundle óX, locally equal to the product
of the orientation of X as a complex manifold and the orientation of the normal sphere
óxX as the sphere of the complex vector space ǫ́xX.
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The cycle N(X) admits the following geometric construction [Fu3]. Let g: H ! R

be a nonnegative, locally Lipschitz, subanalytic function with g�1(0) ≥ X; we call such
a function g an aura for X. Let [[dg]] 2 I2n(TŁH) be the differential current of g, as in
[Fu1]. Let U ² H be a neighborhood of X, small enough that spt[[dg]]\ô�1

H (U) does not
intersect the zero-section of TŁH, and denote by G̃ the current representing the graph of
the normalized gradient of g; i.e., putting u: TH � (zero-section) ! UH for the radial
projection, G̃ ≥ uŁìŁ[[dg]]. Then

(2. 2. 2) N(X) ≥ �∂(G̃jô�1
H U).

We will be particularly interested in the case where X ² Cn is an algebraic cone over
the origin. In this case it is clear that in the decomposition N(X) ≥

P
Z dX

Z N(ZŽ), all of the
strata Z in the sum are themselves conic. For each r Ù 0, put Sr for the sphere of radius
r about the origin. From the product formula for normal cycles ([Fu3], 4.5) the normal
cycles of the real algebraic subvarieties X \ Sr, r Ù 0, satisfy

(2. 2. 3) hN(X), é Ž ôH, ri ≥ NSr(X \ Sr) ≥
X
Z

dX
Z NSr(Z

Ž \ Sr)

for all sufficiently small r Ù 0, where é(x) :≥ jxj and NSr denotes the normal cycle
relative to the ambient manifold Sr. Let g, G̃ be as in the last paragraph, and for r Ù 0 let
Gr :≥ hG̃, éŽôH, ri denote the current representing the restriction to Sr of the normalized
gradient of g. Now if Ur ² Sr is a suitably small neighborhood of X \ Sr, then slicing
the relation (2.2.2) by the radial function é Ž ôH we obtain from (2.2.3)

(2. 2. 4) ∂(GrjUr) ≥ �NSr (X \ Sr).

Moreover, for cones the MacPherson coefficient of the origin may be computed by
the following theorem. This result is the foundation of our approach to the calculations
which are the main point of this paper: the theorem may be used to compute MacPherson
coefficients of more general substrata. For if X ² H is a complex analytic variety, Σ a
stratum of X, and V ² H is a submanifold transverse to Σ with V \ Σ ≥ fx0g, then dX

Σ ≥

d(V\X)
fx0g . We call V \ X a normal slice for the pair (X, Σ) (or (X, Σ̄)). Although the normal

slice is not usually well-defined as a variety, the associated MacPherson coefficient is.
By abuse of language we will refer to the normal slice for (X, Y), denoted XY . In Section 3
we will construct natural models for normal slices of pairs of Schubert varieties.

THEOREM 2.2A. Let X ² Cn be an algebraic cone over 0, and let g:Cn ! R be a
smooth aura for X. Define û(x) :≥ rg(x)

jrg(x)j ; this map is well defined for x 2 B(0, r0)�X if
r0 Ù 0 is sufficiently small. Let r 2 (0, r0) be fixed. Then

(2. 2. 5) degû :≥
X

x2Sr\û�1(y)
sgn det D(ûjSr)(x) ≥ dX

f0g

for almost every y in the unit sphere S2n�1.

PROOF OF 2.2A. We will prove the following more general and (from the current-
theoretic point of view) formally more natural fact, which contains Theorem 2.2A as a
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special case. Let g be a (possibly nonsmooth) aura for X, and let G̃, Gr and é be as in
the preceding paragraphs. Let ô2:UCn ' Cn ðS2n�1 ! S2n�1 be the projection onto the
fiber. Then for almost all r Ù 0,

(2. 2. 6) ô2ŁGr ≥ dX
f0g[[S

2n�1]].

If g is smooth then Gr is a smooth graph, and the stated form of the theorem follows from
(2.2.6) and the change of variables formula for multiple integrals.

Put ô1:UCn ' Cn ð S2n�1 ! Cn for the projection of the bundle and Br ≥ é�1[0, r)
for the open ball of radius r about the origin. Let S be a Whitney stratification of X by
conic strata.

For almost every r Ù 0 we have by [Fe, 4.2.1]

(2. 2. 7)

∂(G̃bô�1
1 Br) ≥ (∂G̃)bô�1

1 Br + Gr

≥ �N(X)bô�1
1 Br + Gr by (2.2.2)

≥ �
X
Σ2S

dX
ΣN(Σ)bô�1

1 Br + Gr.

Projecting onto the spherical factor, the support theorem [Fe, 4.1.20] gives

ô2Ł∂(G̃bô�1
1 Br) ≥ ∂ô2Ł(G̃bô�1

1 Br) ≥ 0

since the 2n-current under the boundary is supported onS2n�1. Therefore (2.2.7) becomes

(2. 2. 8)
X
Σ2S

dX
Σô2Ł

�
N(Σ)bô�1

1 Br

�
≥ ô2ŁGr.

We claim that ô2Ł
�
N(Σ)bô�1

1 Br

�
≥ 0 for each stratum Σ Â≥ f0g. In fact, we will show

that the set ô2(óΣ)\S2n�1 has real dimension at most 2n� 3, so by the support theorem
it cannot support an integral current of dimension 2n � 1.

Each such stratum Σ is the cone over a projectivized stratum PΣ ² Pn�1. The man-
ifold PóŁ(PΣ) ² PTŁPn�1 of projective conormals has a closure which is a Lagrangian
subvariety of PTŁPn�1, and therefore has complex dimension at most n � 1. Since the
projectivization of ô2(óŁΣ) ² S(2n�1)Ł is equal to the projection onto the second factor
of PTŁPn�1 ² Pn�1 ð P(n�1)Ł, we find that ô2(óŁΣ) is the intersection with S(2n�1)Ł of a
cone of complex dimension at most n � 1 in CnŁ. In particular, its real dimension is at
most 2n � 3, and ó(Σ) \ S2n�1 is its image under ì.

Thus (2.2.8) reduces to

ô2ŁGr ≥ dX
f0gô2ŁNŁ(f0g)

≥ dX
f0g[[S

2n�1]].
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3. Hermitian Symmetric Spaces. For the rest of this paper we will assume that H
is an irreducible Hermitian symmetric space of compact type. These are the manifolds
KnG0 where

(1) G0 is a compact connected simple Lie group with finite center;
(2) K is a maximal connected proper subgroup of G0;
(3) K has nondiscrete center

(cf. [Hel, Chapter 8]). Concretely, there are five classical families and two exceptional
cases. In the present paper we restrict our attention to the classical families, which are
shown in Table 3.1.

Type G0 K dimR KnG0 rank(KnG0)

I SU(n + m) S
�
U(n) ðU(m)

�
2nm min(n, m)

II Sp(n) U(n) n(n + 1) n
III SO(2n) U(n) n(n � 1) [nÛ2]
IV SO(n + 2), n odd SO(n) ð SO(2) 2n 2
V SO(n + 2), n even SO(n) ð SO(2) 2n 2

TABLE 3.1. Compact Classical Hermitian Symmetric Spaces.

3.1. Schubert varieties. We now give explicit descriptions of these manifolds KnG0

and their Schubert varieties in types I, II, and III, which admit a parallel treatment. These
descriptions are all well known (cf. [Tak]). We discuss the (much simpler) types IV and
V at the end of this section.

CAUTION. In the sequel, we refer often to coordinates corresponding to certain en-
tries of matrices. We view these matrices as embedded in a Cartesian plane with their
lower left corner at the origin, with (i, j) coordinate referring to the entry in column i
(counting from 1 at the left) and row j (counting from 1 at the bottom). For consistency,
we follow this same convention when using matrix notation. Thus gij denotes the entry
of g in the i-th column from the left and the j-th row from the bottom; an n ð m matrix
has n columns and m rows; etc.

We use the standard indexing scheme for matrix multiplication, which we denote by

ž: thus if y 2 Cmðn and v 2 Cn then y ž v ≥ (
nP

j≥1
y1jvj, . . . ,

nP
j≥1

ymjvj).

1. S
�
U(n) ð U(m)

�
nSU(n + m). This is the familiar Grassmann manifold Gn,m of n-

planes in Cn+m. Fixing a flag C1 ² C2 ² Ð Ð Ð ² Cn+m, the Schubert cells in Gn,m are the
subsets

(3. 1. 1) fΠ 2 Gn,m j dim(Π \ Ci) ≥ rig

corresponding to nondecreasing sequences r1 � Ð Ð Ð � rn+m ≥ n. They may be described
more economically as the subsets

(3. 1. 2) Σ ≥ [a1 � 1, a2 � 2, . . . , an � n] ≥ fΠ j dim(Π \ Cai ) ≥ ig
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where 0 � a1�1 � a2�2 � Ð Ð Ð � an�n � m. The Schubert variety Y ≥ Σ̄ is given by
changing the last “≥” to “½” in (3.1.2), and will also be denoted [a1�1, a2�2, . . . , an�n].
Thus the Schubert cells/varieties are classified by m ð n Young diagrams: n rows of
“boxes” (left justified), with no more than m boxes in each row, each row having no
more boxes than the row below. (Note that this is the opposite of the usual convention—
our Young diagrams are flipped, top to bottom; cf. Figure 3.1.) We view these Young
diagrams as embedded in a fixed m ð n rectangle M :≥ f1, . . . , mg ð f1, . . . ng. Put
∆(Σ) ≥ ∆(Y) for the Young diagram associated to Σ or Y, and denote the complementary
diagram by ∆̄(Σ) ≥ ∆̄(Y) :≥ M � ∆(Σ). Then an open dense subset of Y is identified via
coordinates with C∆(Y), and the normal slice (Gn,m)Y of Y in the full Grassmannian will
be identified below with C∆̄(Y) ≥: C∆̄(Y)

0 .

2. U(n)nSp(n). This is the “Lagrangian Grassmannian” Λn of n-planes in C2n totally
isotropic with respect to the symplectic form hvjwi ≥ vtJw, v, w 2 C2n, where

J ≥

0BBBBBBBBB@

1
. .

.

1
�1

. .
.

�1

1CCCCCCCCCA
.

∆̄(Y)

∆(Y)

FIGURE 3.1. The Young diagram of Y ≥ [0, 2, 4, 4, 5] in G5,6.

In particular Λn is naturally embedded in Gn,n. The Schubert varieties Y in Λn are the
intersections with Λn of the Schubert varieties in Gn,n. Thus they may be classified by
Young diagrams—in fact they correspond precisely to the Young diagrams which are
symmetric about the diagonal i ≥ j in the nðn square M. As we shall see below, the full
normal slice (Λn)Y is identified with the space C∆̄(Y)

+ of symmetric matrices in C∆̄(Y).

3. U(n)nSO(2n). This is the connected component Λ�n of Cn ð 0 in the space of
n-planes in C2n, totally isotropic with respect to the quadratic form hv jwi ≥ vtKw, v,
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w 2 C2n, where

K ≥

0BBBBBBBBB@

1
. .

.

1
1

. .
.

1

1CCCCCCCCCA
.

As in type II, the Schubert varieties Y in Λ�n are classified by symmetric Young diagrams,
with the additional constraint that there be an even number of boxes along the diagonal.
We will see that the normal slice (Λ�n )Y is represented by the space C∆̄(Y)� of antisymmetric
matrices in C∆̄(Y).

3.2. Schubert slices. This subsection provides explicit descriptions of the Schubert slice
XY associated to a pair of Schubert varieties X ¦ Y in H of type I, II, or III. Put

¢ ≥

8><>:
0 in type I
+ in type II
� in type III.

Let Ω(Y) denote the family of all rectangles ñ ² ∆̄(Y) with (m, n) 2 ñ and which touch
(but do not cross) the boundary of ∆(Y); cf. Figure 3.2.

PROPOSITION 3.2A. Suppose X ¦ Y are Schubert varieties in H of type I, II, or III.
(1) There is a function öX

Y : Ω(Y) ! Z½0 such that

XY ≥ fx 2 C∆̄(Y)
¢ j rank xñ � öX

Y(ñ) for all ñ 2 Ω(Y)g.

In types II and III, öX
Y(ñ) ≥ öX

Y(ñt), and in type III, öX
Y(ñ) is even if ñ ≥ ñt . In

fact, for ñ 2 Ω(Y) the integer öX
Y(ñ) is the length of the diagonal line segment

with one endpoint at the lower left corner of ñ and the other endpoint on the
boundary of ∆(X); cf. Figure 3.2.

(2) Let X, Y be Schubert varieties of type I. For x 2 XY as in (1), the tangent
space TxXY is spanned by vectors of the following three types:

(i) Truncated column operations: given indices 1 � i � j � m,
define îi j(x) by

îrs
i j ≥

(
xjs if r ≥ i and (r, s) 2 ∆̄(Y)
0 otherwise;

(ii) Truncated row operations: given indices 1 � i � j � m, define
öj#i(x) by

örs
j#i ≥

(
xrj if s ≥ i and (r, s) 2 ∆̄(Y)
0 otherwise;

(iii) Restricted tensor products: given ñ 2 Ω, let j be the row immedi-
ately below ñ, let i be any column intersecting row j in ∆̄(Y), and
define úiðj(x) by

úrs
iðj ≥

(
xrjxis if (r, s) 2 ñ
0 otherwise.
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(3) The dimension of Y is given by

dim Y ≥

8><>:
#f(i, j) j (i, j) 2 ∆(Y)g in type I
#f(i, j) j i � j, (i, j) 2 ∆(Y)g in type II
#f(i, j) j i Ú j, (i, j) 2 ∆(Y)g in type III.

ñ

öX
Y (ñ) ≥ 3

Y X

FIGURE 3.2. The rank function öX
Y .

PROOF. For this proof, we switch temporarily from “Young diagram cartesian” co-
ordinates back to standard matrix coordinates; that is, gij will denote the entry in row i
and column j, with rows numbered from the top and columns numbered from the left.

Assume first that we are in type I. We may regard Gn,m as a quotient of G :≥
GL(n + m,C) in the usual way as PnG, where P is the “block lower triangular” parabolic
subgroup P ≥ fg 2 G j gij ≥ 0 if i � n and j Ù ng; the correspondence with the
geometric description above is g 7! spanfg1Ð, . . . , gnÐg. The action of P is by row oper-
ations on g 2 G, where it is illegal to move any row i Ù n to any other row i0 � n. Let
a Schubert cell Σ be given as in (3.1.2), set Y ≥ Σ̄, and put S1 :≥ fa1 Ú Ð Ð Ð Ú ang,
S2 :≥ f1, . . . , m + ng�S1 ≥: fb1 Ú b2 Ú Ð Ð Ð Ú bmg. Given g 2 G, the coset Pg belongs
to Σ iff the rank of each submatrix [gij j i � n, j ½ k] is equal to #(S1 \ fk, . . . , m + ng)
for k ≥ 1, . . . , m + n.

This description shows that each point p 2 Σ admits a unique representative g ≥ gp 2

G satisfying the conditions

gij ≥

8>>><>>>:
1, 1 � i � n, j ≥ ai

0, 1 � i � n, and j Ù ai or j Â2 S2

1, n Ú i � m + n, j ≥ bi�n

0, n Ú i � m + n, j Â≥ bi�n.

We call this the tier picture of Gn,m, the top tier consisting of the rows i � n of g and the
bottom tier the rows i Ù n. (In Figure 3.3 we show the tier picture for the cell Σ ² G5,6

whose Young diagram was given in Figure 3.1.) In particular Σ contains a unique point
pΣ ≥ pY for which this representative is a permutation matrix gΣ :≥ gpΣ . It is clear that
the tangent space to the Grassmannian at p ≥ pΣ is represented by Cf1,...,ngðS2 . The last
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1

1

1

1

1

1

1

1

1

1

1

∆(Σ)
∆̄(Σ)

FIGURE 3.3. The tier picture.

paragraph implies that the subspace TpΣ is represented by the subspace spanned by the
set of all coordinates (i, j) 2 f1, . . . , ng ð S2 with j Ú ai, and the normal space ǫ́pΣ by
the set of such (i, j) with j Ù ai. Note that the Young diagram ∆(Σ) may be obtained
from this diagram as the concatenation of all the blocks of coordinates corresponding to
the tangent space TpΣ, and ∆̄ ≥ ∆̄(Σ) is obtained similarly by concatenating the blocks
corresponding to the normal space. Thus x $ gΣ +x gives a linear isomorphism between
C∆̄ and ǫ́pΣ. In particular the dimension of Y is equal to the number of boxes in ∆(Y).

Now let Σ0 ≥ [a01 Ú a02 Ú Ð Ð Ð Ú a0n] be another Schubert cell incident to Y; i.e.,
X :≥ Σ0 ¦ Y. From the descriptions above it is easy to see that gΣ + x 2 Σ0 iff x 2 C∆̄(Y)

satisfies rank xñ ≥ öX
Y(ñ) for all ñ 2 Ω. This implies (1) in type I.

We now wish to classify the tangent vectors to the normal slice Σ0Y in type I. To this end
we recall that right multiplication induces the standard action of G on the Grassmannian
PnG, where, putting B for the Borel subgroup of lower triangular elements of G, the
Schubert cells are precisely the B-orbits in PnG.

LEMMA 3.2B. Let B be a Lie group and ã: B ð M ! M a smooth action of B on
a manifold M. Let p 2 M, Σp :≥ Bp the orbit of p, and Bp ² B the isotropy subgroup
of p. Choose smooth transverse submanifolds V ² M to Σp at p and F ² B to Bp at e,
V\Σp ≥ fpg, F\Bp ≥ feg. For q 2 M sufficiently close to p, let f ≥ f (q) be the unique
element of F such that f Ð q 2 V. For b 2 B and q 2 V, put ã̃(b, q) ≥ f (b Ð q) Ð (b Ð q),
defined for (b, q) sufficiently close to (e, p). Then for q 2 V sufficiently close to p,

ã̃Ł(TeBp ý f0qg) ≥ Tq(V \ Σq),

where 0q is the origin of TqV.

PROOF. The containment ² is clear, so we need only prove surjectivity. We first
observe that, for q 2 V close to p, the map (a, c) 7! af (c Ðq)c provides a local diffeomor-
phism of Fð Bp with a neighborhood of e in B. In fact, if †q: Bp ! B, †q(c) ≥ f (c Ð q)c,
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then the maps †q vary continuously with q and approach the identity map as q tends to
p along V. This shows that, for q close to p, †q(Bp) is transverse to F.

Now, given b 2 B close to e with b Ð q 2 V \ Σq, write b ≥ af (c Ð q)c as in the
previous paragraph. Then b Ð q ≥ af (c Ð q)c Ð q. But by the uniqueness of f (q0) applied
to q0 ≥ f (c Ð q)c Ð q, we conclude that a ≥ e. Hence b Ð q ≥ ã̃(c, q) with c 2 Bp, which
implies the lemma.

To apply the lemma in the present situation we observe that, given a point p ≥ pΣ as
above, the stabilizer Bp is given by

Bp ≥ fb 2 B j bij ≥ 0 if (i, j) 2 S1 ð S2g,

so that we may take

F ≥ fb 2 B j bij ≥ éij if (i, j) Û2 S1 ð S2g (Kronecker delta).

Recalling that B is acting on row vectors ò 2 Cn+m ≥ CS1 ý CS2 , put

B1 :≥ fb 2 Bp j bjCS2 ≥ idg,

B2 :≥ fb 2 Bp j bjCS1 ≥ idg,

C :≥ fb 2 Bp j ò ≥ (òb)Si for all ò 2 CSi , i ≥ 1, 2g;

it is clear that if b 2 Bp is sufficiently close to the identity then there are unique c 2 C
and bi 2 Bi, i ≥ 1, 2 such that b ≥ b1b2c ≥ b2b1c.

The Bi are actually subgroups, and moreover stabilize the normal slice (Gn,m)Y . We
show that the B1 action corresponds to downward truncated row operations on the slice
space. Let x 2 C∆̄ correspond to g ≥ gΣ+x 2 ǫ́pΣ, and suppose we add (via B1) a multiple
of column aj to column ai in g (i Ú j). To find the corresponding element gΣ +x0, subtract
the same multiple of row i from row j (left P-action), and add appropriate multiples of
column aj to columns bk, ai Ú bk Ú aj (F-action). This shows that x0 is obtained from
x by subtracting a multiple of row i from row j, truncated to C∆̄. It is left as an exercise
for the reader to check that B2 gives leftward truncated column operations, and C gives
restricted tensor products.

Now assume we are in type II. Recall that each Schubert cell is the intersection with
Λn of a Schubert cell in Gn,n. In general, a Grassmannian Schubert cell Σ̃ will contain
no isotropic planes unless the permutation matrix representing the point p ≥ pΣ̃ has the
following property: if j 2 S1, j � n then 2n+1�j Û2 S1. Thus, given a type II Schubert cell
(resp. variety) Σ (resp. Y), let Σ̃ (resp. Ỹ) denote the associated type I Schubert cell (resp.
variety) having the same Young diagram, where we may assume that p satisfies the above
condition. Thus the normal slice XY is naturally embedded in C∆̄(Y). We claim that ∆̄(Y)
(and hence ∆(Y)) is symmetric about the diagonal. Observe that ∆̄(Y) is equivalent (in the
slice picture) to the set f(i, bj) j bj Ù ai, 1 � i, j � ng. But ai 2 S1 iff 2n + 1 � ai 2 S2.
Therefore bj ≥ 2n + 1 � an�j+1, j ≥ 1, . . . , n, so bj Ù ai , bn�i+1 Ù an�j+1 ,

(n � j + 1, bn�i+1) 2 ∆̄(Y); i.e., ∆̄(Y) is symmetric.
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1

�1

�1

�1

1

1

1

1

FIGURE 3.4. g̃Σ in type II.

It is convenient to modify the permutation matrix gΣ by changing the (i, ai) entry from
1 to �1 whenever ai Ù n; call the resulting matrix g̃Σ (cf. Figure 3.4). For given a point
in the normal slice (Λn)Σ represented by a matrix g̃Σ + x, (where as before xij ≥ 0 for
i � n unless j Ù ai and j 2 S2) the isotropy condition gives

0 ≥ J(xiÐ, xn�j+1,Ð) ≥ xi,bj � xn�j+1,bn�i+1 ,

1 � i, j � n. Thus we may regard the normal slices for the Lagrangian Grassmannian as
algebraic cones in the space C∆̄(Y)

+ of symmetric elements of C∆̄(Y).
Observe that the dimension of Y is equal to the number of boxes of ∆(Y) lying on or

above the line of symmetry.
Finally, assume we are in type III. As in type II, it is easy to see that the type I variety

Σ̃ intersects Λ�n iff the point peΣ is isotropic. Furthermore if Ỹ0 is the minimal type I cell
(point) then an element x of the normal slice (Gn,n)Ỹ0

represents an isotropic plane iff x is
antisymmetric. It follows that Ỹ \Λ�n contains the origin Cn ð 0 in its closure iff pỸ0

has
an even number of 1’s in the top tier in columns n + 1, . . . , 2n. In particular the Schubert
varieties in Λ�n are parametrized by the Young diagrams which are symmetric about the
diagonal, having an even number of boxes along the line of symmetry; the dimension of
Y is equal to the number of boxes in ∆(Y) that lie strictly above the line of symmetry.
Finally, the subspace of (Gn,n)Ỹ ' C∆̄(Y) representing the normal slice (Λ�n )Y is precisely
the space C∆̄(Y)� of antisymmetric elements.

DEFINITION. Given a point x 2 C∆̄¢ ' HY we will denote the Schubert stratum of HY

containing x by Σx.

3.3. Auras for normal slices. From the descriptions in Proposition 3.2A it is now easy
to provide natural auras (in the sense of Section 2.2) for these normal slices. (Henceforth
we return to our “Young diagram cartesian coordinates.” Also, we will often drop the
subscript ¢ to simplify the notation.) Given a Schubert pair (X, Y), abbreviate ö :≥ öX

Y ,
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∆̄ :≥ ∆̄(Y), and put for x 2 C∆̄

g0(x) :≥
X
ñ2Ω

þþþ^ ö(ñ)+1xñ
þþþ2.

This gives the required aura in type I. If ∆̄ is symmetric and ö(ñ) ≥ ö(ñt) for all ñ 2 Ω
then g0 is invariant under both of the involutions

iš(x) :≥ šxt,

from which we deduce that

(3. 3. 1) rg0(C∆̄
š) ² C∆̄

š.

Thus in types II and III we take gš :≥ g0jC
∆̄š. For x 2 C∆̄ �XY sufficiently close to 0 the

gradient rg0(x) Â≥ 0; put û0(x) :≥ rg0(x)
jrg0(x)j for such x. Similarly ûš :≥ rgš

jrgš j ≥ û0jC
∆̄š.

Thus dX
Y ≥ degû¢jS∆̄

r for small r Ù 0, by 2.2A. Fixing such r, we abbreviate S∆̄ :≥ S∆̄
r .

LEMMA 3.3A. Let x1, x2, Ð Ð Ð ! x0 2 XY, where x1, x2, Ð Ð Ð Û2 XY. Suppose û(xi) !
n 2 Tx0C

∆̄. Then n 2 ǫ́x0Σx0 .

PROOF. In types II and III each stratum Σ of XY is the intersection with C∆̄
š of a

stratum Σ̃ of the corresponding type I normal slice; moreover the rank conditions ö de-
termining the slice are symmetric in the sense that ö(ñt) ≥ ö(ñ) for each ñ 2 Ω. Thus Σ̃
is stabilized by the appropriate involution iš, from which it follows that if x0 2 Σ then
Tx0 Σ̃ decomposes as the orthogonal direct sum of its subspaces of symmetric and anti-
symmetric elements. Therefore ǫ́x0Σ ≥ C∆̄š \ ǫ́x0 Σ̃, and by (3.3.1) it is enough to prove
the lemma in type I.

By the Łojasiewicz inequality (1.3.1) it will be enough to show that for each ú0 2 Tx0Σ
there is a sequence TxiC

∆̄ 3 úi ! ú0 such that

jDúi g(xi)j ≥ jRehrg(xi), úiij ≥ O
�
g(xi)

�
as i ! 1. By Proposition 3.2A(2) each such ú0 ≥ ç(x0) for some ç 2 TeB0, where B0

is the isotropy subgroup of the special point pY . Therefore we may achieve our goal by
proving that

(3. 3. 2) jDzç(xi)g(xi)j ≥ jzjO
�
g(xi)

�
(z 2 C)

as i !1, as ç ranges through the three types of infinitesimal generators for B0.
Suppose first that ç is of type (i) or type (ii), hence corresponds to a truncated row or

column operation: suppose for definiteness that it corresponds to the operation of moving
row k to row j, j � k. We further suppose that j Ú k—if j ≥ k then the argument is simpler.
Thinking of g(x) as a sum of squares jéj2 of wedge products é of partial rows of x, we
decompose g as

g ≥ gjk + gj̄k + gjk̄ + gj̄k̄,
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where gjk denotes the sum of those terms corresponding to wedge products é involving
both the j-th and the k-th rows, gj̄k denotes the sum of the terms involving the k-th row
but not the j-th, etc. Then

g
�
x + zç(x)

�
� g(x) ≥ gjk̄

�
x + zç(x)

�
� gjk̄(x)

for any x 2 C∆̄ and z 2 C. Moreover, since j Ú k, the description of 3.2A implies that to
every term jéj2 of gjk̄ there corresponds a term jé0j2 of gj̄k, with jé

�
x + zç(x)

�
� é(x)j �

jzjjé0(x)j. Thus

jg
�
x + zç(x)

�
� g(x)j ≥

Xþþþé�x + zç(x)
�þþþ2 � jé(x)j2

�
X

2jzjjé(x)jjé0(x)j + jzj2jé0(x)j2

� 2jzj
�
gj̄k(x)

� 1
2
�
gjk̄(x)

� 1
2 + jzj2gj̄k(x)

� (2jzj + jzj2)g(x)

by the Schwartz inequality; putting x ≥ x1, x2, . . . , (3.3.2) follows in this case.
If ç is of type (iii) then the proof is similar: in this case ç corresponds to the tensor

product of a row w delimiting some rectangle ñ 2 Ω with some column v of ñ. Note that
for every rectangle ñ0 2 Ω, either ñ0 \w is a complete row of ñ0, or ñ0 \ v is a complete
column of ñ0 (but not both). Decompose g ≥ gr + gc, where gr is the sum of those terms
corresponding to rectangles of the former kind and gc is the sum of terms corresponding
to rectangles of the latter kind. Restricting our attention to gr (the required estimate for
gc is similar), we think of gr(x) as a sum of squares of wedge products é of partial rows
of x, then decompose further gr ≥ gw + gw̄, according to whether the wedge products in
question do or do not contain (part of) w. Then

gr
�
x + zç(x)

�
� gr(x) ≥ gw̄

�
x + zç(x)

�
� gw̄(x),

and to each wedge product é occurring in gw̄ there correspond k wedge products é01, . . . , é0k
from gw, where k ≥ k(é) is the number of factors in é. Therefore

þþþé�x + zç(x)
�þþþ � jzjjvj

kX
i≥1

jé0i(x)j,

and þþþgr
�
x + zç(x)

�
� gr(x)

þþþ ≥Xþþþé�x + zç(x)
�þþþ2 � jé(x)j2

� 2jzjjvj
X
é
jé(x)j

�k(é)X
i≥1

jé0i(x)j
�

+ jzj2jvj2
X
é

k(é)X
i≥1

jé0i(x)j2

� 2njzj
�
gw̄(x)

� 1
2
�
gw(x)

� 1
2 + jzj2n2jvj2gw(x)

� (2njzj + jzj2n2jvj2)g(x),

and (3.3.2) follows for this case as well.
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3.4. Types IV and V. Here we give descriptions of the manifolds KnG0 and their Schubert
varieties in the “easy” types IV and V.

4.
�
SO(n)ð SO(2)

�
nSO(n + 2), n odd. This is the complex quadric Rn consisting of

all [z] 2 CPn+1 whose homogeneous components zi (0 � i � n + 1) satisfy

(3. 4. 1)
n+1X
i≥0

zizn+1�i ≥ 0.

Set ‡ ≥ (n +1)Û2, Pi ≥ f[z] 2 CPn+1 j zi+1 ≥ zi+2 ≥ Ð Ð Ð ≥ zn+1 ≥ 0g, 0 � i � n +1, and
Qi ≥ Pi+1\Rn, ‡�1 � i � n. Notice that Pi ² Rn for 0 � i � ‡�1, and Q‡�1 ≥ P‡�1.
The Schubert varieties for Qn are

(3. 4. 2) P0 ² P1 ² Ð Ð Ð ² P‡�1 ² Q‡ ² Q‡+1 ² Ð Ð Ð ² Qn ≥ Rn

(where in each case the subscript equals the complex dimension).

5.
�
SO(n)ðSO(2)

�
nSO(n+2), n even. This is again the complex quadric Rn, defined

by (3.4.1). Set ‡ ≥ (n + 2)Û2, and define Pi, Qi as above. Put P0‡�1 ≥ f[z] 2 CPn+1 j

z‡ ≥ z‡+2 ≥ z‡+3 ≥ Ð Ð Ð ≥ zn+1 ≥ 0g. The Schubert varieties are

(3. 4. 3)
P0 ² P1 ² Ð Ð Ð ² P‡�2 ² P‡�1

\ \
P0‡�1 ² Q‡ ² Q‡+1 ² Ð Ð Ð ² Qn.

4. MacPherson coefficients for Schubert varieties. In this section we state our
algorithm for computing the MacPherson coefficients dX

Y for pairs X ¦ Y of Schubert
varieties in types I, II and III. In fact the algorithm yields a polynomial DX

Y(q), and the
MacPherson coefficients are given by dX

Y ≥ DX
Y (1). The algorithm is stated in terms of

rooted weighted trees constructed from the Young diagrams of X and Y. These trees are
in turn abstracted from a certain combinatorial diagram Γ0 inside the diagram ∆̄ ≥ ∆̄(Y)
of the slice space. This and a related diagram will be important for the linear algebra
involved in the proof of the algorithm.

4.1. The dot configurations. We construct certain subsets Γ0, Γ+ and Γ� of ∆̄, which will
be crucial for all of our subsequentconstructions. They may be thought of as generalizing
to the deleted matrix ∆̄ the diagonal of a complete matrix.

Consider the partial order on ∆̄ defined by: (i, j) ¹ (i0, j0) iff i ½ i0 and j ½ j0. Thus
there is a unique maximal box, namely the upper right corner, and the minimal boxes are
those adjacent to the indentations of the boundary of ∆(Y).

To construct Γ0 we mark (with dots) certain entries of ∆̄ by the following inductive
procedure (see Figure 4.1). As the initial step, mark all entries that are minimal with
respect to the order �. For the inductive step, consider all entries of ∆̄ that share neither
a row nor a column with any previously marked entry; of these, again mark all of the
minimal ones. Continue until every box of ∆̄ shares either a row or a column (or both)
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Γ0 ≥ Γ+ Γ�

FIGURE 4.1. The dot configurations Γ0 ≥ Γ+ and Γ�.

with some marked box. Now take Γ0 to be the set of all marked entries. It is clear that if
∆̄ is symmetric about the diagonal then so is Γ0. In this case we set Γ+ ≥ Γ0.

We construct Γ� only when ∆̄ is symmetric. Consider the partial order above restricted
to the off-diagonal boxes, then mark the entries of ∆̄ following the procedure above,
marking at each stage all those off-diagonal entries which are minimal with respect to
the restriction of¹. Clearly #(Γ�) is even. Observe that one could also construct Γ� from
Γ+ as follows. If the number of diagonal elements of Γ+ is odd, unmark the greatest of
these. Then replace each pair (i, i), (j, j) of adjacent diagonal elements by the pair (i, j),
(j, i).

A less invariant but more practical way to perform the marking process above is to
proceed from left to right in ∆̄, marking with a dot the lowest entry in each column which
does not lie in a row containing any previously placed dot. In the construction of Γ� the
diagonal entries are also excluded. If it is not possible to place a dot in any given column,
the column is left blank and the process continues with the next column.

We will refer also to the result of the marking procedure above as the dot configuration
of ∆̄ (or of Y). In general, Γ0, Γ+, Γ� will be used in connection with Schubert varieties
in types I and II, and III respectively; note, however, that the combinatorial construction
of Section 4.2 below is based on Γ0 in all three cases.

REMARK 4.1A. The significance of the dot configurations Γ¢ is illustrated by the
following observations. Let A denote the set of all subrectangles ã ² M containing
the lower left corner (1, 1). Consider the set U ² C∆̄¢ of all elements y 2 C∆̄¢ such that
rank yã ≥ #(ã\Γ¢) for allã 2 A. Then U is open inC∆̄¢ . Moreover, if y 2 U then y Û2 ǫ́xΣx

for any x Â≥ 0. This may be deduced from the classification of tangent vectors to Σx at
x given in Proposition 3.2A(2). For (using notation from the proof of that proposition,
and letting * denote adjoint) it is clear that there are elements bi 2 Bi, i ≥ 1, 2, such that
y0 :≥ bŁ1ybŁ2 lies in the complex torus (CŁ)Γ¢ (if ¢ ≥ š then b1 ≥ b2). Now regarding
x 2 Σx ≥ ZY as an element of the appropriate type I Schubert slice Z̃Ỹ , by the construction
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of the dot configurations either there exists å 2 B1 for which

0 Â≥ håb1xb2 � b1xb2, y0i ≥ hb1(b�1
1 åb1x � x)b2, y0i

≥ hb�1
1 åb1x � x, yi,

or else there exists ç 2 B2 for which the corresponding inequality with right multiplica-
tion holds. But by 3.2A(2), b�1

1 åb1x� x 2 TxZ̃Ỹ . This proves the assertion in type I, and
also in types II and III if we recall that Z̃Ỹ is invariant under the appropriate involution
iš.

REMARK 4.1B. The following observation is easy to check, and will be useful: if Γ0

has a unique maximal element then either every row or every column of ∆̄ contains an
element of Γ0. Therefore the same is true of Γ� if the number of diagonal elements of Γ0

is even.

4.2. Statement of the theorem. Given a pair X ¦ Y of Schubert varieties, recall the
description of XY given in 3.2A(1). We produce the polynomial DX

Y from the rank function
ö defining the normal slice XY , together with the dot configuration Γ0.

Our construction is carried out in terms of certain connected rooted trees associated
to Γ0 and ö. In type I we use the so-called Hasse diagram of the poset of dots Γ0; i.e.,
the connected rooted tree isomorphic to it as a poset, edges corresponding to dots. (See
Figure 4.2.)

In types II and III we use the Hasse diagram of the sub-poset consisting of all dots of Γ0

lying on or above the diagonal. Furthermore we distinguish the edges which correspond
to the diagonal dots from the off-diagonal dots by drawing the former vertically, and
the latter obliquely. The vertical ones will be called central edges, the oblique ones side
edges. A central edge is odd if the number of central edges below it is even.

1 3

1

2

2

1 3

1

Y

X

1 1 1

3 3

2 2

1 1

3

2

Type I Type II and III

FIGURE 4.2. The trees T X
Y .
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To each vertex v of this tree (except the top one) we now associate a non-negative
integer capacity c(v) as follows. Let (i, j) be the dot corresponding to the (unique) edge
directly above v. Then

(4. 2. 1) c(v) :≥ minfö(ñ) j (i, j) 2 ñ 2 Ωg.

It is of course easy to read this off from the Young diagrams ∆(X), ∆(Y), using Propo-
sition 3.2A. The capacity of an edge is defined to be the minimum of the capacities of
all vertices lying below it. We denote the resulting tree, with the assigned capacities, by
T X

Y .

REMARKS 4.2A. 1. In drawing the trees we omit all capacities (on non-minimal
vertices) which are consequences of others.

2. It is easy to see that if ∆̄(Y) is symmetric, then no diagonal element of Γ0 is domi-
nated by an off-diagonal element. Therefore, in types II and III any edge above a central
edge is itself central.

We now construct the polynomial DX
Y(q) from T ≥ T X

Y . Put Λ ≥ Λ(T ) for the set of
all labelings ï: fedges e of T g ! fš1g satisfying the conditions:

(1) If v is a vertex with capacity c, then the number of edges e above v with
ï(e) ≥ �1 is less than or equal to c; and

(4. 2. 2)
(2) In type III, the labels on each pair of central edges must be the same (where
the central edges are numbered beginning with 1 at the bottom, and 1 is paired
with 2, 3 with 4, etc.) If there is an odd number of central edges, the label on
the top one must always be +1.

The sign õ(ï) is defined by
(1) In type I, õ(ï) :≥

Q
edges e

ï(e);

(2) In types II and III, õ(ï) :≥
Q

side
edges e

ï(e) Ð
Q

odd central
edges e

ï(e).

The weight jïj is defined by
(1) In types I and II, jïj :≥

P
ï(e)≥�1

(number of edges below e);

(2) In type III, jïj :≥
P

ï(e)≥�1
f number of side edges below e)+ number of even

central edges below e)g.
(We make the convention that if T X

Y is the empty tree, then it has only the “empty”
labeling ï with õ(ï) ≥ 1 and jïj ≥ 0.) Finally, we define

(4. 2. 3) DX
Y(q) ≥

X
ï2Λ

õ(ï)qjïj .

When Y Â² X we set DX
Y(q) � 0.

More generally, if T is any tree-with-capacities of this form (but not necessarily aris-
ing from a pair of Schubert varieties Y ² X), we define Λ(T ) by (4.2.2) and D(T ) to be
the polynomial in q determined by the rules above. We call two such trees-with-capacities
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equivalent if they have the same underlying trees and the same collections of allowed
labelings.

EXAMPLE 4.2B. Consider the tree T X
Y of Figure 4.3. Below it are all possible label-

ings ï which meet condition (4.2.2(1)). (We write the labels simply as + or � instead of
+1 or �1.) Below each labeling ï we write the associated monomial õ(ï)qjïj in each of
types I, II, or III; in type III the designation “NA” means that the labeling is not allowed
by condition (4.2.2(2)).

1

2

FIGURE 4.3. A sample tree T X
Y .

I:
II:

III:

+
+ +

+

1
1
1

+
+ +
�

�1
�1
NA

+
� +

+

�1
�1
�1

+
� +
�

1
1

NA

+
+ �

+

�q
q

NA

+
+ �
�

q
�q
�1

+
� �

+

q
�q
NA

+
� �
�

�q
q
1

�
+ +

+

�q3

�q3

NA

�
+ +
�

q3

q3

NA

�
+ �

+

q4

�q4

NA

Thus, according to (4.2.3), we obtain

DX
Y ≥

8><>:
q4 in type I
�q4 in type II
0 in type III.

As illustrated in the example there is a great deal of cancellation in (4.2.3). The pro-
cedure may be streamlined as follows. Let us say that an edge e of T X

Y is special if e is a
minimal central edge in type III having at least one side edge emanating from its upper
vertex. Similarly, a vertex v is special if it is the lower vertex of a special edge. An edge
(resp. vertex) is called ordinary if it is not special.

LEMMA 4.2C. DX
Y(q) may be computed by the formula (4.2.3), where the summation

is over the set Λ0 ² Λ of all labelings ï satisfying, in addition to (4.2.2), the conditions:
(3) ï(e) ≥ 1 for every ordinary minimal edge e; and
(4) if v is an ordinary minimal vertex with capacity c, the number of edges e above

v with ï(e) ≥ �1 is equal to c.

In the example above, only the very last labeling satisfies (3) and (4) (and there is no
such labeling in type III, so DX

Y � 0).
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PROOF. Let ï 2 Λ and suppose ï(e1) ≥ �1 for some minimal edge e1. If e1 is not
a type III central edge, then we obtain another allowed labeling ï� by

(4. 2. 4) ï�(e) ≥
(
ï(e), e Â≥ e1

�ï(e), e ≥ e1.

If e1 is an ordinary central edge in type III, then there is a central edge e2 directly above
e1 (recall Remark 4.2A), and we define ï� by

(4. 2. 5) ï�(e) ≥
(
ï(e), e Â≥ e1, e2

�ï(e), e ≥ e1 or e2.

In either case, jï�j ≥ jïj while õ(ï�) ≥ �õ(ï), so that õ(ï)qjïj + õ(ï�)qjï�j ≥ 0.
Suppose e1 is a minimal edge whose lower vertex v has capacity c, ï is an allowed

labeling with ï(e1) ≥ +1, and there are fewer than c edges e above e1 with ï(e) ≥ �1.
If e1 is not a type III central edge, then we obtain another allowed labeling ï� by (4.2.4).
If e1 is an ordinary central edge in type III, then c must be even, and because the labels
�1 above e1 occur in pairs (by (4.2.2(2)) and Remark 4.2A), there can be at most c � 2
edges e above e1 with ï(e) ≥ �1. Thus (4.2.5) defines an allowed labeling ï�. In either
case, the terms in D coming from ï and ï� again cancel.

REMARK 4.2D. If DX
Y Â≥ 0, then it is not difficult to see that there is a unique labeling

ïmax having maximal weight, and hence DX
Y has leading coefficientš1. (In fact, ïmax is

obtained by proceeding from top to bottom in the tree, labeling each edge with �1 if
this is permitted by (4.2.2).) Other properties of the D polynomials are more elusive.
For example, the signs of the coefficients need not all be the same, nor do they usually
alternate, and coefficients other than 0,š1 do occur. Since (as the theorem below implies)
the D polynomials are a sort of “quantized” version of the MacPherson coefficients, it is
natural to seek a geometric interpretation of the polynomials themselves. However we
have been unable to find such an interpretation.

Now we may state our result on the MacPherson coefficients in types I, II and III.

THEOREM 4.2E. Given a Schubert variety X in a Hermitian symmetric space of
type I, II or III, the normal cycle of X is given by

N(X) ≥
X
Y²X

DX
Y(1)N(YŽ),

where the sum is over all Schubert varieties Y ² X, and DX
Y(q) are the polynomials

constructed in this subsection. In particular, dX
Y ≥ DX

Y(1).

5. Proof of the main algorithm. This section is devoted to the Proof of Theo-
rem 4.2E. The idea is to conform as closely as possible to the following outline, which,
sadly, we were unable to execute in its full simplicity. For clarity we restrict the discus-
sion to the An case, the standard Grassmannian. We make the hypothesis that degû ≥
deg(ûjSΓ0 ), where Γ0 ² ∆̄ is the dot configuration defined in Section 4. (Our inability
to prove this hypothesis accounts entirely for the failure of the present account to yield
a rigorous proof.) The hypothesis holds if there is an open subset U ² SΓ0 such that
û�1(U) ² U. Put Σ+ ² SΓ0 for the curved simplex consisting of all points in the sphere
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with all coordinates real and nonnegative. Then û is well-defined on the interior of Σ+

and it is easy to prove that deg(ûjSΓ0 ) ≥ deg(ûjΣ+) ≥: d.
To evaluate (inductively) this last degree we distinguish two cases. Letç1, . . . , çk 2 Γ0

denote the maximal elements of Γ0. If k Ù 1 then we are in the so-called decomposable
case. In this case Σ+ is the join of the faces Σ1, . . . , Σk corresponding to the subsets of Γ0

dominated by the respective çi, and the map ûjΣ+ is the join of the maps ûjΣi: Σi ! Σi,

i ≥ 1, . . . , k. In this situation it is clear that d ≥
kQ

i≥1
deg(ûjΣi), where these last factors

are equal to the MacPherson coefficients of simpler Schubert singularities.
In the complementary indecomposable case we use the elementary equation of cur-

rents

(5. 0. 1) d[[∂Σ+]] ≥ d∂[[Σ+]] ≥ ∂ d[[Σ+]] ≥ ∂ûŁ[[Σ+]].

If û were defined throughout ∂Σ+ then this would tell us that d is equal to the degree
of the restriction of û to the boundary of Σ+. As it is, û is in all cases of interest well-
defined on the faces Σi of codimension 1, and even stabilizes these faces, but may not
be defined on faces of higher codimension. Let vŁ denote the distinguished vertex of
Σ+, associated to the maximal coordinate ç ≥ ç1. The face ΣŁ opposite vŁ has special
properties: if û(xi) ! ΣŁ then either xi ! ΣŁ or xi ! vŁ. It turns out that we may think
of the preimage of ΣŁ under û as consisting of ΣŁ itself together with a virtual copy of ΣŁ,
with the opposite orientation, at vŁ. Thus the multiplicity of ΣŁ in (5.0.1)—and therefore
the degree d that we seek—is the difference of the degrees of these two self maps of ΣŁ,
and we again obtain a recurrence relation for the desired MacPherson coefficient.

It is not difficult to prove the hypothesis above if X and Y are “determinantal” Schubert
varieties (i.e. varieties for which the defining sequences (3.1.2) assume only two distinct
values). The computation of the array of these MacPherson coefficients by the method
above is a useful exercise.

In the honest proof of the formula given below, the subsphere S∆̄0
(defined in Sec-

tion 5.3) corresponds to the face ΣŁ and ZY (defined in Section 5.2) corresponds to the
vertex vŁ. The vestiges of the idea of the virtual face at vŁ appear in the blowing up
process used in Section 5.3.

5.1. The decomposable case. Let us now begin the formal proof. We use induction on
the number of edges in the tree T X

Y . If the tree is empty then both X and Y coincide with
the ambient Hermitian symmetric space and DX

Y ≥ 1 ≥ dX
Y , as required.

For the inductive step, note first that we may assume that some maximal edge of T X
Y

has positive capacity. Otherwise, the description 3.2A of the normal slice XY implies that
by shaving the Young diagrams of X and Y appropriately we may produce a new Schubert
pair (X0, Y0) such that (X0)Y0 ' XY and where the tree T X0

Y0 is equal to T X
Y with one or more

maximal edges of capacity zero deleted.
As in the discussion above, if Γ0 contains a unique maximal element then we say that

the pair (X, Y) is indecomposable, otherwise decomposable. Thus (X, Y) is indecompos-
able iff T X

Y has a unique maximal edge, which in types II and III is required additionally
to be central.

Suppose first that (X, Y) is decomposable. If, in type II or III, the tree T X
Y consists

entirely of side edges, then we will identify a type I Schubert pair (X1, Y1) such that
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ï1 ñ0

X1

X2 X

Y

ï2

2 4 3

3 2

2 2 2

3 2

T X
Y T X1

Y1
T X2

Y2

FIGURE 5.1. Decomposable case, type I.

DX
Y ≥ DX1

Y1
and dX

Y ≥ dX1
Y1

. If on the other hand T X
Y has more than one maximal edge we

will find Schubert pairs (X0, Y0), (X00, Y00) such that i) dX
Y ≥ dX0

Y0 ÐdX00

Y00 and ii) T X
Y is the join

of T X0

Y0 and T X00

Y00 at their top vertex. Condition ii) clearly implies that DX
Y ≥ DX0

Y0 ÐDX00

Y00 .
The condition that (X, Y) be decomposable is equivalent to the existence of a rectangle

ñ0 2 Ω with ñ0 \ Γ0 ≥ ñ0 \ Γ� ≥ ;. Define the modified aura

g̃(x) :≥ (1 + jxñ0 j2)g(x),

with
rg̃(x) ≥ (1 + jxñ0 j2)rg(x) + 2g(x)xñ0 .

Since for anyñ 2 Ω the rectangleñ0\ñ is a block either of complete rows or of complete
columns of ñ, for t ½ 0 we have

g(x + txñ0 ) ≥
X
ñ2Ω

þþþ^ ö(ñ)+1(xñ + txñ0\ñ)
þþþ2

½
X
ñ

þþþ^ ö(ñ)+1xñ
þþþ2

≥ g(x).

Therefore Rehrg(x), xñ0i ≥ Dxñ0 g(x) ½ 0, whence
�
rg̃(x)

�ñ0
≥ 0 iff xñ0 ≥ 0 or g(x) ≥

0. If y 2 C∆̄�ñ0 belongs to the open set U defined in Remark 4.1A, then y does not occur
as a normal to any nontrivial Schubert stratum. Therefore, by Lemma 3.3A, y Â≥ limû(xi)
for any sequence of points xi converging to a nonzero point of XY . Moreover, if xñ0 ≥ 0
and x Â2 XY then the restriction to Cñ0 of the Hessian form D2g̃(x) is positive definite. It
follows that if we put û̃0 :≥ rg̃

jrg̃j then in type I

dX
Y ≥ deg(û̃0jS

∆̄) ≥ deg(ûjS∆̄�ñ0 ).

It is also easy to deduce that if ∆̄ and the rank function ö are both symmetric then, putting
g̃š :≥ g̃jC∆̄š and û̃š for the corresponding normalized gradients,

dX
Y ≥ deg(û̃šjS∆̄

š) ≥ deg(ûšjS
∆̄�(ñ0[ñt

0)
š ).
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In type I we now proceed as follows. Denote the components of ∆̄ � ñ0 by ï1, ï2.
Then ûjS∆̄�ñ0 is the join of the maps ûi :≥ ûjSïi , i ≥ 1, 2. Thus the degree of û is the
product of the degrees of the ûi. But ûjCïi is the normalized gradient of gjCïi , which in
turn is an aura for a Schubert slice (Xi)Yi such that the weighted tree T X

Y is equivalent to
the join of the weighted trees T Xi

Yi
at their top vertex (see Figure 5.1). Therefore

dX
Y ≥ dX1

Y1
Ð dX2

Y2

≥ DX1
Y1

(1) Ð DX2
Y2

(1) by induction

≥ DX
Y(1).

In types II and III the argument is similar. In this case ∆̄� (ñ0 [ñ
t
0) has two symmet-

rically related components ï1, ït
1, and possibly a third component ï2 with ï2 ≥ ït

2. We

express ûšjS
∆̄�(ñ0[ñt

0)
š as the join of ûšjS

ï1[ït
1š and ûšjSï2

š (see Figure 5.2). The former
map corresponds to a Schubert pair (X1, Y1) which is isomorphic to the type I Schubert
pair (X01, Y01) determined by ∆(X01) ≥ ∆(X) \ ï1, ∆(Y01) ≥ ∆(Y) \ ï1. In the associated
subtree T X1

Y1
of T X

Y all of the edges are side edges. Therefore the (logically prior) analy-

sis of type I yields dX1
Y1
≥ d

X0
1

Y0
1
≥ D

X0
1

Y0
1
(1) ≥ DX1

Y1
(1). The latter map corresponds to a pair

(X2, Y2) of type II or III, for which the result holds by induction. The proof now proceeds
as in type I.

5.2. The indecomposable case: combinatorial part. Suppose now that (X, Y) is inde-
composable, and let n :≥ #(Γ0). Let M0 denote the rectangle spanned by ∆̄(Y). In types II
and III, M0 is a square. By Remark 4.1B, either every row or every column of M0 con-
tains an element of Γ0. Suppose for definiteness that every row does, and let ñŁ denote
the union of all the columns which do not; it is clear that ñŁ 2 Ω. Consider the modi-
fied aura g̃(x) :≥ g(x) + jxñŁ j2. Putting û̃ :≥ jrg̃j�1rg̃, an argument similar to that of
Section 5.1 shows that dX

Y ≥ deg û̃ ≥ deg(û̃jS∆̄�ñŁ ). This shows that dX
Y depends only

on the combinatorial data (M0 � ñŁ) \ ∆(Y), (M0 � ñŁ) \ ∆(X). As the same is true of
the weighted tree T X

Y (up to equivalence), we may assume even in type I that M0 is a
square of side n. We change coordinates so that the lower left corner of M0 is (1, 1) and
the upper right corner is (n, n) (see Figure 5.3).

Let e0 denote the unique maximal edge of T X
Y , which (as noted in the introduction to

Section 5) we may assume to have positive capacity. Suppose W is a Schubert variety
with X ¦ W ¦ Y and such that the weighted tree T W

Y is equivalent to T X
Y with e0

removed. If in type III the number of central edges is odd, then obviously DX
Y ≥ DW

Y . We
therefore assume in type III that n is even. Suppose Z is a Schubert variety, X ¦ Z ¦ Y,
such that:

in types I and II, T X
Z is equivalent to T X

Y with e0 removed and the capacities of all
remaining edges diminished by 1;

in type III, letting e1 denote the central edge directly below e0, T X
Z is equivalent

to T X
Y with both e0 and e1 removed and the capacity of each remaining edge e

diminished by 1 if e Ú e0 but e ÂÚ e1 and by 2 if e Ú both e0 and e1.

Put k for the cardinality of the set of diagonal elements of Γ0 (= the number of central
edges of T X

Y ). Thus in types II and III the cardinality of the set of side edges of T X
Y is
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ï1
ñ0

Y
ï2

ït
1

FIGURE 5.2. Decomposable case, types II and III.

n

M0

ñŁ

1

1 n
FIGURE 5.3. M0, type I.

n�k
2 ; in particular, n and k must have the same parity. In type III put ‡ for the number of

side edges e Ú e1. Using (4.2.3) it is straightforward to verify that

(5. 2. 1) DX
Y(q) ≥

8>><>>:
DW

Y (q) � qn�1DX
Z(q) in type I

DW
Y (q) + (�1)kq

n+k
2 �1DX

Z (q) in type II
DW

Y (q) � q
n+k
2 +‡�2DX

Z(q) in type III,

where the first (resp. second) term arises from those labelings with ï(e0) ≥ +1 (resp.
�1). To complete the proof of the theorem it will therefore be enough to construct such
Z and W and to show that

(5. 2. 2) dX
Y ≥

(
dW

Y � dZ
Y in types I and III

dW
Y + (�1)n dZ

Y in type II
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(where we have exploited the fact that (�1)k ≥ (�1)n in type II).
We now identify the varieties W, Z. Put

°¢ :≥
(
fng ð f1, . . . , ng, ¢ ≥ 0
fng ð f1, . . . , ng [ f1, . . . , ng ð fng, ¢ ≥ š.

Then W is determined by the relation (cf. Figure 5.5)

∆(W) \M0 ≥ ∆(X) \ M0 � °.

Assuming in type III that k is even, we describe the variety Z by means of the rank
function öZ

Y defining the normal slice ZY . Let ç0 ≥ ç+ ≥ f(n, n)g denote the singleton
consisting of the maximal dot of Γ0, and ç� ≥ f(r, n), (n, r)g the symmetric pair of
maximal dots in Γ�. Then Z is determined by the relation

öZ
Y(ñ) � #(ç¢ \ ñ), ñ 2 Ω.

It is straightforward to check that the Young diagram ∆(Z) is constructed as follows. In
types I and II, adjoin to ∆(Y) the “ribbon” consisting of all boxes adjacent to the boundary
of ∆(Y), beginning at (1, n) and ending at (n, 1); see Figure 5.4. Therefore the dimension
formulae 3.2A(3) gives

(5. 2. 3) dim(ZY) ≥ dim(Z) � dim(Y) ≥
(

2n � 1 in type I,
n in type II.

*

* *n

∆̄(Z)

∆(Y)
1

1 n

r

∆̄(Z)

∆(Y)
s

s r
Types I and II Type III

FIGURE 5.4. The Young diagram ∆(Z).

In type III, observe first that by indecomposability (r, r) 2 ∆̄(Y). Let (r, s), (s, r) denote
the minimal elements of ∆̄ lying in column r and row r of ∆̄, respectively; thus s � r. To
obtain ∆(Z), first adjoin to ∆(Y) the short ribbon extending from (s, r) to (r, s), then adjoin
to the resulting diagram the ribbon from (1, n) to (n, 1) (see Figure 5.4). The dimension
formula now gives

(5. 2. 4) dim(ZY) ≥ n � 1 + r � s.
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This expression is necessarily odd, i.e. r � s is even. For, columns s through r � 1 of ∆̄
cannot contain any dots on or above row r: this is guaranteed by the placement of the dot
at (r, n) in Γ�. Similarly, rows s through r�1 of ∆̄ cannot contain any elements of Γ� on
or to the right of column r. Thus all of the dots in these rows and columns, which must
be even in number, must lie within the square f(i, j) j (s, s) ¼ (i, j) ¼ (r� 1, r� 1)g, and
since every row or column of ∆̄ contains an element of Γ� (Remark 4.1B), the size r� s
of this square is even.

It is straightforward to verify that T X
Z and T W

Y are as stated.
We will need also the following result. Suppose that m ≥ n (i.e. M0 is square), and

in type III that k is even. Let det¢ denote the cone of all y 2 C∆̄¢ ² CM0 such that
det y ≥ 0. Let PZY ² P∆̄¢ denote the projective variety corresponding to the cone ZY , and
(PZY)Ł ² P∆̄¢ its dual variety, where we have identified the dual projective space (P∆̄¢ )Ł

with P∆̄¢ via the standard Hermitian metric. Put Γ0¢ :≥ Γ¢ � °¢.

LEMMA 5.2A.
(PZY)Ł ≥ Pdet¢.

Moreover, there is a nonempty Zariski open subset U0, PΓ0
² U0 ² Pdet¢ such that

(1) U0 \ (PZ0Y)Ł ≥ ; for all Schubert varieties Z0 Â≥ Z, Z0 ¦ Y, and
(2) for each ë 2 U0 there is a unique ò 2 PZY such that ë 2 PóòPZY.

PROOF. Given any x 2 C∆̄ and y 2 óΣx, the classification 3.2A(2) of the tangent
vectors to the stratum Σx shows that the matrix product y ž x̄nÐ ≥ 0. Thus if x° Â≥ 0 then
det y ≥ 0. Since the set of such points x is dense in ZY , it follows that (PZY)Ł ² Pdet.

Conversely, the classification 3.2A(2) implies that (CŁ)Γ0

¢ ² óxZY for x 2 Sç¢ . Let A
denote the set of all lower-left justified rectanglesã ² M0, i.e. the set of allã of the form
ã ≥ f1, . . . , kg ð f1, . . . , lg, 1 � k, l � n. Putting

U0 :≥ fy 2 C∆̄
¢ j rank yã ≥ #(Γ0¢ \ ã) for all ã 2 Ag

(see Figure 5.5), the lemma now follows by an argument similar to that given in Re-
mark 4.1A.

REMARKS 5.2B. 1. Denoting by H the ambient Hermitian symmetric space, the first
statement of the lemma implies that the conormal varieties óŁZ, óŁY ² T ŁH intersect in
a subvariety of codimension one. In fact, in types I and II the poset of Schubert varieties
Z dominating Y with this property is isomorphic to the poset of edges of the tree T X

Y : if
ãe ² Γ0 corresponds to the edge e then the corresponding Schubert variety Z ≥ Ze is
determined by the rank function öZ

Y(ñ) ≥ #(ñ \ ãe) (cf. Proposition 3.2A).
2. Conclusion (2) of 5.2A implies that the correspondence Pdet $ PóŁZY is almost

a birational equivalence—this becomes precisely true if we replace Pdet by PdetŁ, the
subvariety of the dual projective space (P∆̄)Ł corresponding to P∆̄ under the diffeomor-
phism induced by the standard Hermitian structure.

3. It is not difficult to generalize 5.2A and its proof to obtain a characterization of the
dual variety of any projectivized Schubert slice.

5.3. The indecomposable case: analytic part. We can now complete the Proof of The-
orem 4.2E. We begin by stating the following lemma. The idea is that the map û almost
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* *

*

*

X

Y

W

n

°

∆̄0

ç

Γ0

X

Y

W

n

r

r n
Type I Type III

FIGURE 5.5. Various subsets of ∆̄(Y).

enjoys the properties (3) and (4) below of the map †: û is good enough that it may be
perturbed to †without altering the degree. These properties are sufficient to prove the re-
cursive formula (5.2.2), as we will show presently. The proof of the lemma is postponed
to the next section.

We define

∆̄0¢ :≥ ∆̄¢ � °¢,

and, for y 2 C∆̄¢ � det put

í(y) :≥

8><>:
det y
j det(y)j in types I and II

Pf y
jPf(y)j in type III,

where Pf is the Pfaffian (the algebraic square root of the determinant).

LEMMA 5.3A. There is a continuous semialgebraic map Ψ: [0, 1]ðgraphû ! S∆̄¢ ð
S∆̄¢ with the following properties.

(1) For each t 2 [0, 1], there is a continuous semialgebraic map †t:S∆̄ � XY !
S∆̄ such that Ψt(x, y) :≥ Ψ(t, x, y) ≥

�
x,†t(x)

�
for x 2 S∆̄ � XY.

(2) If t ≥ 0 or x 2 XY then Ψ(t, x, y) ≥ (x, y).
(3) Put † :≥ †1. Then †jS∆̄0

¢ ≥ ûjS∆̄0

¢ and †�1(S∆̄0

¢ ) ² S∆̄0

¢ . If x 2 S∆̄0

¢ � XY then
the transverse Jacobian hw, D†(x) Ð vi is a positive definite form on v, w 2

C°¢ ≥ (TxS
∆̄0

)? ² TxS
∆̄¢ .

(4) There are open sets V, Q ² S∆̄¢ with V ¦ Sç¢ and Q \ SΓ0
¢¢ Â≥ ;, such that if

x 2 †�1(Q) \ V then det†(x) Â≥ 0 and

(5. 3. 1) í
�
†(x)

�
≥ í

�
xç¢ + †(x)

�
.
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CONCLUSION OF THE PROOF OF THEOREM 4.2E. Put G for the current representing
the graph of û. Then

∂ô2ŁΨŁ([[s, t]] ðG) ≥ ô2ŁΨŁ∂([[s, t]] ðG)

≥ ô2ŁΨŁ
�
([[t]] � [[s]]) ðG� [[s, t]] ð ∂G

�
≥ (†tŁ � †sŁ)[[S∆̄]] � 0

—here the second term vanishes since it is an integral current of dimension 2#∆̄ � 1
supported on the set ô2 ŽΨ([s, t] ð spt ∂G) ≥ ô2 Ž Ψ0(spt ∂G), which has dimension at
most 2#∆̄� 2 by the Proof of Theorem 2.2A. Similarly, the current under the boundary
on the left-hand side has dimension 2#∆̄, hence vanishes, so (†Ł � ûŁ)[[S∆̄]] ≥ (†1Ł �
†0Ł)[[S∆̄]] ≥ 0. Thus the degree of † is well-defined, with deg† ≥ degû ≥ dX

Y . Thus we
must show that deg† ≥ dW

Y š dX
Z , as in (5.2.2).

By 5.2A, given any element y 2 SΓ0

¢ \ U0 we have
T

rÙ0
û�1

�
B(y, r)

�
� û�1(y) ² Sç¢ .

Therefore 5.3A (2) and (3) imply that
T

rÙ0
û�1

�
B(y, r)

�
² S∆̄0

[ Sç. Thus given any open

set U ¦ S∆̄0

¢ , disjoint from V, the open set Q of 5.3A (4) above may be taken so small
that †�1(Q) ² U [ V. For such Q we have

dX
Y [[Q]] ≥ (†Ł[[S∆̄

¢ ]])jQ ≥ (†Ł[[U]])jQ + (†Ł[[V]])jQ ≥: d1[[Q]] + d2[[Q]]

for some d1, d2 2 Z. It is clear that d1 ≥ dW
Y since by (3) any regular value of û¢jS∆̄0

¢ is a
regular value of †jU, and the local degrees of these two maps coincide on S∆̄0

¢ .
To evaluate d2, observe that by 5.3A (2) and the basic relations (2.2.3), (2.2.4), the

current H representing the graph of † has a nonzero boundary satisfying

(5. 3. 2) (∂H)jV ðQ ≥ (∂G)jV ð Q ≥ �dX
Z NS(ZY \ S

∆̄)jV ðQ.

It is clear that †Ł[[V]]jQ ≥ ô2Ł(HjV ð Q). We wish to exploit the fact that ∂H Â≥ 0 by
using the fact that if f : M ! N is a map between manifolds with f (∂M) ² ∂N then
the degree of f is equal to the degree of f j∂M. The problem is of course that the target
submanifold Q has no boundary and thatô2 takes ∂H to zero—indeed this fact is central to
our method, guaranteeing that the degree of† is well-defined. However we can introduce
additional boundary by “blowing up” Q over the codimension 2 submanifold det \ Q.
More precisely, consider the “blow-up”

S̃ :≥
n�

y, í(y)
�
j y 2 S∆̄¢ � det

o
² S∆̄

¢ ð S1

of the image sphere. Put õ: S̃ ! S∆̄¢ for the projection and Ã :≥ õ�1(A) for A ² S∆̄¢ . We
now show that ô2j(graph†\VðQ) lifts and extends to a map Θ: graph†\VðQ ! S̃,
and examine the boundary behavior of Θ.

Put í̄ :≥ í Ž ô2jS
∆̄ ð (S∆̄ � det). Condition (5.3.1) may be restated as

(5. 3. 3) í̄(x, y) ≥ í(xç + y) for (x, y) 2 graph† \ V ðQ.

Thus í̄ admits a Lipschitz extension, again denoted í̄, to all of graph†\(VðQ), satisfying
the same relation (5.3.3). Therefore õ�1 Ž ô2 also extends to a Lipschitz map Θ: spt H \
(VðQ) ! S̃, given by Θ(x, y) ≥

�
y, í̄(x, y)

�
2 S̃ ² S∆̄ ðS1 for (x, y) 2 spt H\ (VðQ).
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The natural orientation on det induces a natural orientation on the circle bundle gdet,
opposite to the orientation of gdet as the boundary of Q̃:

(5. 3. 4) ∂[[Q̃]] ≥ �[[gdet]]jQ̃.

Therefore
d2[[gdet]] ≥ �d2∂[[Q̃]]

≥ �∂ΘŁ(HjV ð Q)

≥ �ΘŁ(∂HjV ð Q)

≥ dX
Z ΘŁ[[ó(ZY \ S

∆̄) \ (V ð Q)]]

by (5.3.2). Hence

d2 ≥ dX
Z deg(Θ),

where we regard Θ as a map from ó(ZY \ S
∆̄) to gdet.

To evaluate this degree, let Pdet ² P∆̄ denote the projective variety corresponding to
det, so det is a principal S1 bundle over Pdet. Thus gdet is an S1 ð S1 bundle over Pdet.
Similarly we may regard ó(ZY \ S

∆̄) as an S1 ðS1 bundle over the projectivized normal
bundle PóPZY ² P∆̄ ð P∆̄ over PZY , and Θ covers the natural projection ô2:

ó(ZY \ S
∆̄)

Θ
�! gdet??y ??y

PóPZY
ô2
�! Pdet

The degree of the map on the bottom may be evaluated by factoring through the dual
projective space (P∆̄)Ł:

P∆̄ ð (P∆̄)Ł ¦ PóŁPZY
ô2
�! PdetŁ ² (P∆̄)Ł??y ??y

P∆̄ ð P∆̄ ¦ PóPZY
ô2
�! Pdet ² P∆̄

where PdetŁ is the subvariety corresponding to Pdet under the antiholomorphic isomor-
phism P∆̄ ! (P∆̄)Ł induced by the Hermitian metric. By Lemma 5.2A, the top line is a
birational equivalence of algebraic varieties, hence has degree +1, while the two verti-
cal maps have degrees (�1)codim PZY�1 ≥ (�1)#(∆̄)�dim PZY and (�1)dim Pdet ≥ (�1)#(∆̄)�2

respectively. Therefore the degree of the bottom map is (�1)dim PZY .
We complete the computation by evaluating the degree of the induced map on the

fiber S1 ð S1. The orientation of S1 ð S1 induced by the canonical orientations of gdet
and Pdet is such that the first factor comprises the fiber of the Hopf fibration det ! Pdet
and the second factor the fiber of the blowup gdet ! det. The orientation of S1 ð S1

induced by the canonical orientation of PóPZY is given in a similar way, the first factor
comprising the fiber of the Hopf fibration ZY ! PZY and the second factor giving the
fibration of the normal bundle. Now if (x, y) 2 óZY and (z, w) 2 S1 ð S1, with Θ(x, y) ≥
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�
y, í̄(x, y)

�
2 gdet ² detð S1, then using 5.3A (4) we obtain

Θ
�
(z, w) Ð (x, y)

�
≥ Θ(zx, wy)

≥
�
wy, í̄(zx, wy)

�
≥
�
wy, í(zxç + wy)

�
≥
�
wy, zwn�1í(xç + y)

�
≥ (w, zwn�1) Ð Θ(x, y).

Therefore the degree of the induced map on the fibers is �1, so the total degree is

(�1)dim PZY+1 ≥ (�1)dim ZY

≥

(
�1 in types I and III
(�1)n in type II

(by (5.2.3) and (5.2.4)) as required.

5.4. Proof of Lemma 5.3A. To complete the proof we establish the existence of the
deformation † of the lemma. Given x 2 C∆̄ ² CM0 ' Cnðn, let

V¢(x) :≥
(

(xnÐ)?, ¢ ≥ 0 or +
(xÐr)? \ (xÐn)?, ¢ ≥ �

and U0(x) :≥ (xÐn)?.

Given vectors v, w 2 Cn, let v 
 w denote the n ð n matrix [viwj]ij . Thus

(v 
 w) ž ū ≥ hw, uiv.

Put v þw :≥ 1
2 (v 
 w + w
 v) and vÞ w :≥ (v 
w� w
 v). It is clear that if x 2 CM0¢

is sufficiently close to Sç¢ then rg(x) (or indeed any element of CM0 ) may be expressed
uniquely as

(5. 4. 1) rg(x) ≥

8><>:
c(x)(xnn)�1xÐn 
 xnÐ + v(x) 
 xnÐ + xÐn 
 u(x) + R(x) in type I
c(x)(xnn)�1xÐn þ xnÐ + v(x) þ xnÐ + R(x) in type II
c(x)(xrn)�1xÐn Þ xrÐ + v(x)Þ xnÐ + R(x) in type III

where c(x) 2 C, v(x) 2 V¢(x), u(x) 2 U0(x), and

R(x) 2

8><>:
V0(x) 
U0(x) in type I
V+(x) þ V+(x) in type II
U0(x) Þ U0(x) in type III.

STEP 1.

(5. 4. 2) lim
x!Sç¢

c(x)g(x)�1 ≥ 2,

(5. 4. 3) lim
x!Sç¢

g(x)�1v(x) ≥ lim
x!Sç¢

g(x)�1u(x) ≥ 0.

PROOF OF STEP 1. We abbreviate v(x) as v, etc. Since x ! Sç, the decomposition
(5.4.1) gives

rg(x) ž x̄nÐ ≥ cen + o(c) + jxnÐj2v,
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where e1, . . . , en is the standard basis of Cn, jxnÐj ! 1 and hv, eni ! 0. In type I, there is
a similar formula involving u arising from left multiplication. It is enough therefore to
prove that

(5. 4. 4) g(x)�1rg(x) ž x̄nÐ ! 2en

(in type I there is a symmetric argument for the estimate on u).
We may think of each term j

V ö(ñ)+1xñj2, ñ 2 Ω, as a sum of squares of wedge prod-
ucts é(x) of partial columns of x. In type III, note that by symmetry we may write

(5. 4. 5) g(x) ≥
þþþ^ ö(ñ0)+1xñ0

þþþ2 + 2
X
ñ2Ω1

þþþ^ ö(ñ)+1xñ
þþþ2,

where ñ0 is the unique square in Ω and Ω1 ² Ω consists of all rectangles with lower left
corner below the diagonal. The indecomposability hypothesis implies that (n, r) 2 ñ for
every ñ 2 Ω1 [ fñ0g. Thus in each type the n-th column of each xñ entering in the sum
is bounded away from zero as x ! Sç.

Write g ≥ gn + gn̄, where gn is the sum of all such wedge products involving the n-th
column. We claim that

(5. 4. 6) gn̄(x)gn(x)�1 ! 0.

For, given a nonzero wedge product é(x) occurring in gn̄(x), by replacing each factor in
turn by the (partial) n-th column, we obtain ö(ñ) + 1 wedge products éi(x) occurring in
gn(x). Since xjk ! 0 for (j, k) Â2 ç¢ and xç Â! 0, the last paragraph implies that there is
i(x) 2 f1, . . . , ö(ñ) + 1g such that é(x)éi(x)(x)�1 ! 0. This implies (5.4.6).

Recalling the classification 3.2A(2), let îj 2 TeB2 denote the infinitesimal isotropy el-
ement corresponding to the operation of moving the n-th column to the j-th, j ≥ 1, . . . , n.
Then for each z 2 C and x 2 C∆̄ the vector of directional derivatives of g in the directions
zîj(x) may be obtained by matrix multiplication of the matrix rg(x) 2 C∆̄ ² CM0 with
the complex conjugate of the column vector zxnÐ:�

Dzî1(x)g(x), . . . , Dzîn(x)g(x)
�
≥ Re

h
z̄
�
rg(x)

�
ž x̄nÐi.

For j Ú n, an argument similar to the Proof of Lemma 3.3A shows that there is a constant
C such that

jDzîj(x)g(x)j � Cjzjgn(x)
1
2 gn̄(x)

1
2 ,

while

Dîn(x)g(x) ≥ 2gn(x),

Dp�1în(x)g(x) ≥ 0.

Thus (5.4.6) implies (5.4.4).

REMARK. From these estimates and the Łojasiewicz inequality it follows that as x !
Sç most of rg(x) is contained in R(x), with a secondary contribution from the first term
of (5.4.1). In particular, if û(x) converges to some point y0 2 detŽ then rank R(x) ≥ n�1
eventually, and detû(x) is close to the determinant of the sum of the first and last terms.
The first estimate above implies that the first term is almost a positive multiple of xç.
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Therefore, in order to achieve the deformation † of the lemma, and in particular the
key relation (5.3.1), we would like to suppress the middle terms in (5.4.1). However we
cannot do this directly since in general the sum of the remaining terms belongs only to
the full matrix space CM0 : we cannot ensure that the M0 � ∆̄ components are all zero.
This problem is addressed in Step 2.

STEP 2. Let ï ≥ ï¢ denote the nearest point projection onto det¢, well-defined
on a neighborhood of detŽ¢ in C∆̄¢ . Suppose x1, x2, Ð Ð Ð ! x0 2 Sç and û(xi) ≥
jrg(xi)j�1rg(xi) ! y0 2 (CŁ)Γ0

¢ . Thenþþþï�û(xi)
�
� jR(xi)j

�1R(xi)
þþþ ≥ o

�
g(xi)jrg(xi)j

�1
�

as i !1.

PROOF OF STEP 2. We estimateþþþï�û(xi)
�
� jR(xi)j�1R(xi)

þþþ � þþþï�û(xi)
�
� jrg(xi)j�1R(xi)

þþþ
+ jR(xi)j

þþþjrg(xi)j
�1 � jR(xi)j

�1
þþþ.

The second term is o
�
g(xi)jrg(xi)j�1

�
by Step 1, since the first and last terms of (5.4.1)

are orthogonal. The first term is dominated by

(5. 4. 7)
þþþï�û(xi)

�ç
� jrg(xi)j�1R(xi)ç

þþþ + þþþï�û(xi)
�M0�ç

� jrg(xi)j�1R(xi)M0�çþþþ.
Obviously each R(xi) belongs to the full determinant variety det�1(0) ² CM0¢ . Therefore
the first term of (5.4.7) is small compared to the second, since û(xi), R(xi) 2 det�1(0) are
close to y0 and Ty0 det�1(0) ≥ CM0�ç.

On the other hand the second term of (5.4.7) is dominated byþþþþ�ï�û(xi)
�
� û(xi)

�M0�çþþþþ +
þþþþ�jrg(xi)j

�1R(xi) � û(xi)
�M0�çþþþþ

≥ o
�
jï
�
û(xi)

�
� û(xi)j

�
+ o

�
g(xi)jrg(xi)j�1

�
,

where the estimate on the second term follows from Step 1. To estimate the first term
here, note that óy0det ≥ óy0 det�1(0) ≥ Cç¢ , so det�1(0) meets C∆̄ orthogonally at y0.

Therefore dist(y, det) ≥ O
�

dist
�
y, det�1(0)

��
for y 2 C∆̄ near y0 and we may estimate

þþþï�û(xi)
�
� û(xi)

þþþ ≥ dist
�
û(xi), det

�
≥ O

�
dist

�
û(x), det�1(0)

��
� O

�þþþjrg(xi)j�1R(xi) � û(xi)
þþþ�

≥ O
�
jrg(xi)j�1g(xi)

�
.

We now construct †. We extend the function jrg(x)j�1g(x) to all of S∆̄ by setting
it equal to 0 for x 2 XY; so the Łojasiewicz inequality implies that this extension is a
continuous semialgebraic function.
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STEP 3. Fix y0 2 (CŁ)Γ0

¢ \ S∆̄ and an open set Q0 ² S∆̄ such that the projection ï is
well-defined on Q0. Define m: [0, 1] ð [0, 1] ð S∆̄ ð Q0 ! C∆̄ by

m(t, h, x, y) ≥ (1 � h)
�
y + tjrg(x)j�1g(x)x°¢

�
+ h

h
(1 � t)y + t

�
jrg(x)j�1g(x)xç + ï(y)

�i
.

Let there be given open sets V, Q, V0, Q0 ² S∆̄ such that Sç¢ ² V ²² V0, y0 2 Q ²²

Q0 ² Q0. Let h:S∆̄¢ ðS∆̄¢ ! [0, 1] be a continuous semialgebraic function such that h � 1
on V ðQ and � 0 outside V0 ðQ0, and put

Ψ(t, x, y) :≥

8><>:
u
�
y + tjrg(x)j�1g(x)x°¢

�
for (x, y) Û2 V0 ðQ0

u
�

m
�
t, h(x, y), x, y

��
for (x, y) 2 V0 ðQ0,

where x°¢ :≥ ôC∆̄
¢
(x°0 ) ≥

(
x°0 if ¢ ≥ 0
(x°0 + x°t

0 )Û2 if ¢ ≥ š
and u(x) :≥ jxj�1x is the normal-

ization map. Then Ψ is well-defined for t 2 [0, 1] and (x, y) 2 graphû, and satisfies the
conditions (1)–(4) of the lemma.

PROOF OF STEP 3. We prove first that if V0, Q0 are small enough then

(5. 4. 8) det m
�
t, h, x,û(x)

�
Â≥ 0, 0 � h, t � 1

whenever x 2 V0 and û(x) 2 Q0. To this end we expand m
�
t, h, x,û(x)

�
as in (5.4.1). Let

us denote c(x)�1 times the first term of (5.4.1) by xŁ ≥ xŁ¢. Observe that as x ! Sç, both
xç � xŁ and x° � xŁ ! 0. Now a straightforward computation using Steps 1 and 2 gives

m
�
t, h, x,û(x)

�
≥ A(x)jrg(x)j�1g(x)xŁ + B(x)jR(x)j�1R(x) + o

�
g(x)jrg(x)j�1

�
as
�
x,û(x)

�
approaches Sç ð fy0g, where A, B ½ 1 and the bound on the last term is

independent of t and h. Therefore if V0, Q0 are chosen small enough then the determinant
(respectively the Pfaffian, in type III) of the sum of the first two terms is clearly of the
order g(x)jrg(x)j�1, and as all terms are bounded it follows that det m

�
t, h, x,û(x)

�
(or

Pf m
�
t, h, x,û(x)

�
) is of the same order. In particular (5.4.8) holds.

Thus for V0, Q0 small enough it is clear that Ψ
�
t, x,û(x)

�
is well-defined for

�
x,û(x)

�
2

V0ðQ0. On the other hand, if
�
x,û(x)

�
Û2 V0ðQ0 then the first expression for Ψ applies.

But

(5. 4. 9)

Rehû(x), x°¢ i ≥ jrg(x)j�1Dx°0 g(x)

≥ jrg(x)j�1 d
dt

þþþþþ
t≥0

g(x + tx°0 )

½ 0,

as in Section 5.1. In particular û(x) + tx°¢ Â≥ 0 for t Â≥ 0 so Ψ is well-defined here too.
Now 5.3A(1) is immediate. To prove (2) we only need to check the case (x, y) 2

(V0\XY)ðQ. Take Q to lie within the open subset U of Remark 4.1A. By Lemma 3.3A,

https://doi.org/10.4153/CJM-1997-021-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1997-021-7


454 BRIAN D. BOE AND JOSEPH H. G. FU

(x, y) 2 (V0 \ XY) ð Q only if y 2 det. Thus ï(y) ≥ y, and it is now straightforward to
check (2).

To prove (3) we observe that since Sç\S∆̄0
≥ ;, we may choose V0 so that V0\S∆̄0

≥ ;.
Since S∆̄0

² det the relation (5.4.8) implies that if
�
x,û(x)

�
2 V0 ð Q0 then †(x) Û2 S∆̄0

.
Now (3) follows from (5.4.9).

The first assertion of (4) is contained in (5.4.8). To prove the remaining assertion
(5.3.1) we note that if

�
x,û(x)

�
2 V ðQ then †(x) ≥ jrg(x)j�1g(x)xç +ï

�
û(x)

�
. If Q is

small enough then ï
�
û(x)

�
2 detŽ; i.e., rankï

�
û(x)

�
≥ n� 1 in types I and II and n� 2

in type III. Since rank xç ≥ n � rankï
�
û(x)

�
, (5.3.1) is clear.

This completes the proof of Lemma 5.3A and hence Theorem 4.2E.

6. Inversion: Euler Obstruction Algorithms. For most of this section we con-
tinue to assume that Y ² X are Schubert varieties in a Hermitian symmetric space
of type I, II, or III. We will define “Euler obstruction polynomials” EX

Y(q) such that
EX

Y(1) ≥ eX
Y (the Euler obstruction numbers of (2.1.4)), and also satisfying the inver-

sion relation

(6. 0. 1)
X

Y²Z²X
EZ

Y(q)DX
Z (q) � 1

analogous to (2.1.4). In the final subsection, we treat types IV and V.
For this section, we revert to cartesian coordinates based on the original rectangle M,

rather than on M0 ≥ span ∆̄(Y).

6.1. The E polynomials. Given Schubert varieties Y ² X, we define a new tree-with-
capacities fT X

Y . Let Γ0(X) be the dot configuration as defined in Section 4.1, but con-
structed using ∆̄(X) instead of ∆̄(Y). The tree T̃ is then constructed from Γ0(X) as in
Section 4.2. That is, fT is the Hasse diagram of the full poset of dots in type I; in types II
and III it is the Hasse diagram of the subposet of dots lying on or above the diagonal,
with diagonal dots corresponding to vertical “central” edges and above-diagonal dots
corresponding to oblique “side” edges. In type III we make the following additional
convention: if (i1, j1), (i2, j2) 2 Γ0(X) correspond to edges e1 and e2 having the same
parent in the tree, and if i1 Ú i2, then e1 must be positioned to the left of e2 in the tree.
In this case we say that e2 is a little brother of e1. (See Figure 6.1, in which e2 is a little
brother of both e8 and e9, and e8 is a little brother of e9, but e6 and e7 are only “cousins”,
etc.)

We next define a capacity for each minimal vertex of the tree. We refer to the minimal
elements of ∆̄(X) as indentations of ∆(X). Thus each indentation of ∆(X) corresponds to a
minimal edge (a, b) 2 Γ0(X). Denote the lower vertex of this edge by v. Let (a�c, b�c) 2
∆̄(Y) be the corresponding box adjacent to the boundary of ∆(Y). Then the capacity of v
is defined to be c. (More generally, we define the capacity of any vertex of the tree to be
the smallest of the capacities of the minimal vertices below it.) The tree endowed with
these capacities is denoted fT X

Y .
Now consider the set Λ̃ ≥ Λ̃(T̃ X

Y ) of all labelings ï̃: fedges e of fT X
Y g ! Z½0 subject

to these conditions:
(1) The labels are non-increasing from bottom to top of the tree;
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1

2

3

2

X

Y

1

2 3

2

e9

e8

e7 e6

e5

e4

e3

e2

e1

FIGURE 6.1. fT X
Y for types II and III.

(2) If v is a vertex with capacity c, then the label on any edge above v must be
� c;

(3) In type III, the labels on each pair of central edges must be equal and even; if
there is an odd number of central edges, the label on the top one must always
be 0;

(6. 1. 1)
(4) In type III, if

(a) e is a side edge,
(b) e is maximal among the set of side edges of the tree, and
(c) the number of central edges below the top vertex of e is even (pos-

sibly 0), then ï̃(e) must be either
(i) even or

(ii) greater than ï̃(e0) for some little brother e0 of e.
(In particular, if e satisfies (a), (b) and (c), but e has no little brother—there
can be at most one such edge in the entire tree—then ï̃(e) must be even.)

(In the example of Figure 6.1, rule (4) applies to edges e8, e9, and “in particular” to e5;
but not to e6.)
The sign õ(ï̃) is defined by

(1) In types I and III, õ(ï̃) ≥ 1;
(2) In type II, õ(ï̃) ≥ (�1)b, where b ≥

P
central
edges e

ï̃(e).

The weight jï̃j is defined by
(1) In types I and II, jï̃j ≥

P
e
ï̃(e);
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(2) In type III, jï̃j ≥
P
side

edges e

ï̃(e) +
P

even central
edges e

ï̃(e).

(As before if fT X
Y is the empty tree, then it has only the “empty” labeling ï̃ with õ(ï̃) ≥ 1

and jï̃j ≥ 0.) Finally, we define

(6. 1. 2) EX
Y(q) ≥

X
ï̃2Λ̃

õ(ï̃)qjï̃j.

When Y Â² X we set EX
Y(q) � 0.

EXAMPLE 6.1A. Suppose the tree fT X
Y is the same as in Figure 4.3. Below we give

all possible labelings ï̃ of this tree which satisfy conditions (6.1.1(1), (2)). Beneath each
labeling ï̃ we write the associated monomial õ(ï̃)qjï̃j in of each types I, II, or III; in
type III the notation “NA” means that the labeling is not allowed according to conditions
(6.1.1(3), (4)).

I:
II:

III:

0
0 0

0

1
1
1

0
0 0

1

q
�q
NA

0
1 0

0

q
q
q

0
1 0

1

q2

�q2

NA

0
0 1

1

q2

q2

NA

0
1 1

1

q3

q3

NA

1
1 1

1

q4

�q4

NA

0
0 0

2

q2

q2

NA

0
1 0

2

q3

q3

NA

0
0 1

2

q3

�q3

NA

0
1 1

2

q4

�q4

NA

1
1 1

2

q5

q5

NA

0
0 2

2

q4

q4

q2

0
1 2

2

q5

q5

NA

1
1 2

2

q6

�q6

NA

Thus, according to (6.1.2), we obtain

EX
Y ≥

8><>:
1 + 2q + 3q2 + 3q3 + 3q4 + 2q5 + q6 in type I
1 + q2 + q3 � q4 + 2q5 � q6 in type II
1 + q + q2 in type III.

REMARK 6.1B. We note that, in types I and III, the algorithm for EX
Y is equivalent

to the algorithm for the Kazhdan-Lusztig polynomials PX
Y ≥ QX

Y given in [LS] and [Boe,
(3.10) and (4.1)], respectively. In type I, the two algorithms are literally identical. In
type III, some of our present conventions are different than they were in [Boe], but these
differences are only cosmetic; the two algorithms do produce the same polynomials. In
other words, EX

Y ≥ PX
Y in types I and III.

In type II, however, the Euler obstruction polynomials are different from the Kazhdan-
Lusztig polynomials. The simplest example occurs already in Λ2, with X ≥ [1, 2], Y ≥
[0, 0] (notation from Section 3.1). The reader might find it instructive to check that EX

Y ≥
1 � q while PX

Y ≥ 1 (so EX
Y(1) ≥ 0, while PX

Y(1) ≥ 1).

6.2. The fundamental inversion theorem for types I, II, and III.

THEOREM 6.2A. Fix Schubert varieties Y ² X in a compact Hermitian symmetric
space of type I, II, or III. Define polynomials DX

Y as in (4.2.3), and EX
Y as in (6.1.2). ThenX

Y²Z²X
EZ

Y(q)DX
Z(q) � 1.
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Before beginning the proof, we need some further notation and two lemmas. Set N ≥
n + m in type I, N ≥ n in types II and III. Following [LS] and [Boe], we associate to
any Young diagram ∆(Z) ² M a word z of length N in two symbols ã and å. Beginning
at the upper left corner (1, n), follow the boundary of ∆(Z), and write ã for each length
one vertical segment on the boundary and å for each length one horizontal segment.
In type I, continue to the lower right corner (m, 1); in types II and III, stop when the
boundary reaches the diagonal. For example, the word associated to the Young diagram
of Figure 3.1 is ãååãååããåãå. (Similarly, the word associated to any Young diagram
∆(X), ∆(Y), . . . will be denoted by the corresponding lower case letter x, y, . . .. We will
henceforth freely interchange upper and lower case letters without further comment.)
We may view z as representing an element of the Weyl group of G (cf. [LS], [Boe]). Let
‡(z) be the length of z, so ‡(z) ≥ dim Z. In particular, if s ≥ si is a “simple reflection”
(1 � i � N � 1 in type I, 1 � i � N in types II and III), s acts on z on the right. Then
zs is obtained from z as follows: for 1 � i � N � 1, interchange the i-th and (i + 1)-st
symbols; for i ≥ N in type II, “reverse” the last symbol (where å is the reverse of ã and
vice versa); for i ≥ N in type III, interchange the last 2 symbols, and then reverse each
of them.

The words inherit a partial order � corresponding to the inclusion order of the asso-
ciated varieties and their Young diagrams (and to the restriction of the Bruhat order on
the Weyl group). In particular, the following ordering relations hold (for appropriate s as
above):

(6.2.1)
z ≥ z1ãåz2 Ú zs ≥ z1åãz2

z ≥ z1ã Ú zs ≥ z1å

z ≥ z1ãã Ú zs ≥ z1åå.

It will be useful to have a description of the action of the simple reflections in terms
of Young diagrams. Suppose z Ú zs ≥: z0, and let Z, Z0 be the corresponding Schubert
varieties. Then ∆(Z0) is formed by adjoining to ∆(Z) an indentation (a, b) of ∆(Z). In
types II and III, if the new box is above the diagonal, a corresponding box is also added
below the diagonal to preserve the symmetry. The reflection s ≥ sn in type III is a special
case: here a ≥ b and a 2ð 2 block of boxes [a, a + 1]ð [a, a + 1] is added (ensuring that
∆(Z0) has an even number of boxes on the diagonal). In any case, (a, b) will be a minimal
element of Γ0(Z). We call the corresponding minimal edge in the tree associated to Z the
edge corresponding to s.

Thus it is easy to see that if Y ²
Â�

X are Schubert varieties in type I, II, or III, cor-

responding to words y Ú x, then there exists at least one simple reflection s such that
y Ú ys � x.

LEMMA 6.2B. Let y Ú x correspond to Y ² X, and assume there is a simple reflec-
tion s such that y Ú ys but x ÂÚ xs. Then Dx

y(q) � 0.

PROOF. Exclude for the moment the case s ≥ sn in type III. Then in terms of Young
diagrams, the condition of the lemma is that there exists an indentation (a, b) of ∆(Y), such
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that the corresponding point (a + c, b + c) 2 ∆̄(X) adjacent to ∆(X) is not an indentation
of ∆(X) (see Figure 6.2). Thus at least one of (a + c, b + c � 1) or (a + c � 1, b + c)
belongs to ∆̄(X). Assume the former, for definiteness. Let e be the minimal edge of T X

Y
corresponding to (a, b), and let v0 and v1 be the lower and upper vertices of e, respectively.
Then v0 has capacity c. The rectangle ñ 2 Ω indicated in Figure 6.2 with ö(ñ) ≥ c � 1
shows that the capacity of v1 is at most c � 1.

Y
(a, b)

ñ

X

c

c� 1

(a + c, b + c)

(a + c, b + c� 1)

v0

c

e

v1

� c� 1

T X
Y

FIGURE 6.2. Portions of Y, X, and T X
Y (generic case).

Therefore if ï 2 Λ is any labeling of T X
Y with ï(e) ≥ +1, there is a corresponding

(allowed) labeling ï�, identical to ï except that ï�(e) ≥ �1. Clearly õ(ï�) ≥ �õ(ï)
while jï�j ≥ jïj, so that the monomials in Dx

y(q) coming from ï and ï� cancel. Since
all labelings pair up in this way, Dx

y ≥ 0.
Now if s ≥ sn in type III, the above argument is correct except when y ≥ y1ãã

and x ≥ x1åã. In this case both ∆(Y) and ∆(X) have indentations on the diagonal (see
Figure 6.3). Recall from Section 3.1(3) that c must be even. Thus the tree has a minimal
central edge e1 whose parent is a central edge e2, and e1 is the only child of e2. The
capacity of the minimal central vertex is c, while the capacity of the upper vertex of e2

is � c � 1 (via the submatrix ñ indicated in the figure). By Remark 4.2A(2), (4.2.2(3))
and the fact that c � 1 is odd, there can be at most c � 2 labels “�1” above e2. Thus
for any labeling ï with ï(e1) ≥ ï(e2) ≥ +1, there is a corresponding labeling ï� with
ï�(e1) ≥ ï�(e2) ≥ �1. Now the argument proceeds as before.

LEMMA 6.2C. Let y Ú x correspond to Y ² X, and assume that s is a simple reflec-
tion such that x ÂÚ xs. Then Ex

y ≥ Ex
ys.

PROOF. In types I and III, Ex
y ≥ Px

y (Remark 6.1B), so the lemma follows from [LS,
(7.2.3)] and [Boe, (3.5)], respectively.

In type II, we may assume that y Ú ys. Then we have an indentation (a, b) of ∆(Y) such
that the corresponding point (a + c, b + c) of ∆̄(X) is not an indentation of ∆(X). Changing
y to ys simply adjoins the box (a, b) to ∆(Y), and this does not affect the capacity of any
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Y
(a, a)

ñ

Xc
c � 1

(a + c, a + c)

e2

c

e1

� c� 1

T X
Y

FIGURE 6.3. Portions of Y, X, and T X
Y (type III, s ≥ sn).

minimal vertex of fT X
Y : recall that to compute EX

. we use the dot configuration Γ0(X), and
only the capacities of the minimal vertices are relevant. Thus Ex

y ≥ Ex
ys.

PROOF OF THEOREM 6.2A. Assume inductively that the result is true for all Schubert
varieties in the Grassmannian Gn�1,m�1 (respectively, Λn�1, Λ�n�1), and that the result is
true for all Y0 such that Y ²

Â�
Y0 ² X. The initial cases Gn,0 ' G0,n, Λ1, Λ�1 , and Y ≥ X

are easy.
Fix y Ú x and a simple reflection s such that y Ú ys � x. Set

(6. 2. 2) Sx
y ≥

X
y�z�x

Ez
y(q)Dx

z (q).

The plan is to show that

(6. 2. 3) Sx
y � Sx

ys ≥ 0,

where Sx
ys ≥ 1 by induction.

Decompose the left side of (6.2.3) into several terms, the first and fourth of which are
equal, by Lemma 6.2C:

Sx
y � Sx

ys

≥
X

ys�z�x
zÂÚzs

Ez
yDx

z +
X

ys�z�x
zÚzs

Ez
yDx

z +
X

y�z�x
ysÂ�z

Ez
yDx

z �
X

ys�z�x
zÂÚzs

Ez
ysD

x
z �

X
ys�z�x

zÚzs

Ez
ysD

x
z

≥
X

ys�z�x
zÚzs

(Ez
y � Ez

ys)D
x
z +

X
y�z�x
ysÂ�z

Ez
yDx

z .

Notice that y � z, ys Â� z implies that z Ú zs; this is easy to see by considering the
corresponding Young diagrams. This, together with the fact that Ez

ys ≥ 0 when ys Â� z,
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means that we can combine the two terms. Therefore (6.2.3) is equivalent to proving:

(6. 2. 4)
X

y�z�x
zÚzs

(Ez
y � Ez

ys)D
x
z ≥ 0.

Now if x ÂÚ xs then Dx
z ≥ 0 for z Ú zs by Lemma 6.2B, and we are done. So it remains

to prove (6.2.4) in the case x Ú xs. We digress to prove two more lemmas, which contain
the important “recursion on rank” relations satisfied by the E and D polynomials.

LEMMA 6.2D. Let H ≥ KnG0 be a Hermitian symmetric space of type I, II, or III.
Fix a simple reflection s, and suppose that y Ú ys, z Ú zs. Let c ≥ c(y, z) be the capacity
of the minimal vertex of fT z

y corresponding to s. Then there are parameters ȳ, z̄ for a
Hermitian symmetric space K̄nḠ0 of the same type but lower rank, such that

Ez
y � Ez

ys ≥ (�1)rqcEz̄,
ȳ

where

r ≥ r(y, z) ≥
(

c, for s ≥ sn in type II
0, otherwise.

Moreover, the map z 7! z̄ is an order-preserving bijection from the set of parameters z
for KnG0 satisfying z Ú zs, onto the set of all parameters for K̄nḠ0.

PROOF. Given z Ú zs, define z̄ as follows: if s ≥ si, i Ú N, so that z ≥ z1ãåz2, then
z̄ ≥ z1z2; if s ≥ sn in type II, so that z ≥ z1ã, then z̄ ≥ z1; and if s ≥ sn in type III,
so that z ≥ z1ãã, then z̄ ≥ z1. (When i Ú n in type III, the map z 7! z̄ takes the set of
parameters having an even number of å’s, to a set of parameters having an odd number
of å’s. But we may equally well use either set of parameters.) Now the validity of the
last sentence of the lemma is clear.

In types I and III, since our E polynomials are the same as the Kazhdan-Lusztig poly-
nomials (Remark 6.1B), the desired recursions follow from [LS, Lemma 6.6] and [Boe,
Proposition 3.14]. (Note that, when i ≥ n� 1 or n in type III, c ≥ c(y, z) must be even.)

There remains the case of type II. Let e be the minimal edge of fT z
y corresponding to

s. The labelings ï̃ 2 Λ̃ of fT z
y split up into two families Λ̃≥ and Λ̃Ú, according to whether

ï̃(e) ≥ c or ï̃(e) Ú c, and Ez
y is the sum of the two corresponding polynomials. The

polynomial associated to Λ̃Ú is precisely Ez
ys. (When c ≥ 0, ys Â� z, Ez

ys ≥ 0, and there
are no labelings in Λ̃Ú.) Let’s examine the polynomial associated to Λ̃≥. If i Ú n, this
is qc times the E polynomial associated to the tree obtained from fT z

y by removing the
minimal (side!) edge e, and assigning the capacity of the new minimal vertex to be c. But
this tree is fT z̄

ȳ . If i ≥ n, then the above description of the polynomial associated to Λ̃≥
is still correct, except that we need to introduce an additional factor of (�1)c, to account
for the fact that e is now a central edge; cf. the definition of õ(ï̃) in Section 6.1.

LEMMA 6.2E. Let H ≥ KnG0 be a Hermitian symmetric space of type I, II, or III.
Fix a simple reflection s, and suppose that z � x, z Ú zs, x Ú xs, and let c ≥ c(z, x) be
the capacity of the minimal vertex of T x

z corresponding to s. Then

Dx
z ≥ (�1)rqc(Dx̄

z̄ �Dx̄0
z̄ )
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where

r ≥ r(z, x) ≥
(

c, for s ≥ sn in type II
0, otherwise,

x0 is a parameter for KnG0 such that z � x0 (when c Ù 0; if c ≥ 0 the term Dx̄0
z̄ is to be

interpreted as 0), and ¯ is defined in Lemma 6.2D.

PROOF. Let e be the minimal edge of T x
z corresponding to s, and let v be the upper

vertex of e. Note that e must be ordinary (in the language of Lemma 4.2C): if e is a
minimal central edge in type III, then s ≥ sn and z ≥ z1ãã, which implies that the
central edge immediately above e has no children other than e. According to the cited
lemma, in computing Dx

z we may restrict our attention to the labelings ï 2 Λ0; thus every
such labeling ï has ï(e) ≥ 1 and exactly c edges e0 above e with ï(e0) ≥ �1.

Assume first that e is not a central edge, and let T 0 be the tree obtained from T x
z by

removing e (and leaving all capacities unchanged). When c Ù 0, define T 00 similarly
except with the capacity of v reduced to c � 1 (we ignore terms involving T 00 if c ≥
0). There is an obvious bijection between Λ0 and Λ(T 0) � Λ(T 00), which implies the
identity Dx

z ≥ qcfD(T 0) � D(T 00)g. Next assume e is a central edge in type II, and
define T 0 and T 00 as above. For ï 2 Λ0, let ï0 be the restriction of ï to T 0. If there
are, say, k odd central edges with label �1 in ï, then there are c � k odd central edges
with label �1 in ï0. Hence õ(ï0) ≥ f(�1)c�kÛ(�1)kgõ(ï) ≥ (�1)cõ(ï). Therefore
Dx

z ≥ (�1)cqcfD(T 0)�D(T 00)g. Finally, assume e is a central edge in type III, and let e0
be the central edge immediately above e. Denote by v0 the upper vertex of e0. Let T 0 be
the tree obtained by removing both e and e0 from T x

z . When c Ù 0 (i.e., c ½ 2), define T 00
similarly except with the capacity of v0 reduced to c � 2. It follows from the definitions
in Section 4.2 that Dx

z ≥ qcfD(T 0) �D(T 00)g.
It is clear in each case that T 0 = T x̄

z̄ . Thus it remains only to show, in the cases c Ù 0,
that

(6. 2. 5) D(T 00) ≥ Dx̄0
z̄ for some parameter x0 ½ z.

First, assume that s ≥ si, i Ú N, so that x ≥ x1ãåx2 with jx1j ≥ i� 1. In type II, if x2

contains no ã’s (including the case where x2 is empty), define x0 by changing the last å
of x1 to ã (and leaving all other symbols of x unchanged). In type III, if x2 is a sequence
of one or more å’s, define x0 by changing the last å of x1 to ã and the last å of x2 to ã;
whereas if x2 is empty, change the last two å’s of x1 to ã’s. In all other cases, we define
x0 by changing the last å of x1 to ã and the first ã of x2 to å.

Next, assume s ≥ sN. (Recall that this only occurs in types II and III, where N ≥ n.) In
type II we have x ≥ x1ã; define x0 by changing the last å of x1 to ã. In type III, x ≥ x1ãã;
define x0 by changing the last two å’s of x1 to ã’s. (Notice that in type III, the parities of
the number of ã’s and of the number of å’s are preserved. Also, the existence of x0 relies
in each case heavily on the fact that c Ù 0; i.e., x is not minimal in the ordering.)

We leave to the reader the details of checking that (6.2.5) holds in each case. In so
doing it should be kept in mind that there may be some vertex v1 Â≥ v with capacity c + ‡
in T 00 and capacity c + ‡ � 1 in Dx̄0

z̄ . But in this case there will also be a vertex v2 above
both v and v1, separated from v1 by at most ‡ edges. Since at most ‡ labels �1 can be put
on edges between v1 and v, and at most c�1 labels�1 above v2, decreasing the capacity
of v1 from c + ‡ to c + ‡ � 1 does not change the set of allowed labelings.
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COMPLETION OF PROOF OF THEOREM 6.2A. Recall that we had reduced to showing
(6.2.4), in the case where x Ú xs and y Ú ys � x. By Lemmas 6.2D and 6.2E, the left
hand side of (6.2.4) is equal toX

y�z�x
zÚzs

(�1)r(y,z)qc(y,z)Ez̄
ȳ Ð (�1)r(z,x)qc(z,x)(Dx̄

z̄ �Dx̄0
z̄ )

≥ (�1)r(y,x)qc(y,x)
² X

ȳ�z̄�x̄
Ez̄

ȳDx̄
z̄ �

X
ȳ�z̄�x̄0

Ez̄
ȳDx̄0

z̄

¦

≥ (�1)r(y,x)qc(y,x)fSx̄
ȳ � Sx̄0

ȳ g

≥ (�1)r(y,x)qc(y,x)f1� 1g by induction on rank

≥ 0,

as claimed.

6.3. Types IV and V. Finally, we attend to the “easy” cases
�
SO(n)ðSO(2)

�
nSO(n+2).

We first compute the MacPherson coefficients. We adopt the notation of Section 3.4;
the cases of odd and even n admit a parallel treatment. From the given descriptions of the
Schubert varieties it is easy to compute that each variety Qi, i ≥ ‡, . . . , n is isomorphic
to the complex join of Pn�j�1 and R2j�n. In particular the normal slice (Qj)Pn�j�1 is equal
to the cone X ² C2j�n+2 over R2j�n. Putting k :≥ 2j � n we may take the function

g(z0, . . . , zk+1) :≥
þþþþk+1X
i≥1

zizk+1�i

þþþþ2
as an aura for X, and compute

rg(z0, . . . , zk+1) ≥ 4
�k+1X

i≥1
zizk+1�i

�
(z̄k+1, z̄k, . . . , z̄0).

Therefore the restriction û to S2k+3 of the normalized gradient map rg
jrgj covers the map

[z0, . . . , zk+1] 7! [z̄k+1, . . . , z̄0] of CPk+1 to itself, and û clearly preserves the orientation
of the circles of the Hopf fibration. Thus the degree of û is (�1)k+1 ≥ (�1)n+1, so by
Theorem 2.2A

(6. 3. 1) dQj

Pn�j�1
≥ (�1)n+1.

Next we define polynomial versions of the MacPherson coefficients and “invert” via
(6.0.1) to obtain “Euler obstruction polynomials.” Begin with type IV (n odd). Set ‡ ≥
(n + 1)Û2, and label the Schubert varieties 1, 2, . . . , 2‡ from smallest to largest (so that
dim(i) ≥ i � 1; recall (3.4.2)). Define

(6. 3. 2) Dj
i ≥

8><>:
q j�‡, j Ù i ≥ 2‡ � j
1, i ≥ j
0, otherwise.

(The Hermitian symmetric space of type IV with n ≥ 3 is isomorphic to the Hermitian
symmetric space of type II with n ≥ 2. This definition of Dj

i is chosen so that these two
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isomorphic cases agree.) Comparing (6.3.2) with (6.3.1), and taking the index shift into
account, we have D j

i (1) ≥ d j
i . Next we set

(6. 3. 3) E j
i ≥

8><>:
1 � q j�‡, j Ù 2‡ � j ½ i
1, j ½ i Ù 2‡ � j or 2‡ � j ½ j ½ i
0, i Ù j.

It is routine to check that, for i � j,
P

i�k�j Ek
i D j

k ≥ 1. Hence e j
i ≥ Ej

i (1). In particular,

e j
i ≥ 0 Â≥ 1 ≥ pj

i for j Ù 2‡ � j ½ i,

(see, e.g., [Boe, (5.1a)]).
Now consider type V (n even). Set ‡ ≥ (n+2)Û2, and label the Schubert varieties from

1 to 2‡, with 1, . . . , ‡ corresponding to P0, . . . , P‡�1, and ‡ + 1, . . . , 2‡ corresponding to
P0‡�1, Q‡, . . . , Qn, respectively (recall (3.4.3)). Define

(6. 3. 4) Dj
i ≥

8><>:
�q j�‡�1, ‡ + 2 � j � 2‡ � 1, i ≥ 2‡ � j
1, i ≥ j
0, otherwise,

(6. 3. 5) E j
i ≥

8><>:
1 + q j�‡�1, ‡ + 2 � j � 2‡ � 1, i � 2‡ � j
0, i Ù j or i ≥ ‡, j ≥ ‡ + 1
1, otherwise.

Again, comparing (6.3.4) with (6.3.1) gives D j
i (1) ≥ d j

i . Also the fundamental relation
(6.0.1) holds; therefore E j

i (1) ≥ e j
i . However, in this case E j

i ≥ Pj
i for all i and j, by [Boe,

(5.1b)].

7. Multiplicities in Characteristic Cycles of Intersection Homology Sheaves. In
this section we use the results of Section 6 to decompose the characteristic cycles of
intersection homology sheaves on Schubert varieties in the compact classical Hermitian
symmetric spaces:

(7. 0. 1) CC(IHX) ≥
X

Y²X
mX

YN̨(YŽ).

Recall from (2.1.7) the relation

(7. 0. 2) p ≥ e Ð m,

where p ≥ (pX
Y) is the matrix of Kazhdan-Lusztig numbers, and e is the matrix of Euler

obstruction numbers. Knowing e and p, we can now solve for m.

7.1. Multiplicity formulas. Recall that a Dynkin diagram is said to be simply laced if it
contains no multiple edges.
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THEOREM 7.1A. Let HG be a Hermitian symmetric space associated to a classical
Lie group G. The characteristic cycles of the intersection homology sheaves associated
to the Schubert varieties X ² HG are all irreducible iff the Dynkin diagram of G is simply
laced.

PROOF. The Dynkin diagram of G is simply laced in types I, III, and V. We have
seen that in each of these types, EX

Y ≥ PX
Y for all Schubert varieties Y, X; on the other

hand, in types II and IV we have given examples where eX
Y Â≥ pX

Y (cf. Remark 6.1B
and Section 6.3). But by (7.0.2), the condition e ≥ p is equivalent to the irreducibility
of all the characteristic cycles associated to the Schubert variety intersection homology
sheaves.

It remains to find formulas for the multiplicities m in the non-simply-laced types. In
type IV, it is well-known that p ≥ ê; i.e., pX

Y ≥ 1 iff Y ² X (cf. [Boe, (5.1a)]). Comparing
the fundamental relation (2.1.4) e Ð d ≥ ê to (7.0.2), it is clear that m ≥ d. Thus (using
the classification of Section 6.3),

(7. 1. 1) m j
i ≥

8><>:
1, i ≥ j
1, i ≥ 2‡ � j Ú j
0, otherwise.

In particular, each CC(IHX) has at most two summands N̨(YŽ).
Finally, we treat type II. Recall from Section 6.2 the parametrization of Schubert va-

rieties by Weyl group elements: sequences of n symbols chosen from fã,åg; recall also
from (6.2.1) the action of the simple reflections s1, . . . , sn. The following theorem gives
quick recursions for the multiplicities mx

y.

THEOREM 7.1B. Let Y ² X be Schubert varieties in a compact Hermitian symmetric
space of type II. Let y � x be the corresponding Weyl group words in ã and å. The
multiplicity mx

y of N̨(YŽ) in CC(IHX) is given recursively as follows.
(a) If, for some simple reflection s, y Ú ys but x ÂÚ xs, then mx

y ≥ 0.
(b) If y ≥ y1ãåy2, x ≥ x1ãåx2 with jy1j ≥ jx1j, then mx

y ≥ mx1x2
y1y2

.
(c) If y ≥ y1ãã, x ≥ x1õã, õ 2 fã,åg, then mx

y ≥ mx1
y1

.

REMARKS 7.1C. (1) Of course the recursion ends with the rules mx
x ≥ 1, mx

y ≥ 0 if
y Â� x.

(2) The effectiveness of the recursion also depends on the following facts. Given any
Y which is not the whole manifold Λn, there exists a simple reflection s such that y Ú ys.
If the only such s is s ≥ sn and none of (a), (b), or (c) applies, then y ≥ x ≥ åå Ð Ð Ð åã,
and hence mx

y ≥ 1.

PROOF OF THEOREM 7.1B. We prove each of (a), (b), and (c) in turn by downward
induction on y; the case y ≥ x is trivial. So assume y Ú x.

(a) Assume y Ú ys, x ÂÚ xs. ThenX
z

ez
ysm

x
z ≥ px

ys by (7.0.2)

≥ px
y by [Boe, (3.5)]

≥
X

z
ez

ymx
z by (7.0.2)
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≥
X
zÚzs

ez
ymx

z +
X
zÂÚzs

ez
ymx

z

≥
X
zÚzs

ez
ymx

z +
X
zÂÚzs

ez
ysm

x
z by Lemma 6.2C

and therefore X
zÚzs

(ez
y � ez

ys) mx
z ≥ 0.

But by induction, mx
z ≥ 0 for y Ú z Ú zs. Hence

0 ≥ (ey
y � ey

ys) mx
y ≥ (1 � 0) mx

y ≥ mx
y.

(b) Set i ≥ jy1j + 1 and s ≥ si so that y Ú ys ≥ y1åãy2, and similarly for x. For any
z ≥ z1ãåz2 with jz1j ≥ i� 1 put z̄ ≥ z1z2, as in Lemma 6.2D. ThenX

zÚzs
ez

ymx
z +

X
zÂÚzs

ez
ymx

z ≥ px
y ≥ px

ys + px̄
ȳ by [Boe, (3.14a)]

X
zÚzs

ez
ymx

z +
X
zÂÚzs

ez
ysm

x
z ≥

X
z

ez
ysm

x
z +

X
z̄

ez̄
ȳmx̄

z̄ by Lemma 6.2C

X
zÚzs

(ez
y � ez

ys) mx
z ≥

X
z̄

ez̄
ȳm

x̄
z̄

mx
y +

X
yÚzÚzs

ez̄
ȳmx̄

z̄ ≥ mx̄
ȳ +

X
ȳÚz̄

ez̄
ȳmx̄

z̄ by Lemma 6.2D and induction.

Clearly the map z 7! z̄ is a bijection between the parameters z in the summation on the
left, and the parameters z̄ in the summation on the right. Therefore mx

y ≥ mx̄
ȳ as claimed.

(c) Fix y Ú x as in the statement of (c), and let s ≥ sn. For any z let jzjå denote
the number of symbols å in z. Put cz

y ≥ jzjå � jyjå, the capacity between y and z “on
the diagonal,” and similarly cx

z . Set éz ≥ 0 if cx
z is odd, ≥ 1 if cx

z is even. For z ≥ z1úã
(ú 2 fã,åg) put z̄ ≥ z1ú as in Lemma 6.2D. Proceeding as in (a) and (b), we have

px
ys + éypx1

y1
≥ px

y ≥
X
zÚzs

ez
ymx

z +
X
zÂÚzs

ez
ymx

z by [Boe, (3.14b)]

éypx1
y1
≥
X
zÚzs

(ez
y � ez

ys)m
x
z by Lemma 6.2C

éypx1
y1
≥
X
zÚzs

(�1)cz
y ez̄

ȳmx
z by Lemma 6.2D(7. 1. 2)

≥
X

z≥z1åã
(�1)cz

y ez1å
y1ãm

x
z +

X
z≥z1ãã

(�1)cz
y ez1ã

y1ãm
x
z

≥
X

z≥z1åã
(�1)cz

y ez1å
y1ãm

x
z +

X
z≥z1ãã

(�1)cz
y (ez1ã

y1å + (�1)cz
y ez1

y1
)mx

z

by Lemma 6.2D, and since cz1ã
y1ã ≥ cz1ãã

y1ãã
≥
X
zÚzs

(�1)cz
y ez̄

y1åm
x
z +

X
z≥z1ãã

ez1
y1

mx
z by Lemma 6.2C

Put y0 ≥ y1åã and observe that cz
y0 ≥ cz

y � 1. Then

éypx1
y1
≥ �

X
zÚzs

(�1)cz
y0 ez̄

ȳ0m
x
z +

X
z≥z1ãã

ez1
y1

mx
z .
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Now substitute the analog of (7.1.2) with y0 in place of y:

éypx1
y1
≥ �éy0p

x1
y1

+
X

z≥z1ãã
ez1

y1
mx

z

px1
y1
≥

X
z≥z1ãã

ez1
y1

mx
z since éy + éy0 ≥ 1

mx1
y1

+
X

y1Úz1

ez1
y1

mx1
z1
≥ mx

y +
X

yÚz≥z1ãã
ez1

y1
mx1

z1
by induction

mx1
y1
≥ mx

y

This proves (c).
The theorem admits at least two useful reformulations, the first of which gives a closed

form for the non-zero multiplicities, and the second being a geometric restatement of the
first.

THEOREM 7.1D. Let Y ² X be Schubert varieties in a compact Hermitian symmetric
space of type II. Let y � x be the corresponding Weyl group words in ã and å. The
multiplicity mx

y of N̨(reg Y) in CC(IHX) is either 0 or 1.
(1) mx

y ≥ 1 iff the following conditions hold:
(a) y is obtained from x by changing certain å’s to ã’s;
(b) each å in (a) occurs an even number of symbols from the end of

the word x;
(c) every subword of x beginning with any å in (a) contains at most

one more å than ã (where a subword is a sequence of consecutive
symbols).

(2) mx
y ≥ 1 iff the following conditions hold:

(a) there is a sequence of Schubert varieties X ≥ X0 ¦ X1 ¦ Ð Ð Ð ¦
Xr ≥ Y such that

(b) dim Xi�1 � dim Xi is even for each 1 � i � r, and
(c) the Schubert strata corresponding to Xi�1 and Xi have conormal

varieties whose closures meet in codimension one, for each 1 �
i � r.

In particular, the number of summands in CC(IHX) is equal to the number of å’s in x
satisfying the conditions in (1)(b) and (c).

PROOF. (1) follows from Theorem 7.1B by a straightforward induction on the rank
n. The details are left to the reader.

(2) is shown to be equivalent to (1) as follows. Assuming y is obtained from x by
changing r å’s to ã’s as in (1), define xi to be the word obtained from x by reversing
only the first i of these å’s. Put Xi to be the associated Schubert variety. One checks
easily that if x ≥ õ1 Ð Ð Ð õn with õj 2 fã,åg then dim X ≥ ‡(x) ≥

P
õj≥å (n + 1 � j).

This immediately implies the equivalence of (1)(b) and (2)(b). The condition in (2)(c)
(recall Remark 5.2B(1)) amounts to the following: ∆(Xi)n∆(Xi�1) is a (connected) ribbon
which, when followed from upper left to lower right, always remains no wider than it is
tall. (See Figure 5.4, where the ribbon in the left diagram and the short ribbon in the right
diagram are of this type, while the long ribbon in the right diagram is not.) But it’s easy
to see that this is equivalent to the statement that xi is obtained from xi�1 by reversing a
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single å satisfying the condition in (1)(c). Thus (1) implies (2), and the converse is now
also clear.

COROLLARY 7.1E. The characteristic cycles of the intersection homology sheaves
on Schubert varieties for classical Hermitian symmetric spaces are multiplicity-free.
Moreover, the multiplicity mX

Y ≥ 0 unless ‡(x) � ‡(y) � codimX Y is even.

PROOF. This follows from Theorem 7.1A, (7.1.1), and Theorem 7.1D.
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[KL2] , Schubert varieties and Poincaré duality, Proc. Symp. Pure Math. 36(1980), 185–203.
[KL3] , A topological approach to Springer’s representations, Adv. Math. 38(1980), 222–228.
[Ka] M. Kashiwara, Private e-mail communication, July, 1995.
[KS] M. Kashiwara and P. Schapira, Sheaves on manifolds, Springer-Verlag, 1992.
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