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Abstract

A graph Γ is G-symmetric if Γ admits G as a group of automorphisms acting transitively on the set of
vertices and the set of arcs of Γ, where an arc is an ordered pair of adjacent vertices. In the case when
G is imprimitive on V(Γ), namely when V(Γ) admits a nontrivial G-invariant partition B, the quotient
graph ΓB of Γ with respect to B is always G-symmetric and sometimes even (G, 2)-arc transitive. (A
G-symmetric graph is (G, 2)-arc transitive if G is transitive on the set of oriented paths of length two.)
In this paper we obtain necessary conditions for ΓB to be (G, 2)-arc transitive (regardless of whether Γ is
(G, 2)-arc transitive) in the case when v − k is an odd prime p, where v is the block size of B and k is the
number of vertices in a block having neighbours in a fixed adjacent block. These conditions are given
in terms of v, k and two other parameters with respect to (Γ,B) together with a certain 2-point transitive
block design induced by (Γ,B). We prove further that if p = 3 or 5 then these necessary conditions are
essentially sufficient for ΓB to be (G, 2)-arc transitive.
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1. Introduction

A graph Γ = (V(Γ), E(Γ)) is G-symmetric if Γ admits G as a group of automorphisms
such that G is transitive on V(Γ) and on the set of arcs of Γ, where an arc is an ordered
pair of adjacent vertices. If in addition Γ admits a nontrivial G-invariant partition, that
is, a partition B of V(Γ) such that 1 < |B| < |V(Γ)| and Bg := {αg : α ∈ B} ∈ B for any
B ∈ B and g ∈ G (where αg is the image of α under g), then Γ is called an imprimitive
G-symmetric graph. In this case the quotient graph ΓB of Γ with respect toB is defined
to have vertex set B such that B,C ∈ B are adjacent if and only if there exists at least
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one edge of Γ between B and C. It is readily seen that ΓB is G-symmetric under the
induced action of G on B. We assume that ΓB contains at least one edge, so that each
block of B is an independent set of Γ. Denote by Γ(α) the neighbourhood of α ∈ V(Γ)
in Γ, and define Γ(B) =

⋃
α∈B Γ(α) for B ∈ B. For blocks B,C ∈ B adjacent in ΓB, let

Γ[B,C] be the bipartite subgraph of Γ induced by (B ∩ Γ(C)) ∪ (C ∩ Γ(B)). Since ΓB
is G-symmetric, up to isomorphism Γ[B,C] is independent of the choice of (B,C).
Define ΓB(α) := {C ∈ B : Γ(α) ∩C , ∅} and ΓB(B) := {C ∈ B : B and C are adjacent in
ΓB}, the latter being the neighbourhood of B in ΓB. Define

v := |B|, k := |B ∩ Γ(C)|, r := |ΓB(α)|, b := val(ΓB)

to be the block size of B, the size of each part of the bipartition of Γ[B,C], the number
of blocks containing at least one neighbour of a given vertex, and the valency of ΓB,
respectively. These parameters depend on (Γ,B) but are independent of α ∈ V(Γ) and
adjacent B,C ∈ B.

In [6] Gardiner and Praeger introduced a geometrical approach to imprimitive
symmetric triples (Γ,G,B), which involves ΓB, Γ[B,C] and an incidence structure
D(B) with point set B and block set ΓB(B). A ‘point’ α ∈ B and a ‘block’ C ∈ ΓB(B)
are incident in D(B) if and only if α ∈ Γ(C); we call (α,C) a flag of D(B) and
write αIC. It is clear that D(B) = (B, ΓB(B), I) is a 1-(v, k, r) design [6] with b
blocks which admits GB as a group of automorphisms acting transitively on its points,
blocks and flags, where GB is the setwise stabilizer of B in G. Note that vr = bk.
Define D(B) := (B, ΓB(B), I) to be the complementary structure [12] of D(B) for
which αIC if and only if α < Γ(C). Then D(B) is 1-(v, v − k, b − r) design with b
blocks. Up to isomorphism D(B) and D(B) are independent of B. The cardinality
of {D ∈ ΓB(B) : Γ(D) ∩ B = Γ(C) ∩ B}, denoted by m, is independent of the choice of
adjacent B,C ∈ B and is called the multiplicity ofD(B).

An s-arc of Γ is a sequence (α0, α1, . . . , αs) of s + 1 vertices of Γ such that αi, αi+1
are adjacent for i = 0, . . . , s − 1 and αi−1 , αi+1 for i = 1, . . . , s − 1. If Γ admits G as
a group of automorphisms such that G is transitive on V(Γ) and on the set of s-arcs of
Γ, then Γ is called (G, s)-arc transitive [2]. A (G, 1)-arc transitive graph is precisely a
G-symmetric graph, and a (G, s)-arc transitive graph is (G, s − 1)-arc transitive.

This paper was motivated by the following questions asked in [7]: When does a
quotient of a symmetric graph admit a natural 2-arc transitive group action? If there
is such a quotient, what information does this give us about the original graph? These
questions were studied in [7, 8, 10, 11, 13, 14, 16, 17], with a focus on the case where
v − k ≥ 1 or k ≥ 1 is small. In the present paper we consider the more general case
where k = v − p for a prime p ≥ 3. In this case we obtain necessary conditions for ΓB
to be (G, 2)-arc transitive, regardless of whether Γ is (G, 2)-arc transitive. We prove
further that when p = 3 or 5 such necessary conditions are essentially sufficient for ΓB
to be (G, 2)-arc transitive.

A few definitions and notations are needed before stating our main result. Let G
and H be groups acting on Ω and Λ respectively. The action of G on Ω is said to
be permutationally isomorphic [5, page 17] to the action of H on Λ if there exist a
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bijection ρ : Ω→ Λ and a group isomorphism ψ : G→ H such that ρ(αg) = (ρ(α))ψ(g)

for all α ∈ Ω and g ∈ G. In the case when G = H and the actions of G on Ω and Λ are
permutationally isomorphic, we simply write GΩ � GΛ.

Now we return to our discussion on imprimitive symmetric triples (Γ,G,B). Define
G(B) = {g ∈ GB : αg = α for every α ∈ B} to be the pointwise stabilizer of B in G, and
G[B] = {g ∈ GB : Cg = C for every C ∈ ΓB(B)} the pointwise stabilizer of ΓB(B) in GB.
As usual, by GB

B we mean the group GB/G(B) with its action restricted to B, and by
GΓB(B)

B we mean GB/G[B] with its action restricted to ΓB(B). (Thus, whenever we write
GB

B � GΓB(B)
B , we mean that the actions of GB on B and ΓB(B) are permutationally

isomorphic.) Define G(B) = {g ∈ G : Bg = B for every B ∈ B}.
Let Σ be a graph and ∆ a subset of the set of 3-arcs of Σ. We say that ∆ is self-

paired if (τ,σ,σ′, τ′) ∈ ∆ implies (τ′, σ′, σ, τ) ∈ ∆. In this case the 3-arc graph Ξ(Σ,∆)
is defined [10] to have arcs of Σ as its vertices such that two such arcs (σ, τ), (σ′, τ′)
are adjacent if and only if (τ, σ, σ′, τ′) ∈ ∆. We denote by n · Σ the graph which is n
vertex-disjoint copies of Σ, and by Cn the cycle of length n. We may view the complete
graph Kn on n vertices as a degenerate design of block size two.

As shown in [12], when ΓB is (G, 2)-arc transitive, the dual design D∗(B) of D(B)
plays a significant role in the study of Γ, where D∗(B) is obtained from D(B) by
interchanging the roles of points and blocks but retaining the incidence relation. Since
in this case GB is 2-transitive on ΓB(B), as observed in [12],

λ := |Γ(C) ∩ Γ(D) ∩ B| (1.1)

is independent of the choice of distinct C, D ∈ ΓB(B). Denote by D∗(B) the
complementary incidence structure ofD∗(B), which is defined to have the same ‘point’
set ΓB(B) asD∗(B) such that a ‘point’ C ∈ ΓB(B) is incident with a ‘block’ α ∈ B if and
only if C < ΓB(α). As observed in [12, Theorem 3.2], if ΓB is (G, 2)-arc transitive, then
either λ = 0 orD∗(B) is a 2-(b, r, λ) design with v blocks, and either λ := v − 2k + λ = 0
orD∗(B) is a 2-(b, b − r, λ) design with v blocks. Moreover, each ofD∗(B) andD∗(B)
admits [12] GB as a group of automorphisms acting 2-transitively on its point set and
transitively on its block set. The first main result in this paper, Theorem 1.1 below,
gives the parameters of D∗(B) and information about Γ, D∗(B) or/and the action of
GB on ΓB(B) in the case when k = v − p for a prime p ≥ 3. Our proof of this result
relies on the classification of finite 2-transitive groups (see, for example, [5]) and that
of 2-transitive symmetric designs [9] (which in turn rely on the classification of finite
simple groups). Without loss of generality, we may assume that ΓB is connected.

Theorem 1.1. Let Γ be a G-symmetric graph with V(Γ) admitting a nontrivial G-
invariant partition B such that k = v − p ≥ 1 and ΓB is connected with valency b ≥ 2,
where p ≥ 3 is a prime and G ≤ Aut(Γ). Suppose ΓB is (G, 2)-arc transitive. Then
one of (a)–(f) in Table 1 occurs, and in (c)–(f) the parameters of the 2-(b, r, λ) design
D∗(B) with v blocks are given in the third column of the table.

Moreover, in (a), Γ � (|V(Γ)|/2) · K2, GB
B � GΓB(B)

B is 2-transitive of degree p + 1,
and any connected (p + 1)-valent (G, 2)-arc transitive graph can occur as ΓB in (a).
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Table 1. Theorem 1.1.

Case D∗(B) (v, b, r, λ) Conditions
(a) (p + 1, p + 1, 1, 0)
(b) (2p, 2, 1, 0)

p =
qn − 1
q − 1

, n ≥ 2

(c) PGn−1(n, q)
(qn+1 − 1

q − 1
,

qn+1 − 1
q − 1

, qn, qn − qn−1
)

q a prime power

qn − 1
q − 1

is a prime

(d) 2-(11, 5, 2) (11, 11, 6, 3) p = 5
(e) (pa, a, a − 1, p(a − 2)) a ≥ 3

a ≥ 2, s ≥ 1
a a divisor of ps + 1

(f)
(
pa, ps + 1,

(ps + 1)(a − 1)
a

, p(a − 2) +
ps − a + 1

as

)
s a divisor of

ps − a + 1
a

a − 1
p − a

≤ s ≤ a − 1 ≤ p − 2

In (b), we have Γ � n · Γ[B,C], where n = |V(Γ)|/2p, ΓB � Cn, and G/G(B) = D2n.
In (c), GB

B �GΓB(B)
B is isomorphic to a 2-transitive subgroup of PΓL(n + 1, q), and G

is faithful on B.
In (d), we have GB

B � GΓB(B)
B � PSL(2, 11).

In (e), V(Γ) admits a G-invariant partition P with block size p which is a refinement
of B such that ΓP � Ξ(ΓB,∆) for a self-paired G-orbit ∆ on the set of 3-arcs of ΓB.
Moreover, B̂ = {B̂ : B ∈ B} (where B̂ is the set of blocks of P contained in B) is a
G-invariant partition of P such that (ΓP)B̂ � ΓB and the parameters with respect to
(ΓP, B̂) are given by vB̂ = bB̂ = a and kB̂ = rB̂ = a − 1.

In (f), if s = 1, 2, then all possibilities are given in Tables 2–3 respectively, where
GΓB(B)

B is isomorphic to the group or a 2-transitive subgroup of the group in the first
column (with natural actions).

Remark 1.2. (1) In (e), denote by s the valency of ΓP[B̂, Ĉ] for adjacent B,C ∈ B, and
by t the number of blocks of P contained in C which contain at least one neighbour of
a fixed vertex in B ∩ Γ(C). Since rB̂ = a − 1, the parameters with respect to P satisfy
bP = (a − 1)s and rP = (a − 1)t. Since vPrP = bPkP and vP = p, we have pt = kPs.
Since 1 ≤ t ≤ s ≤ a − 1, 1 ≤ kP ≤ p and p is a prime, we have either: (i) kP = p and
s = t; or (ii) s = pc and t = kPc for some integer c with 1 ≤ c ≤ b(a − 1)/pc.

Since v − 2k + λ = 0 in (e), examples of (Γ,G,B) in this case can be constructed
using [12, Construction 3.8] by first lifting a (G, 2)-arc transitive graph to a G-
symmetric 3-arc graph and then lifting the latter to a G-symmetric graph Γ by the
standard covering graph construction [2].
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Table 2. Possibilities when s = 1 in case (f).

GΓB(B)
B D∗(B) (v, b, r, λ) Conditions

Ap+1 D∗(B) � Kp+1 a =
p + 1

2
1 ≤ m ≤ n − 1

p = 2n − 1
a Mersenne prime

≤AGL(n, 2)


2m(2n − 1)

2n

2n − 2n−m

(2m − 1)(2n − 2n−m − 1)

 r∗ = (2n − 1)(2m − 1)

≤PGL(2, p) a − 1 a divisor of p − 1
Sp4(2) 2-(6, 3, 2) p = 5

p = 11
D∗(B) is a Hadamard

M11 2-(12, 6, 5) 3-subdesign of the
Witt design W12

(3-(12, 6, 2) design)

Table 3. Possibilities when s = 2 in case (f).

GΓB(B)
B D∗(B) (v, b, r, λ) Conditions

n ≥ 3 odd

≤AGL(n, 3)



(3n − 1)3 j

2
3n

3n− j(3 j − 1)
(3n − 1)(3 j − 2)

2
+

3n− j − 1
2


p =

3n − 1
2

1 ≤ j ≤ n − 1

a an odd divisor
of 2p + 1

≤PGL(n, 2)


a(2n−1 − 1)

2n − 1
(2n − 1)(a − 1)

a
(2n−1 − 1)(a − 2) +

2n − 1 − a
2a


3 ≤ a ≤

2p + 1
3

p = 2n−1 − 1
a Mersenne prime
(n − 1 ≥ 3 a prime)

A7 D∗(B) � PG(3, 2) (35, 15, 12, 22)
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(2) The condition (v, b, r, λ) = (pa, a, a − 1, p(a − 2)) in (e) is sufficient for ΓB to
be (G, 2)-arc transitive. In fact, in this case for any B ∈ B and α ∈ B, there exists
exactly one block A ∈ ΓB(B) which contains no neighbour of α. Thus, for any distinct
C,D ∈ ΓB(B) \ {A}, there exist β ∈ C and γ ∈ D which are adjacent to α in Γ. Since Γ is
G-symmetric, there exists g ∈ Gα such that βg = γ. So (B,C)g = (B,D). Since g fixes
α, it must fix the unique block of ΓB(B) having no neighbour of α, that is, Ag = A. It
follows that GA,B is transitive on ΓB(B) \ {A} and hence ΓB is (G, 2)-arc transitive.

(3) In (f), it seems challenging to determine GΓB(B)
B and D∗(B) when s is not

specified.
We appreciate Yuqing Chen for constructing the following example for the third

row of Table 2. Denote F = GF(2n) and let H be a subgroup of the additive group
E = (GF(2n),+) of order 2n−m (where 2n − 1 is not necessarily a Mersenne prime).
Then E o F∗ acts on E as a 2-transitive subgroup of AGL(n,2). The incidence structure
whose point set is E and blocks are the complements in E of the E o F∗-orbits of H
is a 2-(2n, 2n − 2n−m, (2m − 1)(2n − 2n−m − 1)) design admitting E o F∗ as a 2-point
transitive group of automorphisms.

In the case when k = v − 3 ≥ 1 or k = v − 5 ≥ 1, Theorem 1.1 enables us to obtain
necessary and sufficient conditions for ΓB to be (G, 2)-arc transitive. This will be given
in Theorem 3.2 and Corollary 3.3 in Section 3, respectively.

We will use standard notation and terminology on block designs [1, 4] and
permutation groups [5]. The set of arcs of a graph Σ is denoted by Arc(Σ).

2. Proof of Theorem 1.1

Proof of Theorem 1.1. Suppose ΓB is (G, 2)-arc transitive. Then GB is 2-transitive
on ΓB(B) and hence λ defined in (1.1) is independent of the choice of distinct
C,D ∈ ΓB(B). It is known [12, Section 3] that either λ = 0 or D∗(B) is a 2-(b, r, λ)
design of v ‘blocks’ with GB doubly transitive on its points and transitive on its blocks
and flags. Since k = v − p ≥ 1,

vr = b(v − p) (2.1)

and by [12, Corollary 3.3],

λ(b − 1) = (v − p)(r − 1). (2.2)

Consider the case λ = 0 first. In this case we have r = 1 as v − p ≥ 1. Thus
v = b(v − p) and so v = p + (p/(b − 1)). Since v is an integer and p is a prime, we
have b = p + 1 or 2, and therefore (v, b, r, λ) = (p + 1, p + 1, 1, 0) or (2p, 2, 1, 0). In the
former case, we have k = v − p = 1 and Γ � (|V(Γ)|/2) · K2. Moreover, the actions of
GB on B and ΓB(B) are permutationally isomorphic. Thus G(B) = G[B] and GB

B �GΓB(B)
B

is 2-transitive of degree p + 1. On the other hand, for any connected (p + 1)-valent
(G, 2)-arc transitive graph Σ, define Γ to be the graph with vertex set Arc(Σ) and
edges joining (σ, τ) to (τ, σ) for all (σ, τ) ∈ Arc(Σ). Then Γ is G-symmetric admitting
B = {B(σ) : σ ∈ V(Σ)} (where B(σ) = {(σ, τ) : τ ∈ Σ(σ)}) as a G-invariant partition such
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that (v, b, r, λ) = (p + 1, p + 1, 1, 0) and ΓB � Σ. (This simple construction was used in
[7, Example 2.4] for trivalent Σ. It is a very special case of the flag graph construction
[15, Theorem 4.3].) In the case where (v, b, r, λ) = (2p, 2, 1, 0), Γ[B,C] is a bipartite
GB,C-edge transitive graph with p vertices in each part of its bipartition, Γ � n · Γ[B,C],
where n = |V(Γ)|/2p, ΓB � Cn, and therefore G/G(B) = D2n.

Assume λ ≥ 1 from now on. Denote by r∗ the replication number of D∗(B), that
is, the number of ‘blocks’ containing a fixed ‘point’. We distinguish between the
following two cases.

Case 1: v is not a multiple of p. In this case, v and v − p are coprime. Thus, by (2.1), v
divides b and v − p divides r. On the other hand, as noticed in [12], by the well-known
Fisher’s inequality we have b ≤ v and r ≤ v − p. Thus v = b and r = v − p = k. From
(2.2) we then have λ = (v − p)(v − p − 1)/(v − 1) = (v − 2p) + p(p − 1)/(v − 1). Note
that v , p + 1, for otherwise λ = 0, which contradicts our assumption λ ≥ 1. Since
λ is an integer, v − 1 is a divisor of p(p − 1). Since p is a prime and v − 1 ≥ p + 1,
it follows that p is a divisor of v − 1. Set a = (v − 1)/p. Then a ≥ 2 is a divisor of
p − 1 and (v, b, r, λ) = (pa + 1, pa + 1, p(a − 1) + 1, p(a − 2) + ((p + a − 1)/a)). Hence
D∗(B) is a 2-transitive symmetric 2-(pa + 1, p(a − 1) + 1, p(a − 2) + (p + a − 1)/a)
design. Thus, by the classification of 2-transitive symmetric designs [9] (see also
[1, Theorem XII-6.22]),D∗(B) orD∗(B) is isomorphic to one of the following:

• PGn−1(n, q) (where n ≥ 2 and q is a prime power);
• the unique 2-(11, 5, 2) design;
• the unique symmetric 2-(176, 50, 14) design;
• the unique 2-(22m, 2m−1(2m − 1), 2m−1(2m−1 − 1)) design (where m ≥ 2).

Since PGn−1(n, q) has (qn+1 − 1)/(q − 1) points and block size (qn − 1)/(q − 1), while
D∗(B) has pa + 1 ‘points’ and block size p(a − 1) + 1, by comparing these parameters
one can show that D∗(B) � PGn−1(n, q). In the same fashion we can see that none of
the 2-transitive symmetric designs above can occur asD∗(B). On the other hand, since
p is a prime, D∗(B) cannot be isomorphic to the unique symmetric 2-(176, 50, 14)
design or the unique 2-(22m, 2m−1(2m − 1), 2m−1(2m−1 − 1)) design. We are left with
the case where D∗(B) � PGn−1(n, q) or D∗(B) is isomorphic to the unique 2-(11, 5, 2)
design.

It is easy to verify that D∗(B) � PGn−1(n, q) only if p = (qn − 1)/(q − 1) and a = q.
In this case, GΓB(B)

B is isomorphic to a 2-transitive subgroup of PΓL(n + 1, q) since
GΓB(B)

B ≤ Aut(D∗(B)) � PΓL(n + 1, q). Moreover, we have GB
B � GΓB(B)

B since the
actions of a 2-transitive subgroup of PΓL(n + 1, q) on the point set and the block set
of PGn−1(n, q) are permutationally isomorphic. Furthermore, if g ∈ G(B), then g ∈ G(B)

since D∗(B) is self-dual. Since this holds for every B ∈ B, g fixes every vertex of Γ.
Since G ≤ Aut(Γ) is faithful on V(Γ), we conclude that g = 1 and so G is faithful on B.
Therefore, (c) occurs.

Further, D∗(B) is isomorphic to the unique 2-(11, 5, 2) design if and only if p = 5
and a = 2. In this case, since the automorphism group of this symmetric 2-(11, 5, 2)
design is PSL(2, 11) (see, for example, [1, Theorem IV.7.14]), GB

B is isomorphic to
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a 2-transitive subgroup of PSL(2, 11). Since |GB
B| ≥ 11 · 10 but no proper subgroup

of PSL(2, 11) has order greater than 60, we have GB
B � GΓB(B)

B � PSL(2, 11) and (d)
occurs.

Case 2: v = pa is a multiple of p, where a ≥ 2 is an integer. In this case (2.1)
becomes ar = b(a − 1). Thus a divides b and a − 1 divides r. On the other hand,
Fisher’s inequality yields b ≤ pa and r ≤ p(a − 1). So b = at and r = (a − 1)t for
some integer t between 1 and p. By (2.2), λ = p(a − 1)((a − 1)t − 1)/(at − 1) =

p(a − 2) + p(t − 1)/(at − 1).

Subcase 2.1: t = 1. Then (v, b, r, λ) = (pa, a, a − 1, p(a − 2)), where a ≥ 3 as λ ≥ 1
by our assumption. Thus, by [12, Equation (3)], any two distinct ‘blocks’ of D(B)
intersect at λ = v − 2k + λ = 0 ‘points’. That is, the ‘blocks’ B \ Γ(C) (C ∈ ΓB(B))
of D(B) are pairwise disjoint and hence [12, Theorem 3.7] applies. Following [12,
Section 3], define P =

⋃
B∈B{B \ Γ(C) : C ∈ ΓB(B)}. Then P is a proper refinement

of B. Denote B̂ = {B \ Γ(C) ∈ P : C ∈ ΓB(B)}. Then B̂ = {B̂ : B ∈ B} is a G-invariant
partition of P. Denote by vB̂, kB̂, bB̂, rB̂ the parameters with respect to (ΓP, B̂). It can
be verified (see [12, Theorem 3.7]) that (ΓP)B̂ � ΓB, vB̂ = v/p = a, kB̂ = vB̂ − 1 = a − 1,
bB̂ = b = a, rB̂ = r = a − 1 and D(B̂) has no repeated blocks. Thus, by [10, Theorem
1] (or [12, Theorem 3.7]), ΓP � Ξ(ΓB,∆) for some self-paired G-orbit ∆ on the set of
3-arcs of ΓB. Hence (e) occurs.

Subcase 2.2: t ≥ 2. In this case, since λ is an integer, at − 1 is a divisor of p(t − 1).
In particular, at − 1 ≤ p(t − 1), which implies a ≤ p − 1 and (p − 1)/(p − a) ≤ t ≤ p.
Since at − 1 does not divide t − 1 and p is a prime, at − 1 must be a multiple of
p, say, at − 1 = ps, so that p(t − 1)/(at − 1) = (t − 1)/s and s divides t − 1. Since
t = (ps + 1)/a is an integer, a is a divisor of ps + 1. Therefore, (v, b, r, λ) = (pa, ps +

1, (ps + 1)(a − 1)/a, p(a − 2) + (ps − a + 1)/(as)). Since λ is an integer, s is a divisor
of (ps − a + 1)/a and so s is a divisor of a − 1. This together with (p − 1)/(p − a) ≤
t = (ps + 1)/a implies (a − 1)/(p − a) ≤ s ≤ a − 1. Therefore, case (f) occurs.

The rest of the proof is devoted to the case s = 1 in (f). In this case D∗(B) is a
2-(p + 1, ((p + 1)(a − 1))/a, p(a − 2) + ((p − a + 1)/a)) design with pa ‘blocks’ such
that each ‘point’ is contained in exactly r∗ = p(a − 1) ‘blocks’. Moreover, D∗(B)
admits GB as a group of automorphisms acting 2-transitively on the set ΓB(B) of p + 1
‘points’. All 2-transitive groups are known (see, for example, [5, Section 7.7]). First,
since p + 1 , q3 + 1, q2 + 1 for any prime power q, GΓB(B)

B cannot be a unitary, Suzuki
or Ree group. Since r < p + 1, S p+1 is r-transitive on p + 1 points (in its natural
action) but on the other hand D∗(B) has pa <

(p + 1
r
)

blocks. Hence GΓB(B)
B � S p+1.

Similarly, as Ap+1 is (p − 1)-transitive in its natural action, GΓB(B)
B � Ap+1 unless

r = p − 1. In this exceptional case, D∗(B) has pa =
(p + 1

2
)

blocks and so is isomorphic
to the complementary design of the trivial design Kp+1. This gives the second row in
Table 2.
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If GΓB(B)
B is affine, then p + 1 = qn for some prime power q and integer n ≥ 1, which

occurs if and only if q = 2 and p = 2n − 1 is a prime. In this case, n must be a
prime and p = 2n − 1 is a Mersenne prime, and GΓB(B)

B is isomorphic to a 2-transitive
subgroup of AGL(n, 2). Moreover, a = 2m for some integer 1 ≤ m ≤ n − 1, and so
(v, b, r, λ, r∗) = (2m(2n − 1), 2n, 2n − 2n−m, (2m − 1)(2n − 2n−m − 1), (2n − 1)(2m − 1)).
This gives the third row in Table 2.

If GΓB(B)
B is projective, then p + 1 = (qn − 1)/(q − 1) for a prime power q and an

integer n ≥ 2. Thus n = 2, p = q and GΓB(B)
B is isomorphic to a 2-transitive subgroup of

PGL(2, p). Since GB is transitive on the p(p + 1)(a − 1) flags ofD(B), p(p + 1)(a − 1)
is a divisor of |PGL(2, p)| = (p − 1)p(p + 1) and so a − 1 is a divisor of p − 1. Note
that the second 2-transitive action of A5 � PSL(2, 5) with degree 6 is covered here, and
that of A6 � PSL(2, 9) with degree 10, of A7 with degree 15, and of A8 � PSL(4, 2)
with degree 15 cannot happen since 9 and 14 are not prime. Similarly, the second
2-transitive action of PSL(2, 8) ≤ Sp6(2) of degree 28 and that of PSL(2, 11) ≤ M11 of
degree 11 cannot happen. So we have the fourth row in Table 2.

If GΓB(B)
B is symplectic, then p + 1 = 2m−1(2m ± 1) for some m ≥ 2. If p + 1 =

2m−1(2m + 1), then p = (2m−1 + 1)(2m − 1), which cannot happen since p is a prime.
Similarly, if p + 1 = 2m−1(2m − 1), then p = (2m−1 − 1)(2m + 1), which occurs if and
only if m = 2 and p = 5. In this exceptional case, we have GΓB(B)

B � Sp4(2) (�S 6),
a = 2 or 3, and hence (v, b, r, λ, r∗) = (10, 6, 3, 2, 5) or (15, 6, 4, 6, 10). The latter
cannot happen since a 2-(6, 4, 6) design does not exist [1, Table A1.1]. Thus D∗(B) is
isomorphic to the unique 2-(6, 3, 2) design. This gives the fifth row in Table 2.

By comparing the degree p + 1 of GΓB(B)
B with that of the ten sporadic 2-transitive

groups [5, Section 7.7], one can verify that among such groups only the following
may be isomorphic to GΓB(B)

B : M11 (degree p + 1 = 12); M12 (degree p + 1 = 12); M24

(degree p + 1 = 24).
In the case of M24, a is 2, 3, 4, 6, 8 or 12, and so (v, b, r, λ, r∗) = (46, 24, 12, 11, 23),

(69, 24, 16, 30, 46), (92, 24, 18, 51, 69), (138, 24, 20, 95, 115), (184, 24, 21, 140, 161) or
(276, 24, 22, 231, 253). It is well known [1, Ch. IV] that M24 is the automorphic group
of the unique 5-(24, 8, 1) design (the Witt design W24), which is also a 2-(24, 8, 77)
design, and that up to isomorphism the natural action of M24 on the points of W24 is
the only 2-transitive action of M24 with degree 24. Hence GΓB(B)

B � M24.
In the cases of M11 and M12, a is 2, 3, 4 or 6, and so (v, b, r, λ, r∗) = (22, 12, 6, 5, 11),

(33,12,8,14,22), (44,12,9,24,33) or (66,12,10,45,55). Since by [4, Section II.1.3] a
2-(12,8,14) or 2-(12,9,24) design does not exist, the second and third possibilities can
be eliminated. Thus, if GΓB(B)

B � M11 or M12, thenD∗(B) is isomorphic to a 2-(12, 6, 5)
or 2-(12,10,45) design. It is well known [1, Ch. IV] that M12 is the automorphic group
of the unique 5-(12, 6, 1) design (the Witt design W12), which is also a 2-(12, 6, 30)
design. Since up to isomorphism the natural action of M12 on the points of W12 is
the only 2-transitive action of M12 with degree 12, we have GΓB(B)

B � M12. Further,
M11 is the automorphic group of a 3-(12, 6, 2) design (that is, a Hadamard 3-subdesign
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of W12 [1, Ch. IV]), which is also a 2-(12, 6, 5) design. Since up to isomorphism the
natural action of M11 on the points of this design is the only 2-transitive action of M11
with degree 12, we conclude that if GΓB(B)

B � M11 then D∗(B) is isomorphic to this
2-(12, 6, 5) design. This gives the last row in Table 2.

In the same fashion one can prove that, if s = 2 in (f), then we have the possibilities
in Table 3. �

3. p = 3, 5
Theorem 1.1 provides a necessary condition for ΓB to be (G, 2)-arc transitive when

k = v − p for any prime p ≥ 3. This condition may be sufficient for some special
primes p, and in this section we prove that this is the case when p = 3 or 5. Moreover,
when p = 3 we obtain more structural information about Γ (see Theorem 3.2 below).
In particular, in the last case in Theorem 3.2 (which corresponds to case (f) in
Theorem 1.1), Γ can be constructed from ΓB by using a simple construction introduced
in [12, Section 4.1]. Given a regular graph Σ with valency at least 2 and a self-paired
subset ∆ of the set of 3-arcs of Σ, define [12] Γ2(Σ,∆) to be the graph with the set
of 2-paths (paths of length 2) of Σ as vertex set such that two distinct ‘vertices’ τστ′

(=τ′στ) and ηεη′ (=η′εη) are adjacent if and only if they have a common edge (that
is, σ ∈ {η, η′} and ε ∈ {τ, τ′}) and moreover the two 3-arcs (which are reverses of each
other) formed by ‘gluing’ the common edge are in ∆. (As noted in [12], when ∆ is the
set of all 3-arcs of Σ, Γ2(Σ,∆) is exactly the path graph P3(Σ) introduced in [3].)

In the proof of Theorem 3.2 we will use the following lemma.

Lemma 3.1. Let Γ be a G-symmetric graph that admits a nontrivial G-invariant
partition B such that k = v − i, where i ≥ 1. Then the multiplicity m of D(B) and
D(B) is a common divisor of r and b.

Proof. As in [12], we may view D(B) and D(B) as hypergraphs with vertex set B
and hyperedges Γ(C) ∩ B and B \ Γ(C), C ∈ ΓB(B), respectively, with each hyperedge
repeated m times. It is easy to see that as hypergraphs they have valencies val(D(B)) =

r = b − (ib/v) and val(D(B)) = b − r, respectively. Since m is a divisor of each of these
valencies, it must be a common divisor of r and b. �

Denote by Kn,n the complete bipartite graph with n vertices in each part of its
bipartition, and by Σ1 − Σ2 the graph obtained from a graph Σ1 by deleting the edges
of a spanning subgraph Σ2 of Σ1. Denote by GB,C the subgroup of G fixing B and
C setwise. A few statements in the following theorem are carried over directly from
Theorem 1.1, and we keep them there for the completeness of the result.

Theorem 3.2. Let Γ be a G-symmetric graph with V(Γ) admitting a nontrivial G-
invariant partition B such that k = v − 3 ≥ 1 and ΓB is connected of valency b ≥ 2,
where G ≤ Aut(Γ). Then ΓB is (G, 2)-arc transitive if and only if one of the following
holds:

(a) (v, b, r, λ) = (4, 4, 1, 0) and GB
B � A4 or S 4;

(b) (v, b, r, λ) = (6, 2, 1, 0) and ΓB � Cn, where n = |V(Γ)|/6;
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(c) (v, b, r, λ) = (7, 7, 4, 2) and GB
B � PSL(3, 2);

(d) (v, b, r, λ) = (3a, a, a − 1, 3a − 6) for some integer a ≥ 3;
(e) (v, b, r, λ) = (6, 4, 2, 1) and GΓB(B)

B � A4 or S 4.

Moreover, in (a) we have GΓB(B)
B � A4 or S 4, Γ � (|V(Γ)|/2) · K2, and every connected

4-valent 2-arc transitive graph can occur as ΓB in (a).
In (b), we have Γ � 3n · K2, n ·C6 or n · K3,3, and G/G(B) = D2n.
In (c), D(B) is isomorphic to the Fano plane PG(2, 2), GΓB(B)

B � PSL(3, 2), G is
faithful on B, and Γ[B,C] � 4 · K2, K4,4 − 4 · K2 or K4,4. In the first case Γ is (G, 2)-arc
transitive, and in the last two cases Γ is connected of valency 12 and 16 respectively.

In (d), the statements in (e) of Theorem 1.1 hold with p = 3.
In (e), we have Γ � Γ2(ΓB,∆) for a self-paired G-orbit ∆ on 3-arcs of ΓB, and every

connected 4-valent (G, 2)-arc transitive graph can occur as ΓB in (e).

Proof. Necessity. Suppose ΓB is (G, 2)-arc transitive. Since p = 3, by Theorem 1.1,
(v, b, r, λ) is one of the following:

(a) (4, 4, 1, 0); (b) (6, 2, 1, 0); (c) (7, 7, 4, 2) (for which n = q = 2);
(d) (3a, a, a − 1, 3a − 6) (where a ≥ 3); (e) (6, 4, 2, 1) (for which a = 2 and
s = 1).

In case (a), GB
B � GΓB(B)

B is 2-transitive of degree four, and in case (b), Γ[B,C] �
3 · K2,C6 or K3,3 for adjacent B,C ∈ B. The properties for cases (a), (b) and (d) follow
from Theorem 1.1 immediately.

Case (c): In this case D(B) is the biplane of order two. In other words, D(B) is
isomorphic to the Fano plane PG(2, 2). Since GB

B induces a group of automorphisms
of the self-dualD(B), we have GB

B ≤ Aut(D(B)) � PSL(3, 2) and GΓB(B)
B ≤ Aut(D(B)).

Since GB is 2-transitive on ΓB(B) of degree seven, we have |GΓB(B)
B | ≥ 7 · 6 = 42.

Since no proper subgroup of PSL(3, 2) has order greater than 24, it follows that
GΓB(B)

B � PSL(3, 2). Since the actions of an automorphism group of PG(2, 2) on the set
of points and the set of lines are permutationally isomorphic, we have GB

B � PSL(3, 2).
By Theorem 1.1, G is faithful on B.

We now prove Γ[B,C] � 2 · C4,C8, and if Γ[B,C] � 4 · K2 then Γ is (G, 2)-arc
transitive. Denote A ∩ Γ(B) = {u1, u2, u3, u4} and B ∩ Γ(A) = {v1, v2, v3, v4} for a fixed
A ∈ ΓB(B).

Suppose Γ[A, B] � 2 · C4. Without loss of generality, we may assume that each
of {u1, u2, v1, v2} and {u3, u4, v3, v4} induces a copy of C4 in Γ. Since λ = 2, |B ∩
Γ(A) ∩ Γ(F)| = 2 for each F ∈ ΓB(B) \ {A}. Since there are exactly six such blocks
F, and since |B ∩ Γ(A)| = 4 and the multiplicity of D(B) is one, each pair {vi, v j}

(1 ≤ i < j ≤ 4) is equal to exactly one B ∩ Γ(A) ∩ Γ(F). So there exist C, D ∈
ΓB(B) \ {A} such that B ∩ Γ(A) ∩ Γ(C) = {v1, v2} and B ∩ Γ(A) ∩ Γ(D) = {v1, v3}. Since
ΓB is (G, 2)-arc transitive, there exists g ∈ G such that (A, B,C)g = (A, B,D). Hence
(B ∩ Γ(A) ∩ Γ(C))g = B ∩ Γ(A) ∩ Γ(D), that is, {v1, v2}

g = {v1, v3}. However, since
g ∈ GA,B, it permutes the two cycles of Γ[A, B] and so {v1, v2}

g = {v1, v2} or {v3, v4},
which is a contradiction.
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Suppose Γ[A,B] � C8. Without loss of generality, we may assume that Γ[A,B] is the
cycle (v1, u1, v2, u2, v3, u3, v4, u4, v1). As above, there exists C ∈ ΓB(B) \ {A} such that
B ∩ Γ(A) ∩ Γ(C) = {v1, v2}. Since r = 4, there exist distinct D, F ∈ ΓB(B) \ {A,C} such
that v1 ∈ B ∩ Γ(D) ∩ Γ(F). Since λ = 2, either B ∩ Γ(A) ∩ Γ(D) or B ∩ Γ(A) ∩ Γ(F)
is equal to {v1, v3}, say, B ∩ Γ(A) ∩ Γ(D) = {v1, v3}. Since ΓB is (G, 2)-arc transitive,
there exists g ∈ G such that (A, B,C)g = (A, B,D). Hence {v1, v2}

g = {v1, v3}. However,
g ∈ GA,B induces an automorphism of Γ[A, B]. On the other hand, the distances from
v1 to v2 and v3 in Γ[A, B] are 2 and 4, respectively, and this is a contradiction.

So far we have proved that Γ[A, B] � 2 · C4,C8. Since k = 4 and Γ[B,C] is GB,C-
edge transitive, we must have Γ[B,C] � 4 · K2,K4,4 − 4 · K2 or K4,4. Suppose Γ[B,C] �
4 · K2. Then for α ∈ B the action of Gα on Γ(α) and ΓB(α) are permutationally
isomorphic. Note that ΓB(α) is a block of D∗(B) � D(B). Since GB

B � GΓB(B)
B �

PSL(2, 7) � Aut(D∗(B)), the setwise stabilizer of ΓB(α) in GΓB(B)
B is isomorphic to S 4

and hence is 2-transitive on ΓB(α) as |ΓB(α)| = 4. One can verify that this stabilizer
is equal to Gα. Thus Gα is 2-transitive on ΓB(α) and so 2-transitive on Γ(α). In
other words, Γ is (G, 2)-arc transitive when Γ[B,C] � 4 · K2. In the case where
Γ[B,C] � K4,4 − 4 · K2 or K4,4, since ΓB is connected and D(B) � PG(2, 2), one can
easily see that Γ is connected of valency 12 or 16 respectively.

Case (e): Since (v, b, r, λ) = (6, 4, 2, 1), D∗(B) is the 2-(4, 2, 1) design, that is, the
complete graph on four vertices. This case coincides with the case (v, k) = (6, 3) in
[8, Theorem 4.1(b)] and we have GΓB(B)

B � A4 or S 4 since GB is 2-transitive on ΓB(B)
of degree four. Since (λ, r) = (1, 2), by [12, Theorem 4.3] we have Γ � Γ2(ΓB,∆) for
some self-paired G-orbit ∆ on 3-arcs of ΓB. Moreover, again by [12, Theorem 4.3], for
any connected 4-valent (G, 2)-arc transitive graph Σ and any self-paired G-orbit ∆ on
3-arcs of Σ, Γ = Γ2(Σ,∆) is a G-symmetric graph admitting B2 = {B2(σ) : σ ∈ V(Σ)}
as a G-invariant partition such that ΓB2 � Σ and the corresponding parameters are
(v, b, r, λ) = (6, 4, 2, 1) and k = v − 3 = 3, where B2(σ) is the set of 2-paths of Σ with
middle vertex σ. Since Σ is (G, 2)-arc transitive with even valency, by [10, Remark
4(c)] such a ∆ exists and hence Σ can occur as ΓB in (e).

Sufficiency. We now prove that each of (a)–(e) implies that ΓB is (G, 2)-arc
transitive. Since by Lemma 3.1 the multiplicity m of D(B) is a common divisor of
b and r, in cases (a)–(d) we have m = 1. In case (e), since b = 4 and λ ≥ 1, we have
m = 1 as well.

In case (a), since (v, b, r, λ) = (4, 4, 1, 0) and k = 1, each vertex in B has a neighbour
in a unique block of ΓB(B), yielding a bijection from B to ΓB(B). Using this bijection,
one can see that the actions of GB on B and ΓB(B) are permutationally isomorphic.
Since GB

B � A4 or S 4, GB is 2-transitive on ΓB(B) and therefore ΓB is (G, 2)-arc
transitive.

In case (b), since ΓB is a cycle and is G-symmetric, it must be (G, 2)-arc transitive.
In case (c), since (v, b, r, λ) = (7, 7, 4, 2), D(B) � PG(2, 2). Since GB

B � PSL(3, 2)
and the actions of PSL(3, 2) on the set of points and the set of lines of PG(2, 2)
are permutationally isomorphic, we have GΓB(B)

B � PSL(3, 2). Since PSL(3, 2) is
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2-transitive on the set of lines of PG(2, 2), GB is 2-transitive on ΓB(B) and so ΓB is
(G, 2)-arc transitive.

As shown in Remark 1.2(2), in case (d), ΓB is (G, 2)-arc transitive.
In case (e), since GΓB(B)

B � A4 or S 4 and b = 4, GB is 2-transitive on ΓB(B) and so
ΓB is (G, 2)-arc transitive. �

The following result about the case p = 5 is largely a corollary of Theorem 1.1 (and
Remark 1.2(2)). So we omit its proof.

Corollary 3.3. Let Γ be a G-symmetric graph with V(Γ) admitting a nontrivial
G-invariant partition B such that k = v − 5 ≥ 1 and ΓB is connected of valency b ≥ 2,
where G ≤ Aut(Γ). Then ΓB is (G, 2)-arc transitive if and only if one of the following
holds:

(a) (v, b, r, λ) = (6, 6, 1, 0) and GB
B � GΓB(B)

B � A6 or S 6;
(b) (v, b, r, λ) = (10, 2, 1, 0), ΓB � Cn and G/G(B) = D2n, where n = |V(Γ)|/10;
(c) (v, b, r, λ) = (21, 21, 16, 12), D∗(B) � PG(2, 4), GB

B � GΓB(B)
B is isomorphic to a

2-transitive subgroup of PΓL(3, 4), and G is faithful on B;
(d) (v, b, r, λ) = (11, 11, 6, 3), D∗(B) is isomorphic to the unique 2-(11, 5, 2) design

and GB
B � GΓB(B)

B � PSL(2, 11);
(e) (v, b, r, λ) = (5a, a, a − 1, 5a − 10) for some integer a ≥ 3;
(f) either (1) (v, b, r, λ) = (10, 6, 3, 2), D∗(B) is isomorphic to the unique 2-(6, 3, 2)

design, and GΓB(B)
B � Sp4(2) or PSL(2, 5); or (2) (v, b, r, λ) = (15, 6, 4, 6),

D∗(B) is isomorphic to the complementary design of K6 and GΓB(B)
B � A6; or

(3) (v, b, r, λ) = (20, 16, 12, 11), D∗(B) � AG(2, 4) and GΓB(B)
B is isomorphic to a

2-transitive subgroup of AΓL(2, 4).

As in Theorem 1.1, in (a) above we have Γ � (|V(Γ)|/2) · K2 and every connected
6-valent 2-arc transitive graph can occur as ΓB in (a). In (b), since Γ[B,C] is GB,C-edge
transitive, we have Γ � 5n · K2, n · C10, n · (K5,5 − C10), n · (K5,5 − 5 · K2) or n · K5,5.
In (e) above, the same statements as in case (e) of Theorem 1.1 hold with p = 5. The
three cases in (f) arise because (a, s) = (2, 1), (3, 1), (4, 3) are the only pairs satisfying
the conditions in (f) of Theorem 1.1. In (2) of (f), GΓB(B)

B cannot be PGL(2, 5) since the
latter has no transitive action of degree 15. Similarly, in (1) of (f), GΓB(B)

B � PGL(2, 5)
because the 2-(6, 3, 2) design has ten blocks of size 3 and PGL(2, 5) is (sharply) 3-
transitive of degree six. The result in (3) of (f) follows because D∗(B) is a 2-(16, 4, 1)
design in this case and AG(4, 2) is the unique 2-(16, 4, 1) design [4, Section 1.3].
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