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Abstract

The set of row reduced matrices (and of echelon form matrices) is closed under multiplication. We show
that any system of representatives for the Gln(K) action on the n × n matrices, which is closed under
multiplication, is necessarily conjugate to one that is in simultaneous echelon form. We call such closed
representative systems Grassmannian semigroups. We study internal properties of such Grassmannian
semigroups and show that they are algebraic semigroups and admit gradings by the finite semigroup of
partial order preserving permutations, with components that are naturally in one–one correspondence
with the Schubert cells of the total Grassmannian. We show that there are infinitely many isomorphism
types of such semigroups in general, and two such semigroups are isomorphic exactly when they are
semiconjugate in Mn(K). We also investigate their representation theory over an arbitrary field, and other
connections with multiplicative structures on Grassmannians and Young diagrams.

2010 Mathematics subject classification: primary 15A30, 20M20, 14M15; secondary 16G99, 05E99,
20M30.
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1. Introduction and preliminaries

Let K be an infinite field. Consider the left regular action of the general linear group
Gln(K) on the matrices Mn(K). A very important set of matrices is the set R of
row reduced matrices, which is a standard system of representatives for this action.
Row reduction is the basic algorithm for solving linear systems. Moreover, R has
an additional remarkable property: it is closed under the multiplication of matrices.
Strangely, this basic linear algebra fact is not as well known as one would expect;
we have only noted this fact in one textbook [10, Exercise 2.19]; it is also noted
in [11, page 67] (see also [1]). The fact that a product of row reduced matrices
is row reduced has a geometric consequence. Consider V , the n-dimensional space
over K, with a fixed basis {e1, . . . , en}, regarded as the vector space of column vectors
with n entries, and Mn(K) acting as endomorphisms on the left. Then each Gln(K)
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orbit O corresponds uniquely to a subspace of Kn, by O = Gln(K) · A→ ker(A) (since
ker(A) is uniquely determined for A ∈ O). Hence, the multiplication of row reduced
matrices induces a multiplication on the total Grassmannian GrK(n) via the bijection
R ←→ GrK(n), A←→ ker(A). Thus, R and GrK(n) form a semigroup and, in fact, an
algebraic semigroup. This motivates the introduction of the following terminology.

Definition 1.1. We say that S is a Grassmannian semigroup if S is a system of
representatives for the left regular Gln(K) action on Mn(K) such that S is also closed
under multiplication of matrices. Equivalently, S is a subsemigroup of (Mn(K), ·) such
that for every subspace W of V , there is a unique element A ∈ S such that ker(A) = W.

Grassmannian semigroups were also studied in [1]. On the other hand, the subject
of semigroups and, more prominently, algebraic semigroups has grown a lot in recent
years, and several detailed monographs or review papers have been dedicated to
this [7, 13, 15, 17].

Apart from this, the starting motivating questions of this paper are: what other
special systems of representatives for the Gln(K) action can be found or, equivalently,
what other natural multiplicative structures on GrK(n) compatible with the natural
matrix multiplication can be found? What is special about R, and is R somehow
canonical? This is also interesting from the perspective of row reduction: what are the
interesting canonical forms for row reduction, and what are all possible forms for row
reduction?

Our first main result addresses this question. In Proposition 2.9 and Theorem 2.6,
we show that every such Grassmannian semigroup is conjugate to a Grassmannian
semigroup which is in simultaneous echelon form with all initial pivots equal to 1
(that is, a Grassmannian semigroup consisting only of row echelon form matrices),
but where entries above pivots are not necessarily equal to 0. This is a consequence
of a peculiarity of such semigroups, namely, that if two elements in a Grassmannian
semigroup have the same rank, then they must have the same range (column space); in
other words, two elements of a Grassmannian semigroup are equivalent with respect
to the right Green relation [12, 13] as soon as they have the same rank. Thus, from
the point of view of the right Green equivalence, such semigroups have very few
equivalence classes, while the left Green equivalence (under which two elements are
equivalent when they have the same kernel) is ‘as large as possible’: they contain
exactly one element in each such left equivalence class. Beyond being conjugate to a
semigroup in echelon form, we prove that there is a certain canonical form for each
such semigroup, which generalizes row reduced form for matrices. In particular, we
are able to describe all such Grassmannian semigroups of orders 2 and 3. We note
that there are many results on simultaneous upper triangular form of sets of linear
transformations (see [5, 6, 12] and references therein and the textbooks [16, 17]). Our
result is of this flavor, except that it yields a more precise form which is not as common,
and is more combinatorial: simultaneous echelon form. The condition we have – a
system of representatives of the Gln action – however, is of a different type than what
simultaneous triangular form results usually require.
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For each row echelon form matrix, we can define its type to be the set of positions
of columns containing pivots. The set of row reduced matrices with only zeros
everywhere except pivot positions forms a semigroup Πn of 2n elements, and any
Grassmannian semigroup S is graded by Πn. This is related to the Renner semigroup
Rn – the semigroup of partial one-to-one maps on a set of n elements, in the sense that
Πn is the submonoid consisting of the order-preserving maps in Rn [17, Ch. 8]. This
observation allows one to obtain a natural one–one correspondence between Schubert
cells of the total Grassmannian GrK(n), associated Young diagrams and the graded
components of such a semigroup. In particular, for example, the semigroup of row
reduced matrices has an algebraic semigroup structure (and, consequently, so does
GrK(n)).

In Section 3, we study the algebraic structure of Grassmannian semigroups S . We
show that there are several elements in such an algebraic structure that can be identified
and defined intrinsically. There is a basis B in which S is echelon and, when S is in
echelon form, the Jordan cell N of dimension n and eigenvalue 0 must belong to the
semigroup S ; also, the rank-k row reduced diagonal idempotents Ek must be in the
(echelon form of the) semigroup. This element N is uniquely determined intrinsically
in S by the algebraic fact that every nilpotent element of S is a left multiple of
N. Moreover, the equivalence relation on the set E of idempotents in S defined by
the well-known procedure E ∼ E′ if EE′ = E′ and E′E = E partitions E into n + 1
equivalence classes, and allows one to define the rank, and also the type of an element
of S independently of the ambient matrix algebra Mn(K) in which S is defined. Hence,
given a Grassmannian semigroup S , all this structure, including the partition (grading)
of S into parts indexed by Πn, can be recovered from internal algebraic properties
of S . Hence, the algebraic structure (multiplication) of this S retains plenty of the
combinatorics and geometry of GrK(n).

In Section 4, we study the problem of isomorphisms of Grassmannian semigroups.
One sees easily that isomorphisms of such algebraic structures determine inclusion-
preserving bijections on GrK(n), so that the basic fundamental theorem of projective
geometry can be used. Our main result of this section and second main result of the
paper is that two Grassmannian semigroups are isomorphic if and only if they are
semiconjugate, that is, they are isomorphic via a ring automorphism of Mn(K), which
must be the composition of a conjugation by a matrix A and a ring automorphism σ
of Mn(K) induced by some σ ∈ Aut (K). This, together with the results of the first
section, allows us to determine up to isomorphism all such algebraic Grassmannian
semigroups of dimensions 2 and 3, and determine the cardinality of the set of all such
isomorphism classes. For example, whenK = R, we show that there are ℵ2 = 22ℵ0 such
isomorphism classes. This can be done in higher dimensions, but the descriptions one
would obtain make such results impractical to state. In particular, this re-obtains and
generalize the results of [1].

In Section 5, we further explore connections between the Grassmannian
semigroups, Grassmannians and Young diagrams. We note that besides the
multiplicative structures they induce on GrK(n), one obtains a monoid structure on
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the set of Young diagrams. Each matrix in Πn represents a Schubert cell in GrK(n),
and has a canonically associated Young diagram, and vice versa, and one can define a
bijective function between the set of all Young diagrams and the monoid (semigroup)
Π =

⋃∞
n=1 Πn, where Πn is regarded naturally as a submonoid of Πn+1 as corner

matrices. This is interesting vis-a-vis the so-called plactic monoid, a monoid structure
on the set of all Young tableaux. Motivated also by this, we study the representation
theory of Grassmannian semigroups, and of the monoids Πn and Π. We show
that the semigroup algebra F[S ] over some arbitrary possibly different field F of a
Grassmannian semigroup S on Mn(K) is in fact semilocal and has nilpotent Jacobson
radical (although S can be quite large). We also completely determine the Ext quiver
of Πn, its left and right projective indecomposables and their dimensions; these are
expressed in terms of combinatorial binomial coefficients.

Representation theory of algebraic semigroups is also a subject much studied in
the past two decades or so (see [3, 13, 14, 17] and references therein). In our setup,
however, not all semigroups are naturally algebraic (linear) semigroups when regarded
as subsets of Mn(K), as they may depend on some arbitrary functions f : K→ K (see
Section 3). Grassmannian semigroups can be endowed with a (different) algebraic
variety structure as a union of affine spaces. While they are not connected as a variety,
they are still interesting as combinatorial objects, via their natural grading by Young
diagrams. Furthermore, we do not impose any restriction on our field (other than
sometimes being infinite). Hence, this natural type of semigroup structure seems to
have escaped detailed scrutiny in the abstract semigroup theory, and our results do not
seem to be a direct consequence of it, but there is certain overlap of interest. At the
same time, this type of multiplicative structure does not seem to have been studied
before in connection to combinatorial representation theory as well.

With a general audience in mind, we take a fairly direct approach throughout the
paper. We note that in our treatment and interpretation, GrK(n) is ‘naively’ viewed as
simply a union of affine spaces, as opposed to the usual projective space subvariety
via the Plücker embedding; as noted before, this has the advantage of being of
combinatorial relevance and compatible with other algebraic structures (such as the
natural matrix multiplication). In algebraic terms, this translates into the difference
between our semigroup algebra F[Πn] and the exterior algebra Λ(Fn). Nevertheless,
some questions regarding these structures arise on the way, such as whether there
are other relevant connections of the above-mentioned product of Young diagrams
with other combinatorial representation theory or algebraic combinatorics problems.
We believe that another interesting question is to completely describe the semigroup
algebras of Πn as quivers with relations, and determine the properties of the semigroup
algebra F[Π] of the semigroup Π of all Young diagrams. They are also bialgebras,
and determining their representation and Grothendieck rings could be an interesting
problem as well. The algebraic semigroup structures we find on Grassmannian
semigroups (most importantly the semigroup of row reduced matrices) also naturally
give rise dually to bialgebras (the bialgebra of algebraic representative functions).
Hence, we hope that this work can be the starting point of future investigations.
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The field K is assumed to be infinite throughout the paper; this hypothesis is used
in Propositions 2.1 and 2.3, which are key observations of our investigation. As this
is a standard minimal assumption in representation theory, we will adhere to it here.
Some later results may still hold for finite fields, but we leave this investigation to the
interested reader.

2. Simultaneous echelon form for Grassmannian semigroups

The following is an easy observation that is likely known; we include a brief
argument for completeness.

Proposition 2.1. Let V be an n-dimensional vector space over an infinite field K and
X = {Ai | i = 0, 1, . . . , k} be a finite collection of subspaces of V. Then there is a flag
0 = B0 ⊂ B1 ⊂ B2 ⊂ · · · ⊂ Bn = V on V with dim(Bi) = i such that if dim(A j) = t then
Bn−t is a complement for A j.

Proof. Fix a basis e1, . . . , en and write all vectors as column vectors with respect to this
basis. Let B = [xi j] be a generic n × n matrix with variables as shown. Let dim Ai = di,
and let Bi be a basis for Ai. Replace the first di columns of B with the elements of the
basisBi and denote the resulting matrix by M(Ai). Let Ψ(Ai) = det M(Ai), so Ψ(Ai) is a
polynomial in K[xi j|i, j] (depending only on n(n − di) variables). Let Ψ =

∏
Ψ(Ai), so

Ψ is a polynomial in the n2 variables xi j. Note that Ψ is the zero polynomial only when
det M(Ai) = 0 for some i. But this is not possible since Bi can always be completed
to a basis of V (so Ai has a complement), and det(M(Ai)) would be nonzero at the
corresponding point. Therefore, since the field K is infinite, Ψ has a nonzero value at
some B ∈ Mn(K). If Bi is be the span of the last n − i columns of B, then it is clear that
the Bi are the subspaces, as required. �

Common complements have been studied for a long time and, in the generality
of modules over arbitrary rings, most recently by Lam and his co-authors; we refer
to [2, 4, 8] also for the history of the subject. This is usually studied in the form of
existence of common complements of isomorphic submodules; for vector spaces, a
much more general statement is possible as above.

In what follows, S will be a Grassmannian semigroup of n × n matrices.

Proposition 2.2. Let A ∈ S be a matrix of rank k. Then, for every subspace W of V
such that V = W ⊕ Im (A), let E ∈ S be the unique element such that ker(E) = W. Then
E is an idempotent and EA = A. Consequently, the column spaces of A and E coincide
(that is, Im(E) = Im(A)) and the columns of A span the 1-eigenspace of E.

Proof. Let E ∈ S be such that ker(E) = W (this is obviously unique). Note that
since W ∩ Im (A) = 0, we have that dim(Im (EA)) = dim(E(Im (A))) = dim(E(W +

Im (A))) = dim(Im (E)), so rank(EA) = rank(E) = n − dim(W) = rank(A). This means
that dim(ker(A)) = dim(ker(EA)) and, since ker(A) ⊆ ker(EA), it follows that ker(A) =

ker(EA). By the uniqueness property of the Grassmannian semigroup, it follows that
EA = A.
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Now note that E2A = EA = A and, as above, this shows that Im (E2) = Im (E)
and hence ker(E2) = ker(E). Therefore, E2 = E again by the uniqueness property.
Moreover, the identity EA = A shows that the columns of A are 1-eigenvectors for
E and, since Im (E) has dimension k and is spanned by eigenvectors, it follows that
Im (A) ⊆ Im (E), so they coincide since they have the same dimension (the equality
EA = A shows this directly also). �

Proposition 2.3. Let A, B ∈ S be such that rank(A) = rank(B). Then Im (A) = Im (B).

Proof. Let k be the common rank of A and B and assume that Im (A) , Im (B). Note
that there is a subspace W of V such that V = Im (A) ⊕W = Im (B) ⊕W. This can be
seen by the remarks in the beginning of this section, or directly: take A′, respectively
B′, to be n × k matrices formed by some vectors that span Im (A), respectively Im (B).
Finding the W amounts to finding an n × (n − k) matrix U such that det[A′|U] , 0 and
det[B′|U] , 0. This is possible, since the sets {U, det[A′|U] , 0} and {U, det[B′|U] , 0}
are open subsets of the affine space An(n−k).
By Proposition 2.2, there are idempotents E,F ∈ S such that ker(E) = ker(F) = W and
Im (E) = Im (A), Im (F) = Im (B). This shows that E , F, and this contradicts the
Grassmannian semigroup property, since two elements in S have the same kernel. �

We can now note the following interesting fact about the elements of a
Grassmannian semigroup.

Corollary 2.4. There are subspaces V0,V1, . . . ,Vn with dim(Vk) = k and such that:

(i) if A ∈ S has rank(A) = k, then Im (A) = Vk;
(ii) for each k, there are idempotents E ∈ S such that Im (E) = Vk.

Proposition 2.5. With the notation of Corollary 2.4, for each 0 ≤ k < n, Vk ⊂ Vk+1.

Proof. Let Ek be an idempotent with Im (Ek) = Vk. If Wk = ker(Ek), obviously
ker(Ek) ∩ Im (Ek) = 0 since Ek is an idempotent. Let W be a subspace of codimension
1 in Wk; note that it exists since k < n implies that Wk , 0. Let A ∈ S be such
that ker(A) = W. We note that since Im (Ek) ∩ ker(A) = 0, we have A(Im (Ek)) �
Im (Ek), so rank(AEk) = rank(Ek). As before, since ker(Ek) ⊆ ker(AEk), using the
uniqueness property of S , this shows that AEk = Ek. From this we obtain that Im (Ek) ⊂
Im (A). But rank (A) = n − dim(W) = k + 1, so Im (A) = Vk+1 and Im (Ek) = Vk. Thus,
Vk ⊂ Vk+1. �

Hence, for every element A ∈ S , we have A(Vk) = Vk−i for some i. Using this
for the flag 0 = V0 ⊂ V1 ⊂ · · · ⊂ Vn = V , and choosing a basis (wi)i=1,...,n such that
wi ∈ Vi \ Vi−1, we see that with respect to this basis every endomorphism A ∈ S is
in echelon form (here by echelon form we understand the usual one, that is, a matrix
for which in every row the first nonzero element is found at least one position to the
right from the first nonzero element in the previous row).

Thus, we have the following result.

https://doi.org/10.1017/S1446788717000155 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788717000155


314 V. Camillo and M. C. Iovanov [7]

Theorem 2.6. Any Grassmannian semigroup of n × n matrices may be conjugated to
one which is in echelon form (that is, to a semigroup consisting of matrices in echelon
form; therefore, the matrices of a Grassmannian semigroup are simultaneously
echelonizable).

Let us denote by Ek the ‘basic’ idempotent matrices Ek =

( 1 ... 0 ... 0
... ... ... ... ...
0 ... 1 ... 0
... ... ...
0 0 0 ... 0

)
, having 1

on the first k entries on the diagonal and 0 elsewhere. The following is a variant of a
result present in [1]; we give there a more direct short proof.

Proposition 2.7. Let S be a Grassmannian semigroup in Mn(K), which is in echelon
form. Then Ek ∈ S for all 1 ≤ k ≤ n.

Proof. Let Fk ∈ S be the unique matrix whose kernel is ek+1, . . . , en, where ei are
the vectors of the canonical basis. As in Proposition 2.2, Fk is an idempotent and,
since Fk are in echelon form, we have Fk =

(A 0
0 0

)
, where A is a k × k upper triangular

matrix. Since A is diagonalizable (A2 = A) with rank A = k, we see that A = Ik, the
k × k identity, and so Fk = Ek, and the proof is finished. �

We also note a more general easy description of the idempotents in a Grassmannian
semigroup.

Proposition 2.8. Let S be a Grassmannian semigroup in echelon form. Then the set of
idempotents of rank k in S consists of all the matrices of the form

E =

(
Ik C
0 0n−k

)
for arbitrary k × (n − k) matrices C with entries in K.

Proof. Since E has rank k and is in echelon form, in particular E =
(H C

0 0n−k

)
. Since

E2 = E, we get H2 = H and HC = C. This shows that the columns of C are
1-eigenvectors for the idempotent H, and so they are linear combinations of the
columns of H. Hence, rank(E) = rank(H) = k and, since H is an idempotent, it follows
that H = Ik, and so

E =

(
Ik C
0 0n−k

)
.

Conversely, if C is an arbitrary k × (n − k) matrix, note that the span of the columns
of the n × (n − k) matrix M(C) =

(
−C
In−k

)
is a subspace V(C) of V = Kn of dimension

n − k for which V(C) ∩ Vk = 0. Moreover, for every such subspace W such that
W ∩ Vk = 0 there is a unique such matrix C for which W = V(C). Indeed, let B be an
n × (n − k) matrix whose columns span W, and column reduce this matrix. Note that
rows 1, 2, . . . , k cannot contain a pivot, since Vk ∩W = 0, and the conclusion follows
as M(C) and M(D) are not column equivalent if C , D. Finally, for every k × (n − k)
matrix C, there is an element E ∈ S with ker(E) = V(C) and, since V(C) ∩ Vk = 0,
it follows that E is an idempotent by Proposition 2.2. Hence, E =

( Ik D
0 0n−k

)
and E

annihilates V(C), so EM(C) = 0, from which it follows that D = C. �
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Proposition 2.9. Assume that S is a Grassmannian semigroup in echelon form with
respect to a basis e1, . . . , en. Then, after a change of basis of the type ei 7→ λiei (that
is, a ‘diagonal’ change of basis), the matrices in S will have 1 on all pivot entries.

Proof. First, we show that all rank-1 matrices with a pivot on position (1, i) will have
the same value of the pivot. If Ai ∈ S is a matrix having a pivot value of ai at position

(1, i), Ai =

( 0 ... ai ai+1 ... an
0 0 ... 0
... ... ...
0 0 ... 0

)
, then Bi = Ai · Ei ∈ S has the element ai ∈ K as a pivot

in position (1, i) and 0 elsewhere. By the uniqueness condition for Grassmannian
semigroups, such an element in S is unique, so ai is the same for all matrices of this
form.

Now consider a matrix B ∈ S, with a pivot in position (i, j) equal to bi j. Then it is
straightforward to note that Bi · B is an echelon matrix in S having a pivot of aibi j in
position (1, j) and so, by the above considerations, we see that a j = aibi j. We now note
that if we change bases by e′i = (1/ai)ei, in the new basis e′i , each element of Swill still
be in echelon form, and the rank-1 matrices will have the pivots equal to 1. Moreover,
by the above, the pivots in positions (i, j) will be bi j = a j · a−1

i = 1. �

It seems appropriate here to note the following remark on the structure of another
set of elements which occur in every Grassmannian semigroup which in fact form the
set of nilpotents of rank 1.

Remark 2.10 (Elements of shape (p), 1 ≤ p ≤ n). If S is a Grassmannian semigroup
in echelon form, then, for every 1 ≤ p ≤ n, the elements of shape (p) in S are
all the matrices Lp(ap+1, . . . , an) for arbitrary ap+1, . . . , an, having the first row
(0, . . . , 0, 1, ap+1, . . . , an), with the 1 on position (1, p) and 0 elsewhere. Indeed, for
arbitrary ap+1, . . . , an in K, there has to be an element B ∈ S of rank 1 which has
kernel equal to the subspace given by the equation xp = −ap+1xp+1 − · · · − anxn (such a
subspace is uniquely determined by ap+1, . . . , an), and in row reduced form the matrix
B = Lp(ap+1, . . . , an) is the only such possibility. For p ≥ 2, these are precisely the
nilpotent elements of rank 1 and, for p = 1, these are precisely all the idempotents of
rank 1 in S.

2.1. A ‘row reduced’ form for Grassmannian semigroups. We give a theorem
which shows that, after conjugation by a suitable element, the matrices in a
Grassmannian semigroup S can be put (simultaneously) in a form very close to the
classical row reduced echelon form.

First, we fix some notation.

Definition 2.11. Let τ = (k1, k2, . . . , kt) be a t-uplet of integers, where 1 ≤ k1 < k2 <
· · · < kt ≤ n are integers, 1 ≤ t ≤ n. We will say that an echelon matrix A has shape
τ if it has pivots at positions (i, ki), for i = 1, . . . , t, that is, the pivots are at columns
k1, . . . , kt.

We denote by Pτ the matrix having 1 at positions (i, ki) and 0 elsewhere. In what
follows, it will be convenient to consider column reduced matrices, which means that
we column reduce right to left, bottom–up.
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Definition 2.12. We say that a matrix N is right column reduced (respectively, in right
column echelon form) if it is obtained from a row reduced matrix (respectively, from an
echelon matrix) via reflection across the secondary diagonal; equivalently, if when the
matrix under consideration is rotated ninety degrees counterclockwise and reflected
across a vertical line to its left, it is row reduced.

That is, a matrix N is right column reduced if its columns, listed from left to
right, are c1, c2, . . . , cn and these columns, when transposed and organized into rows in
reverse order as tcn, . . . ,

tc1, form a row reduced matrix that we will denote by Rc(N).
Obviously, this operation Rc is its own inverse, so R2

c = Id on Mn(K). Its importance is
revealed when dealing with the null space of matrices, and offers a convenient way to
write such null spaces.

For a shape τ = (k1, . . . , kt), let τ′ be the shape defined as τ′ = (l1, . . . , ls) such that
1 ≤ l1 < · · · < ls ≤ n and {l1, . . . , ls} t {k1, . . . , kt} = {1, 2, . . . , n} (that is, {l1, . . . , ls} is
the complement of {k1, . . . , kt}). The correspondence between τ and τ′ can also be
explained via conjugate (transpose) Young diagrams.

We recall a standard construction done for Schubert cells of Grassmannians. If A
is a row echelon (or row reduced) matrix of shape τ, let Y0(A) be the Young diagram
obtained by retaining all nonpivot positions from all rows containing pivots. Namely,
if A has shape τ = (k1, . . . , kt), we place in row i of Y0(τ) a number of boxes equal
to the number of nonpivot positions on row i, to the right of (i, ki). More precisely,
if A has a pivot at (i, ki), there are n − ki columns to the right of column ki, t − i
of which are pivot columns. There are therefore (n − ki) − (t − i) = n − t + i − ki

nonpivot positions on row i and to the right of column ki. Hence, we may write
Y0(τ) = (n − t + 1 − k1, n − t + 2 − k2, . . . , n − kt), where the jth entry of this t-uple
of integers denotes the number of boxes of Y0(τ) on row j. This is using the French
convention with rows having a nonincreasing number of boxes as we go downwards.
If τ′ = (l1, . . . , ls), let Y0(τ′) be defined similarly. Then it is not difficult to see that
Y0(τ) and Y0(τ′) are conjugate Young diagrams. We will later use further connections
of row reduced and echelon form matrices and Young diagrams.

We now use the above map Rc to define a bijection from echelon matrices of shape
τ to right column echelon matrices of shape τ′. It will also be useful to have some
additional notation. If τ = (k1, . . . , kt) is a fixed shape, let us denote by Wτ the set of
all matrices with entries 0 everywhere except possibly nonzero at positions (i, j) for
i ≤ t and j > ki, and j < {k1, . . . , kt}. Equivalently, A ∈ Wτ if and only if A + Pτ is a
row reduced matrix of shape τ. Obviously, Wτ is a K-subspace of Mn(K). Note that
the dimension of this space is dim(Wτ) = (n − k1 − t + 1) + (n − t − k2 + 2) + · · · + (n −
t − kt + t) = t(n − t) + t(t + 1)/2 − (k1 + · · · + kt). We will more closely investigate the
relation of Grassmannian semigroups and Grassmannians later.

Remark 2.13. A t-shuffle is a permutation on n letters that preserves the order of
(1, . . . , t) and (t + 1, . . . , n). If P is a permutation matrix, then multiplication by P
on the right of a matrix A permutes the columns of A. It is easy to see that a shuffle is
a permutation matrix of the form P =

( R1
R2

)
, where R1 and R2 are 0, 1 echelon matrices.
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Every rank-t row reduced matrix is of the form R =
( It X

0 0
)
P, where P is a t-shuffle. Let

M =
( It X

0 0
)
; then ker(M) is the span of the columns of

(0 −X
0 In−t

)
. So, the kernel (null space)

of R is the span of the columns of N(R) := P−1(0 −X
0 In−t

)
=

(
Rt

1 Rt
2

)(0 −X
0 In−t

)
. But the shape of

R is the shape of R1 and one sees that the shape of N(R), according to our right–left,
down–up convention, is the shape of Rt

2, which is the shape of the complement of R1

as desired.

We have thus defined, for each row reduced matrix R as above, a right column
reduced matrix N(R) such that the null space of R is the span of the columns of N(R);
furthermore, if R has shape τ = (k1, . . . , kt), then N(R) is a right column reduced matrix
of shape τ′ = (l1, . . . , ls) as follows with τ′ being the complement of τ. Below we see
an example of how this construction N works.

R =



1 a 0 0 b c
0 0 1 0 d e
0 0 0 1 f g
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


−→ N(R) =



0 0 0 −a −b −c
0 0 0 1 0 0
0 0 0 0 −d −e
0 0 0 0 − f −g
0 0 0 0 1 0
0 0 0 0 0 1


.

We denote by S the map that does the reverse operation, so for a right column
reduced matrix B of shape τ′, it associates a row reduced matrix S (B) of shape τ. We
have that S and N are inverse maps. We summarize the properties of these in the
following lemma, which is likely known, and only amounts to a careful computational
observation, and therefore we omit the details of the proof.

Lemma 2.14.

(i) Let B be a right column reduced matrix of shape τ′. Then there is a unique
matrix A of shape τ such that AB = 0. Moreover, A = S (B).

(ii) Let A be a row reduced matrix of shape τ. Then there is a unique right column
reduced matrix B of shape τ′ such that AB = 0. Moreover, B = N(A).

(iii) For A, B as in (i) and (ii) above, we have BA = 0.

We have the following theorem representing matrices A of shape τ which are in row
reduced form, and which have the null space equal to the column space of N(A). If
we regard Kn as the space of column vectors over K, we first note that every subspace
W of Kn is a canonical basis which can be represented uniquely by a matrix B in right
column reduced form. This is obtained by column reducing an arbitrary basis of W.

Theorem 2.15. Let W be a subspace of Kn. Let B be the right column reduced matrix
whose columns represent a basis of W, and let τ′ be the shape of B. If A is an echelon
matrix of shape τ such that AB = 0, then there is a matrix C which has 0 entries
everywhere except potentially at positions above the pivot positions of A, and such
that A = S (B) + C −CB.
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We saw that Grassmannian semigroups can be put into (simultaneous) echelon
form. Using the previous theorem, we notice a structure statement for matrices
in a Grassmannian semigroup, which will show an even closer resemblance to the
semigroup of row reduced matrices. Let S be in echelon form with the pivots of every
element of S equal to 1. For each shape τ, and every right column reduced matrix B of
shape τ′, there is a unique matrix A ∈ S with Null(A) = Col(B) (that is, the null space
of A is the column space of B), and these are all matrices of shape τ in S, by the above
remark on canonical bases in subspaces of Kn. Hence, by the previous theorem, since
AB = 0, there is a matrix C = Cτ(B) which has 0 entries everywhere except potentially
at positions above the pivot positions from S (B) such that A = S (B) + Cτ(B) −Cτ(B)B.
Each such Cτ is a function of B of shape τ′. We note that in the case the functions Cτ

are all 0, we obtain the semigroup S of row reduced n × n matrices over K.
As corollary, for small values of n we can re-obtain a full classification of such

Grassmannian semigroups as in [1].

Corollary 2.16. If S is a Grassmannian semigroup in M2(K), then S is conjugate to
R, the semigroup of row reduced matrices.

Proof. Up to conjugation we may assume that S is in echelon form, and with pivots
equal to 1, and, therefore, the semigroup is

S =

{
I2;

( 1 c
0 0

)
, c ∈ K;

( 0 1
0 0

)
; 02

}
,

which is precisely R (that is, there is only one Grassmannian semigroup in echelon
form and with pivots equal to 1). �

Corollary 2.17. If S is a Grassmannian semigroup in M3(K), then there is a function
f : K→ K such that S is conjugate to the following semigroup:

S =

I3;

 1 0 x
0 1 y
0 0 0

 , x, y ∈ K;

 1 u f (u)
0 0 1
0 0 0

 , u ∈ K;

 0 1 0
0 0 1
0 0 0

 ;

 1 z t
0 0 0
0 0 0

 , z, t ∈ K;

 0 1 w
0 0 0
0 0 0

 ,w ∈ K;

 0 0 1
0 0 0
0 0 0

 ; 03

 .
Proof. We may use the above remark on the structure theorem of such Grassmannian
semigroups and note that each of the above eight families corresponds to one of
eight possible shapes, with the fourth one –

( 0 1 0
0 0 1
0 0 0

)
– of shape (2, 3), or proceed as

follows. Note that each of the following families of subspaces of V , which exhaust the
subspaces of V , must be the kernel (null space) of a corresponding matrix, which will
have dual shape (the vectors should be considered as column vectors in V = K3):

{0; Span(−x,−y, 1), x, y ∈ K; Span(−u, 1, 0), u ∈ K; Span(1, 0, 0);
Span{(−z, 1, 0), (−t, 0, 1)}, z, t ∈ K; Span{(1, 0, 0), (0,−w, 1)},w ∈ K;
Span{(1, 0, 0), (0, 1, 0)}; V}.

https://doi.org/10.1017/S1446788717000155 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788717000155


[12] Grassmannian semigroups 319

We get a semigroup in echelon form with pivots equal to 1, each corresponding to
(that is, annihilating) one of these subspaces of V . In this semigroup, the elements
corresponding to the second of the above types of subspaces Span(−x,−y, 1) would

have the form A =
( 1 α β

0 1 γ
0 0 0

)
, α, β, γ ∈ K; nevertheless, we know that the matrix E2 should

be in S, and so multiplying the two together we get that AE2 =
( 1 α 0

0 1 0
0 0 0

)
∈ S; but this

and E2 have the same kernel, and by the uniqueness property of the Grassmannian
semigroup we obtain α = 0. Using the annihilating relation A ·

( −x
−y
1

)
=

( 0
0
0

)
, we get

β = x, γ = z. The third type of matrices listed – namely, those of shape (1, 3) – will be
of the form A =

( 1 s t
0 0 1
0 0 0

)
, s, t ∈ K; they have null space spanned by t(−u, 1, 0), so s = u.

But, for each u, there should be a unique matrix of this type, so the corresponding t
depends on u. This gives rise to a function f : K→ K, u 7→ f (u). Finally, the fourth
type of matrix – that of shape (2, 3) (annihilating t(1, 0, 0)) – is N =

( 0 1 c
0 0 1
0 0 0

)
and has

the property Ne3 = e2 + ce1, Ne2 = e1, Ne1 = 0. After further changing the basis to
e′3 = e3, e′2 = e2 + ce1, e′1 = (1 + c)e1, we see that the semigroup becomes of the desired
form in the basis {e′1, e

′
2, e
′
3} (see also Proposition 3.9).

It is easy to see that the above-described set is closed under multiplication and forms
a Grassmannian semigroup. �

3. The structure of Grassmannian semigroups

We note a few basic facts on the set of shapes of matrices. We note that the set
Πn of all shapes has a monoid structure. For each shape τ = (k1, . . . , ks), let Pτ be the
matrix having 1 on positions (i, ki) and 0 elsewhere. It is not difficult to see that the set
of n × n matrices Πn = {Pτ|τ is a shape} is closed under products. This can be used to
introduce a multiplication of ‘shapes’: τσ is such that Pτσ = PτPσ.

We notice also that the shape of an element in a Grassmannian semigroup can also
be defined without reference to a basis for which it is in echelon form. For this,
note that given the flag 0 ⊂ V1 ⊂ · · · ⊂ Vn = V of images of elements in S, we have
AVi = V j for some j ≤ i, and ki = min{ j | A(V j) = Vi} when Vi = A(V j) for at least one
j; equivalently, V j ⊂ Im(A). This is easy to see for S in any base in which it is in
echelon form, so it is independent of such a basis. We will show that the shapes can
be defined independently without reference to the space V on which S acts.

Remark 3.1. We also note here a short conceptual proof of the fact that the row reduced
matrices are closed under products. Indeed, one can interpret the set of row reduced
matrices R as the set of endomorphisms T of a finite-dimensional vector space V ,
which have the following properties with respect to a fixed basis {e1, . . . , en}.

(1) If Ik = Span{e1, . . . , ek}, then, for all k ≤ n, we have T Ik = Is for some s ≤ k.
(2) If k is such that T (Ik−1) ( T (Ik), then T (ek) ∈ {e1, e2, . . . , en} (more precisely,

T (ek) = et is such that T (Ik) = It). This condition can be written equivalently as
follows: if Vs = Im(T ) and (k1, . . . , ks) is such that ki = min{ j | T (V j) = Vi}, then
T (eki ) = ei.
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The above two conditions make it easy to check that if two endomorphisms A, B
satisfy these conditions, then AB satisfies the same conditions as well. Also, by the
results of the first section, we note that we have proved that for any Grassmannian
semigroup S there is a flag I1 ⊂ · · · ⊂ In = Kn on Kn with respect to which elements of
S have the first property (1). The only difference to row reduced matrices is that, in
general, in a Grassmannian semigroup one does not need to have property (2) hold in
general.

We prove a few simple propositions on decomposition of elements in a
Grassmannian semigroup. As before, S will denote a Grassmannian semigroup in
Mn(K). First, we note the following fact regarding solutions of equations in such
semigroups.

Proposition 3.2. Let S a Grassmannian semigroup and a, b ∈ S. Then the equation
a = xb has a solution in S if and only if ker(b) ⊆ ker(a). Moreover, in this case, there
is a unique solution x of maximal rank, that is, with rank(x) = n − rank(b) + rank(a),
and ker(x) = b(ker(a)).

Proof. Of course, ker(b) ⊆ ker(a) is necessary. To show that it is sufficient, note
that if a solution of a = xb exists then ker(a) = b−1(ker(x)) (and b(ker(a)) ⊆ ker(x)).
Thus, if ker(b) ⊆ ker(a), let W = b(ker(a)) and let x ∈ S be such that ker(x) = W.
Then ker(xb) = b−1(ker(x)) = b−1(W) = ker(a) (since ker(b) ⊆ ker(a)) and, since xb,a ∈
S, by uniqueness of kernels we get xb = a. By Sylvester’s inequality, we have
rank (a) ≥ rank(x) + rank(b) − n, so rank(x) ≤ n − rank(b) + rank(a). If equality is
assumed, then it follows that dim(ker(x)) = dim(ker(a)) − dim(ker(b)). This shows
that the linear map b : ker(a) = b−1(ker(x)) → ker(x) is surjective (since ker(b) ⊆
ker(a), dim(Im(b|ker(a))) = dim(ker(a)) − dim(ker(b)) = dim(ker(x))), and so ker(x) =

b(ker(a)). Therefore, x is unique as it is uniquely determined by its kernel. �

Next we give a result about unique decompositions of elements. Recall that if
W is a vector space, a flag on W is a sequence 0 = W0 ⊂ W1 ⊂ · · · ⊂ Wk = W with
dim(Wi) = i; a partial flag is a sequence Ws ⊂ Ws+1 ⊂ · · · ⊂ Wt with dim(Wi) = i. The
next proposition shows that elements decompose uniquely along (partial) flags.

Proposition 3.3. Let S be a Grassmannian semigroup and a ∈ S.

(i) Suppose that X1 ⊂ X2 ⊂ · · · ⊂ Xt = ker(a) is a sequence of subspaces. Then there
is a unique decomposition a = a1a2 . . . at with ai ∈ S and ker(ai+1 . . . at) = Xt−i

and each ai is of maximal rank, that is, rank(ai) = n − dim(Xi) + dim(Xi−1) for
i = 1, . . . , t, and where we set X0 = 0.

(ii) If 0 = X0 ⊂ X1 ⊂ · · · ⊂ Xt = ker(a) is a flag on ker(a), then there is a unique
decomposition a = atat−1 . . . a1 with ai ∈ S and ker(aiai−1 . . . a1) = Xi and
rank (ai) = n − 1.

Proof. (i) We apply the previous proof recursively. First, write a = a1b1 uniquely with
ker(b1) = Xt−1 and a1 of maximal rank equal to n − dim(Xt−1) + dim(Xt). Then repeat
the procedure for b1 and Xt−2 ⊂ ker(b1) to obtain b1 = a2b2 with ker(b2) = Xt−2 and
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a2 has maximal possible rank, etc. To see uniqueness, if a = a1 . . . at = a′1 . . . a
′
t are

two such decompositions, then since ker(a2 . . . at) = ker(a′2 . . . a
′
t) we have a2 . . . at =

a′2 . . . a
′
t and, using the uniqueness of the solution x of maximal rank of the equation

a = xa2 . . . at provided by the previous proposition, we get a1 = a′1 etc.
(ii) Follows immediately from (i). �

Proposition 3.4. If S is a Grassmannian semigroup on V of dimension n, A ∈ S is of
rank k and E is an idempotent of rank(E) = s ≥ k, then EA = A.

Proof. As in the beginning, we note that Im(A) = Vk ⊂ Vs, and Vs is the set of 1-
eigenvectors of E since E is idempotent. Therefore, EA(v) = A(v) for all v ∈ V . �

3.1. Nilpotent elements. We need one more proposition that describes the nilpotent
elements in a Grassmannian semigroup. Recall that given such S we denoted by Vk

the subspace of V which is the (common) image of the elements of rank k in S.

Proposition 3.5. If a ∈ S, then there is k such that ak = ak+1 = · · · and ak is an
idempotent.

Proof. The ascending sequence (ker(ak))k of subspaces of V must stabilize

ker(ak) = ker(ak+1) = · · · .

By the Grassmannian semigroup property, ak = ak+1 = · · · a2k = · · · , and so ak is also
an idempotent. �

Proposition 3.6. Let S be a Grassmannian semigroup. Then the following are
equivalent for x ∈ S:

(i) x is nilpotent;
(ii) V1 ⊆ ker(x);
(iii) x is a left zero divisor in S, that is, there is y ∈ S, y , 0, such that xy = 0.

Proof. (i)⇒ (ii) If x is nilpotent, let k be such that xk−1 , 0 = xk. Then 0 , Im(xk−1) ⊆
ker(x). Obviously, Im(xk−1) = Vi for some i ≥ 1, so V1 ⊆ Im(xk−1) ⊆ ker(x).

(ii) ⇒ (i) Let k be such that xk = xk+1 = . . . , so xk is idempotent. We claim
that xk = 0. Indeed, otherwise we have V1 ⊆ Im(xk) = Vi for some i ≥ 1 and, since
V1 ⊆ ker(x), it follows that dim(x(Vi)) ≤ dim(Vi) − dim(V1) = i − 1 < i = dim(Vi). So,
Im(xk+1) = x(Vi) , Vi = Im(xk), which contradicts xk = xk+1.

(ii)⇔ (iii) Obviously, V1 ⊆ ker(x) if and only if V1 = Im(y) ⊆ ker(x) for every y ∈ S
of rank 1 (and there are such elements in S), which is equivalent to xy = 0 for all such
elements y. To conclude, note that x ∈ S is a left zero divisor if and only if xy = 0 for
all y ∈ S of rank 1. �

In the proposition above we may easily see that right zero divisors are not
necessarily nilpotent: if b ∈ S is such that Im(b) = Vn−1 and ker(b) = Y , V1, and a ∈ S
is such that ker(a) = Vn−1, then ab = 0, so b is a right zero divisor, but b is not nilpotent
since V1 1 ker(b).
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By extension of the terminology of rings, we may call a subset I of a semigroup M
an ideal if for all a ∈ M and x ∈ I, we have ax, xa ∈ I. Of course, this is not going to
produce a congruence relation on M that would be suitable for doing a quotient, as it
is for rings. For a Grassmannian semigroup S, we denote by N(S) the set of nilpotent
elements of S. This makes sense in any semigroup where there is a ‘zero’ element
(that is, an element z such that az = za = z for all a). We note the following result.

Proposition 3.7. Let S be a Grassmannian semigroup. Then the set of nilpotent
elements N(S) is a ‘prime’ ideal ofS, namely, if ab ∈ N(S), then a ∈ N(S) or b ∈ N(S).

Proof. This property is easiest visualized in matrix form. Consider a basis with respect
to which the semigroup S is in echelon form (with pivots equaling 1). In particular,
S ⊂ Tn, the algebra of upper triangular matrices and, if Nn is the set of strictly upper
triangular matrices, then N(S) = Nn ∩ S. Since Nn is an ideal of Tn (the Jacobson
radical of Tn), it follows that N(S) is an ideal of S.
For ‘primality’, let c < N(S) and a ∈ S. Then c must have its entry on position (1, 1)
equal to 1. This can be seen either from Proposition 3.6, or from the obvious fact that
matrices in echelon form are nilpotent if and only if they have a 0 on position (1, 1).
Now the following equalities can happen only if a1 = a2 = 0, and this shows that if
either ac or ca is nilpotent, then so is a.

1 ∗ . . . ∗
0 ∗ . . . ∗
. . . . . .

0 . . . 0 ∗

 ·


a1 ∗ . . . ∗
0 ∗ . . . ∗
. . . . . .

0 . . . 0 ∗

 =


0 ∗ . . . ∗
0 0 . . . ∗
. . . . . .

0 . . . 0 0

 =


a2 ∗ . . . ∗
0 ∗ . . . ∗
. . . . . .

0 . . . 0 ∗

 ·


1 ∗ . . . ∗
0 ∗ . . . ∗
. . . . . .

0 . . . 0 ∗

 .
�

Remark 3.8. Let N1 ∈ S be such that ker(N1) = V1. Since V1 ⊆ ker(x) for all x ∈ N(S),
we see by Proposition 3.2 that for each such x ∈ N(S) there is a ∈ S such that x = aN1,
that is, N1 divides all the nilpotent elements of S. This particular nilpotent will be
important next.

We denote by Nk the nilpotent element of S for which ker(Nk) = Vk. Let en ∈

Vn\Vn−1. Since rank (N1) = n − 1, we have that Nn
1 = 0 , Nn−1

1 . Define the elements
ei by en−1 = N1(en), . . . , ei−1 = N1(ei), i ≥ 1, so e0 = 0. We claim that (ei)i=1,...,n is
a basis of V and, moreover, {e1, . . . , ek} is a basis of Vk for each k. For this it
is enough to show that ei ∈ Vi\Vi−1 for all i. Suppose that ek ∈ Vk−1 for some k,
and let k be the largest such number; obviously, k < n since en < Vn−1. We have
that N1(Vi) = Vi−1 for all i. Then ek+1 < Vk, so Vk+1 = Kek+1 + Vk, and therefore
N1(Vk+1) = KN1(ek+1) + N1(Vk) = Kek + N1(Vk) ⊆ Vk−1. But this is a contradiction to
N1(Vk+1) = Vk, so the claim is proved. With this we have the following result.

Proposition 3.9. With the above notations, Nk
1 = Nk. Moreover, there is a basis of

V with respect to which S is in echelon form with all pivots equal to 1 and, in the
semigroup S, Nk is the matrix with 1 on the kth diagonal above the main diagonal,
and 0 elsewhere, so N1 is the Jordan cell of dimension n and eigenvalue 0.

https://doi.org/10.1017/S1446788717000155 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788717000155


[16] Grassmannian semigroups 323

Proof. Consider the basis above {e1, . . . , en}. Since this basis has the property
ei ∈ Vi\Vi−1, it follows that S is still in echelon form with respect to it. Obviously,
in this basis N1 is a Jordan cell of dimension n and eigenvalue 0. Moreover, ker(Nk

1) =

Span{e1, . . . , ek} = Vk, since dim(ker(Nk
1)) = k and it is straightforward to note that

Nk
1(ei) = 0 when i ≤ k. Hence, by the uniqueness of the elements with a given kernel

in a Grassmannian semigroup, Nk
1 = Nk. Finally, we note that, in fact, with respect to

this basis all pivots of elements in S are 1. As in Proposition 2.9, note that Nk−1Ek is a
rank-1 matrix of shape (k) (all rows are 0 except the first) and has pivot 1 in position
(1, k). By the proof Proposition 2.9, it follows that all the pivots of all the matrices in
S are 1. �

The semigroups of the form in the previous proposition will be used again, so it
feels natural to introduce a definition.

Definition 3.10. We say that a Grassmannian semigroup S is of Jordan type if it is in
echelon form, with pivots equal to 1, and contains the n × n Jordan block (cell) Jn(0)
of rank n − 1 and eigenvalue 0 (and, consequently, contains all its powers).

3.2. A few remarks on intrinsic abstract properties of Grassmannian
semigroups. We note that several invariants of a Grassmannian semigroup S can
be defined without any reference to the action of S on V .

(I1) First, note that the identity I and zero 0 elements of S are uniquely determined.
(I2) Next, the element N1 ∈ S is uniquely determined (as an element of S) by the

property that for all nilpotent x ∈ S , there is y ∈ S such that x = yN1 (since such an
element in S, considered as an endomorphism of V , will have its kernel contained in
the kernel of all nilpotent elements in S).

(I3) The structure of idempotents is uniquely determined. Let ∼ be the equivalence
relation on the set E(S) of idempotents of S given by E ∼ E′ if EE′ = E′ and E′E = E.
If S ⊂ EndK(V) is any fixed representation of S as a Grassmannian semigroup on V ,
it is easy to see that E ∼ E′ if and only if rank(E) = rank(E′). Thus, the number of
equivalence classes is equal to n + 1, where n is the dimension of V . We may also
introduce a quasi-ordering on E(V) by setting E′ ≥ E if and only if EE′ = E′, which
is equivalent to Im(E′) ⊆ Im(E), and further rank (E′) ≤ rank(E). This becomes a
total order on E(S)/ ∼, making it a PO-set isomorphic to {0, 1, . . . , n}. Let Hk be the
equivalence class of level k (corresponding to idempotents of rank k).

(I4) The structure of idempotents determines a filtration on S that recovers rank.
Namely, using Proposition 3.4, we see that if A ∈ S, then rank(A) ≤ k if and only if
EA = A for some E ∈ Hk; equivalently, for all E ∈ Hk. Hence, we may introduce the
subset Rk = Rk(S) consisting of elements A for which EA = A for some (equivalently,
all) E ∈ Hk. This will consist of all elements of rank ≤ k. Now the rank can be defined
abstractly as rank (A) = k if A ∈ Rk\Rk−1. This shows that n – the dimension of the
space on which S acts – is recovered as the cardinality of the set of equivalence classes
of idempotents E(S)/ ∼.

(I5) Now the shape of an element in S can also be defined abstractly. Fix
E1, E2, . . . , En, representatives of H1,H2, . . . ,Hn, respectively. Given A ∈ S, consider
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the sequence of numbers rank(AE1), . . . , rank(AEn); in matrix interpretation, the
images of these elements correspond to A(V1), . . . , A(Vn). Then one defines ki =

min{ j | rank (AV j) = i}. It is easy to see that this is an equivalent reformulation of
the shape of A given before in the case A is in echelon form.

(I6) Note that the shape of an element in S can also be recovered by using the
distinguished nilpotent N1. It is based on the following easy observation: if A is
a matrix and N1 is the Jordan cell with eigenvalue 0 of dimension n, then AN1 is
obtained by deleting the last column of A, shifting the other columns of A to the
right and replacing the first one by 0. Hence, the last columns in the matrices in
the sequence A, AN1, AN2

1 , . . . , ANn−1
1 are all the columns of A. If A is an echelon

matrix of shape (k1, . . . , kt), then it is easy to see that the shape of AN1 is (k1 + 1, k2 +

1, . . . , kt + 1) if kt < n and (k1 + 1, . . . , kt−1 + 1) if kt = n. Therefore, the nonincreasing
sequence rank(A), rank(AN1), . . . , rank(ANn−1

1 ) will completely determine the shape
of the echelon matrix A: the ranks will decrease precisely at positions n − kt +

1, n − kt−1 + 1, . . . , n − k1 + 1. Hence, since rank is intrinsically determined in a
Grassmannian semigroup S, this is another way to get the shape of an element in
S without reference to the ambient space.

While we defined the Grassmannian semigroups as systems of representatives for
the left Gln(K) action on Mn(K), it is natural to ask what is their relationship with
the right action. This is done in the next proposition, which uses the above results on
the structure of such semigroups, and shows that under the right action Grassmannian
semigroups are contained in a small (finite) number of orbits.

Proposition 3.11. Let S be a Grassmannian semigroup, and Ek ∈ S the previously
defined basic idempotents. Then S ⊂

⋃n
i=0 EkGln(K); in particular, up to equivalence

under right action, there are exactly n + 1 classes of elements in S.

Proof. This is obvious, since the right Gln(K) action operates on columns, so preserves
column space, and equivalence classes are determined precisely by column space. We
have already shown that there are exactly n + 1 possible column spaces for elements
in S. �

4. Isomorphisms of Grassmannian semigroups

In what follows, we aim to study when two Grassmannian semigroups are
isomorphic. By the remarks of the previous section, we note that if two such
semigroups are isomorphic, then they have the same ‘dimension’, that is, they are
Grassmannian semigroups on the same vector space of dimension n (since n is
determined by the internal structure of the semigroup as we saw in the previous
section). The first step is to notice that an isomorphism of such semigroups produces an
order-preserving isomorphism of the lattice of subspaces of the vector space. Denote
by L(X) the lattice of subspaces of the vector space X. Also, if S is a Grassmannian
semigroup on the vector space V , for each X ∈ L(V) denote by aX ∈ S the element for
which ker(aX) = X.
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Proposition 4.1. Let S,S′ be Grassmannian semigroups in Mn(K) and let ϕ : S → S′

be an isomorphism. Let L(Kn) be the set of all subspaces of Kn and let p : L(Kn)→
L(Kn) be defined by p(X) = W if and only if ϕ(aX) = a′W , where aX ∈ S and a′W ∈ S

′ are
the unique elements with ker(aX) = X, ker(a′W) = W. Then p is an inclusion-preserving
bijection.

Proof. If X ⊆ Y ⊆ Kn are subspaces, then there is b ∈ S such that aY = baX , so
Proposition 3.2 implies that ϕ(aY ) = ϕ(b)ϕ(aX). Thus, ker(ϕ(aX)) ⊆ ker(ϕ(aY )), and
so p(X) ⊆ p(Y). �

Since the above induced map p is an inclusion-preserving bijection onL(V), we are
in position to use the fundamental theorem of projective geometry and the Skolem–
Noether theorem to characterize this map and obtain insights on the isomorphism
class of a semigroup. We fix a basis V = Kn and identify EndK(V) = Mn(K). For an
automorphism σ of the field K, denote σ : V → V by applying σ component wise. By
extension (and abuse of notation), we will also denote by σ : Mn(K)→ Mn(K) the ring
automorphism obtained by applying σ to each entry of a matrix. Let also θ ∈ Gln(K).
Then the composition map τ : A→ θAθ−1 → σ(θAθ−1) is a semilinear automorphism
of the ring Mn(A), and it is well known that every semilinear transformation is obtained
in this way (recall that an automorphism α of the ring Mn(K) is said to be semilinear
if α(c · A) = σ(c)α(A) for some automorphism σ of the field K). Then τ(S) is also a
Grassmannian semigroup, and we introduce the following definition.

Definition 4.2. We say that two Grassmannian semigroups S,S′ are semiconjugate if
S′ = τ(S) for a semilinear transformation τ as above.

In what follows, we will show that if two Grassmannian semigroups are isomorphic
then they are ‘almost’ semiconjugate, except for some trivial way of obtaining new
Grassmannian semigroups by multiplying matrices by certain constants. We first
observe the following result.

Proposition 4.3. Let S,S′ be two isomorphic Grassmannian semigroups. Then there
exist a Grassmannian semigroup S0 which is semiconjugate to S and an isomorphism
ψ : S0 → S

′ which is kernel preserving, that is, ker(ψ(x)) = ker(x) for all x ∈ S0.

Proof. Let p : L(Kn) → L(Kn) be the map from Proposition 4.1 induced by the
isomorphism ϕ : S → S′, which is inclusion preserving. By the fundamental theorem
of projective geometry, we have that p is given by a semilinear automorphism of
Mn(K), so p(W) = σ(θ(W)), for all subspaces W of Kn, where we interpret θ as
an endomorphism of Kn via the fixed identification Mn(K) = EndK(V). Let τ(A) =

σ(θAθ−1), where τ(A) is defined for A ∈ S. Then S0 = τ(S) is a Grassmannian
semigroup which is semiconjugate to S. Note now that for aW ∈ S (so ker(aW) =

W), we have ker(τ(aW)) = p(W). Indeed, let v ∈ ker(τ(aW)); this is equivalent to
σ(θaWθ

−1)v = 0 and further to (σ)−1(v) ∈ ker(θaWθ
−1), that is, θ−1(σ)−1(v) ∈ ker(aW) =

W. Hence, v ∈ ker(τ(aW)) if and only if v ∈ σ(θ(W)).
Lastly, if ψ = ϕ ◦ τ−1, then the map induced by ψ on L(Kn) takes p(W) to p(W) for
each W ∈ L(Kn), and so it is kernel preserving. �
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Next, we determine what kernel-preserving isomorphisms between Grassmannian
semigroups look like. We will need the following small lemma, which may be known,
but we could not find a reference.

Lemma 4.4. Let b, c be linear transformations of V to V ′ vector spaces of finite
dimension such that the maps b−1, c−1 on L(V ′) are equal. Then there is λ ∈ K, λ , 0
such that b = λc.

Proof. First, ker(b) = b−1(0) = c−1(0) = ker(c), so it is easy to see that by factoring
out by ker(b) = ker(c), we may assume that b and c are injective, since if the induced
maps B = b,C = c will have B = λC, it follows immediately that b = λc. Also, note
that 0 , w ∈ Im(b) if and only if b−1(Kw) , 0. Since b−1(Kw) = c−1(Kw) for all w, this
shows that Im(b) = Im(c). Thus, we may also assume that b , 0 , c. Let w1, . . . ,wn

be a basis on Im(b) = Im(c), and xi, yi be such that b(xi) = wi = c(yi). By injectivity,
we have b−1(Kwi) = Kxi and c−1(Kwi) = Kyi, and the hypothesis thus implies that
Kxi = Kyi, so yi = λixi. If n = 1, we are done. Otherwise, let W = K(wi + w j) for i , j.
Since b(xi + x j) = wi + w j = c(yi + y j), by the injectivity of b and c and hypothesis
we get K(xi + x j) = b−1(W) = c−1(W) = K(yi + y j), so yi + y j = λ(xi + x j) for some
λ. Hence, λixi + λ jx j = λxi + λx j and, since xi, x j are linearly independent (since b is
injective and wi,w j are independent), we get λi = λ = λ j. This shows that λ1 = · · · = λn,
so yi = λxi and therefore b(xi) = wi = c(yi) = c(λxi) = λc(xi), which shows that b = λc.
�

Proposition 4.5. Let ϕ : S → S′ be a kernel-preserving isomorphism between two
Grassmannian semigroups on the n-dimensional vector space V, n ≥ 2. Let N(S) be
the set of nilpotent elements in S as before. Then:

(i) if n = 2, then there is λ ∈ K such that S′ = S − {N1} ∪ {λN1}, and

ϕ(a) =

a if a < N(S),
λ · a if a = N1;

(ii) S = S′ and ϕ = Id if n ≥ 3.

Proof. Since ϕ is kernel preserving, we have ker(b) = ker(ϕ(b)) for all b ∈ S. Let W
be a subspace of V , let b ∈ S and let a = aW ∈ S so that ker(a) = W. Notice that

b−1(W) = b−1(ker(a))
= ker(ab) = ker(ϕ(ab)) (sinceϕ is kernel preserving)
= ker(ϕ(a)ϕ(b)) (sinceϕ is a morphism)
= ϕ(b)−1(ker(ϕ(a)))
= ϕ(b)−1(ker(a)) (sinceϕ is kernel preserving)
= ϕ(b)−1(W).

Therefore, b−1 and ϕ(b)−1 are equal onL(V) and by the previous lemma ϕ(b) = λ(b) · b
for some λ(b) ∈ K\{0}.
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Note that if b, c ∈ S are such that bc , 0, then λ(bc) = λ(b)λ(c): indeed, ϕ(bc) =

λ(bc)bc = ϕ(b)ϕ(c) = λ(b)λ(c)bc and bc , 0. Next, if e ∈ S is a nonzero idempotent,
then λ(e)2 = λ(e) in K and λ(e) , 0, so λ(e) = 1. Furthermore, if a < N(S), then there
is k such that ak = ak+1 , 0 and ak is an idempotent (Proposition 3.5). Hence, λ(ak) = 1
and λ(ak) = λ(a · ak) = λ(a)λ(ak), so λ(a) = 1.
Let x be a nilpotent element, so V1 ⊆ ker(x) by Proposition 3.6. If x is nilpotent
with x , N, then V1 ( ker(x); let Y be a subspace of ker(x) of codimension 1 and
such that V1 1 Y . Let a = aY (so ker(a) = Y) and let c ∈ S be such that x = ca (it
exists since ker(a) ⊂ ker(x)). Moreover, we may assume that c has maximal rank
equal to n − 1 since dim(ker(x)) − dim(ker(a)) = 1, and there is a unique such c by
Proposition 3.2. Then a is not nilpotent since V1 1 Y , and so c ∈ N(S) by Proposition
3.7. Thus, V1 ⊆ ker(c), and so V1 = ker(c) (since rank(c) = n − 1), and therefore c = N1.
Thus, 0 , x = N1a, so λ(x) = λ(N1)λ(a) and, as λ(a) = 1 (since a < N(S)), we get
λ(x) = λ(N1), and so λ is constant on N(S).
Finally, if n = 2 there is only one nonzero nilpotent element, and the statement
(i) follows. Otherwise, we have N2

1 , 0, since rank (N1) = n − 1, so rank(N2
1 ) ≥

n − 1 + n − 1 − n = n − 2 ≥ 1 (n = dim(V) ≥ 3). Hence, λ = λ(N2
1 ) = λ(N1)λ(N1) = λ2

and, as λ , 0, we get λ = 1. The conclusion of (ii) follows. �

Since for n = 2 every two Grassmannian semigroups are conjugate by Corollary
2.16, we have the following result.

Corollary 4.6. Two Grassmannian semigroups are isomorphic if and only if they are
semiconjugate.

In particular, we have the following result.

Corollary 4.7. If K is such that Aut (K) = {IdK}, then two Grassmannian semigroups
are isomorphic if and only if they are conjugate. In particular, two real Grassmannian
semigroups are isomorphic if and only if they are conjugate (since Aut (R) = {Id}).

4.1. Small dimensions. By the previous section, every two Grassmannian
semigroups on a vector space of dimension 2 are isomorphic. We aim to study this
problem in dimension 3. Since every Grassmannian semigroup is conjugate to a
Grassmannian semigroup of Jordan type (Definition 3.10; see Corollary 2.17 for the
n = 3 case and Proposition 3.9 for the general case), we will investigate when two such
Grassmannian semigroups of Jordan type are isomorphic and when they are conjugate.

Proposition 4.8. Let S0 and S′ be Grassmannian semigroups of Jordan type that are
conjugate by θ. Then θ = p(Jn(0)), where p is a polynomial and Jn(0) = N1 is the
Jordan cell of dimension n and eigenvalue 0.

Proof. Since the element N1 is in both S0 and S′, and it is uniquely defined by
the internal semigroup structure and invariant properties described above – invariant
property (I2), then the conjugation isomorphism X 7→ θXθ−1 must take N1 to N1.
Hence, θN1 = N1θ. But it is well known (and computationally straightforward to
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check) that the centralizer of the Jordan cell Jn(0) consists of polynomial functions
of Jn(0), which ends the proof. �

We apply the previous proposition to determine Grassmannian semigroups of
dimension 3 up to isomorphism. As noted in [1] and Corollary 2.17 above, they are
completely determined by a function f . We determine first when two such semigroups
are conjugate. If S( f ), S(g) are two such semigroups associated with the functions
f , g : K→ K, and conjugation by θ is an isomorphism between them, then θ =

( 1 a b
0 1 a
0 0 1

)
as noted in the previous proposition (we may assume that the diagonal is 1, since we
may always multiply the conjugation matrix by a scalar, since conjugation by scalar
matrices has no effect). Conjugation will preserve the shape (since shape is an intrinsic
property of the semigroup structure) and 1 a b

0 1 a
0 0 1

 ·
 1 w f (w)

0 0 1
0 0 0

 ·
 1 a b

0 1 a
0 0 1


−1

=

 1 w f (w) + a
0 0 1
0 0 0

 ·
 1 −a a2 − b

0 1 −a
0 0 1


=

 1 −a + w a2 − b − aw + f (w) + a
0 0 1
0 0 0


and therefore we obtain g(w − a) = a2 − b − aw + f (w) + a or, equivalently, g(t) =

f (t + a) − at + a − b for all t ∈ K. Furthermore, it is easy to see that two Grassmannian
semigroups S( f ),S(g) in echelon form are isomorphic via an isomorphism of type σ
for σ ∈ Aut (K) exactly when σ( f (w)) = g(σ(w)) for all w ∈ K. Thus, combining the
two, we get the following result, which recovers in particular another result of [1].

Proposition 4.9. Let S( f ), S(g) be two Grassmannian semigroups in echelon form as
in Corollary 2.17, with f , g : K→ K. Then:

(i) S( f ),S(g) are conjugate if and only if g(t) = f (t + a) − at + a − b for all t ∈ K
for some a, b ∈ K;

(ii) S( f ) and S(g) are isomorphic if and only if g(w) = σ( f (σ−1(w)) + a) −
aσ−1(w) + a − b, for all w ∈ K for some a, b ∈ K and σ ∈ Aut (K).

Denote by U3(K) the group of unipotent upper triangular matrices of the above type( 1 a b
0 1 a
0 0 1

)
, and Fun(K,K) the set of maps from K to K. Obviously, U3(K) is isomorphic

to the quotient of the group of units of K[X]/(X3) by the scalars λ ∈ K×, and it is
abelian. Also, Aut (K) acts on this abelian group in the obvious way (acting on each
entry). Thus, their semidirect product Aut (K)〉U3(K) acts on Fun(K,K) by the action
described in (ii) of the above proposition, and by the above remarks the orbits of
this action parametrize the set of isomorphism types of Grassmannian semigroups in
M3(K). The cardinality of the group U3(K) is obviously that of K if K is infinite,
and the cardinality of Fun(K,K) is |K||K|, which is larger than |K|. In particular, when
Aut (K) is not too large, we can easily obtain the following result.
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Corollary 4.10. If K is an infinite field with Aut (K) = {Id} or, more generally, if
|Aut (K)| < |K|, then there are |K||K| isomorphism types of Grassmannian semigroups of
dimension 3. In particular, whenK = R, the set of isomorphism types of Grassmannian
semigroups of dimension 3 has cardinality ℵ2 = 2ℵ1 = 22ℵ0 .

Given all the above results on the structure of Grassmannian semigroups, one may
certainly ask whether there is an algebraic feature of the semigroup R of row reduced
matrices (either an internal one or one relative to the ambient space Mn(K) and action
on L(Kn)) which distinguishes R from all other semigroups. Thus, we formulate the
following problem.

Problem 4.11. Give a characterization of the semigroup R among all Grassmannian
semigroups.

One such characterization is given by Remark 3.1; we mention it below without
proof, which can be deduced easily from that of 3.1. The following theorem states that
the semigroup of row reduced matrices is that for which the shape of an element can
be read of a particular fixed basis.

Theorem 4.12. Let S be a Grassmannian semigroup. Then S is isomorphic to R if and
only if there is a basis {e1, . . . , en} such that for every element A ∈ S, if τ = (k1, . . . , ks)
is the shape of A, then A(eki ) = ei.

Another perhaps not so remarkable characterization that parallels Proposition 3.11
is the following: a semigroup S which is in echelon form equals the semigroup of row
reduced matrices if for every element A ∈ S, there is a permutation matrix P such that
AP is an idempotent.

We note a third characterization of R, somewhat in the same spirit as the previous
two. We make the following remark: if B is an echelon matrix of shape τ = (k1, . . . , kt),
then for p ∈ {k1, . . . , kt}, say p = ki, we have that BEp − BEp−1 is a matrix whose only
nonzero column is the pth column which equals the pth column of B. In order to have
that B is in row reduced form, this column needs to have just one nonzero element
equal to 1 at position (i, ki). Since left multiplication of B by the elements E j selects
the first j lines and replaces the rest by 0, this can be tested by asking that E jB = 0 for
j < i. Hence, B is in row reduced form if E jBEki = E jBEki−1 for all j < ki.

Proposition 4.13. Let S be a Grassmannian semigroup. Let S′ be a Grassmannian
semigroup in echelon form which is conjugated to S and let Fi ∈ S be elements
corresponding to Ei ∈ S

′ via this conjugation. Then S is conjugated to the semigroup
of row reduced matrices if and only if for each B ∈ S of shape τ = (k1, . . . , kt), we have
E jBEki = E jBEki−1 for all j < ki.

It is natural to ask whether it is possible to give a characterization of the semigroup
of row reduced matrices, which is an intrinsic algebraic characterization, independent
of the embedding into the ambient matrix algebra. The above proposition could offer
some clues on the possibility of such a characterization. In fact, if the ‘basic’ matrix
idempotents Ei that appear in any Grassmannian semigroup in echelon form could be
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characterized intrinsically only in terms of the properties of the semigroup, the above
proposition would then offer such a characterization. Unfortunately, this seems to be
hard to achieve. For this, note that if S is a Grassmannian semigroup in echelon form,
then two matrices A, B ∈ S that have the same first n − 1 columns are indistinguishable
by right multiplications (except by identity). That is, if C ∈ S, C , I, then the last row
of C is 0, so AC = BC. Left multiplications on the other hand at a glance seem to be
quite general. In fact, for example, as far as elements of rank 1 are concerned, left
multiplication does not help either, since for any such element A ∈ S with rank(A) = 1,
we get CA = 0 or CA = A for all C ∈ S.

5. Graded algebra structure on Grassmannians and semigroups

We describe a connection between Grassmannian semigroups and a certain graded
algebra structure on Grassmannians. Recall that the Grassmannian GrK(k, n) or
Gr(k, n) is set of subspaces of Kn of dimension k for k = 1, 2, . . . , n. Also recall
that Πn has a monoid structure. Let GrK(n) be the set of all subspaces of the space
Kn, that is, the ‘total’ Grassmannian. One can write GrK(n) =

⋃
τ∈Πn

Wτ, which can
be regarded as a bijection obtained by giving each subspace of Kn a canonical basis
of column (or row) reduced vectors (the basis e1, . . . , en is fixed). Recall that Wτ is
the set of matrices of the form A − Pτ, where A is a row reduced matrix of shape τ.
Since any subspace of Kn regarded as line vectors has a unique row reduced basis,
we see that GrK(n, t) =

⋃
τ=(k1,...,kt) Wτ, and each Wτ corresponds to some Schubert

cell. Recall that if τ = (k1, . . . , kt), then Wτ is a subspace of Mn(K) and dim(Wτ) =

t(n − t) + t(t + 1)/2 − (k1 + · · · + kt), so we may view each Wτ as an affine space of
appropriate dimension. If t is fixed, this is maximum when (k1, . . . , kt) = (1, . . . , t).
This agrees with the known fact that the dimension of the Grassmannian GK(n, t) is
t(n − t).

Let S be a Grassmannian semigroup. By Theorem 2.15, we may assume, after
possible conjugation by a matrix, that S is in echelon form (with pivots 1). Using
either Theorem 2.15 or directly the definition of Grassmannian semigroup and the
remarks of the preceding sections, the set Sτ of row reduced matrices of S of shape
τ is in one–one correspondence with the space Wτ′ and with Wτ. Let ψτ : Wτ → Sτ
be a bijection which parametrizes these matrices; this may be taken to be algebraic. It
is not difficult to observe that if A is an echelon matrix of shape τ (with pivots equal
to 1) and B is an echelon matrix of shape σ (with pivots equal to 1), then AB is an
echelon matrix of shape τσ (with pivots equal to 1). Hence, the semigroup S is graded
by the monoid Πn. Moreover, the maps ψτ can be used to introduce a multiplication
on GrK(n) in the following way.

If A ∈ Wτ, B ∈ Wσ, then define C = A ∗ B ∈ Wτσ such that ψτσ(A ∗ B) = ψτ(A)ψσ(B).

Since multiplication in S is done by algebraic equations, the set GrK(n), viewed as
an algebraic variety via the union of the maps ψτ, becomes an algebraic variety with a
semigroup structure given by polynomial equations and thus an algebraic semigroup.
However, the structure of the algebraic variety of GrK(n) obtained in this way via the
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decomposition into affine subspaces GK(n) =
⋃
τ∈Πn

Wτ will in general differ from the
one obtained via the Plücker embedding into Λ(Kn).

5.1. Representations ofΠn and Grassmannian semigroups. Recall that the set of
semistandard Young tableaux admits a semigroup structure called the plactic monoid,
discovered by Knuth [9], which can be defined in general independently via words
in a finite alphabet modulo the Knuth relations. We note now that the set of Young
diagrams also has a semigroup structure multiplication. It is not clear to us whether
there is a connection between the two, but it certainly seems like an interesting
question. We use here the French convention for Young diagrams, with the number
of boxes in each row increasing going down.

The shapes of an echelon matrix remind one of Young diagrams. To each shape
τ = (k1, . . . , kt) we associate a Young diagram Ys(τ) in a natural way by placing on
each row i of Ys(τ) a number ki of boxes. The number of boxes in the rows of the
Young diagram Ys(τ) is strictly increasing, and one can associate a Young diagram Y(τ)
having ki − i + 1 boxes in its ith row (the number of boxes in the rows of Y(τ) increase
nonstrictly going down). This is different than the Young diagram Y0(τ) of Section 2
(which had the number of boxes decreasing going down as in the English convention);
the number of boxes in rows i of Y(τ) and Y0(τ) add up to n − t. But the definition
of Y0(τ) depends on n and, in order to define a multiplication on the set of all Young
diagrams, we will need to define a bijection from shapes to Young diagrams in a way
that does not depend on the dimension n of the ‘ambient’ space, as will be seen next.
Note that τ is completely determined by either Ys(τ) or Y(τ). We also note that Y(τ)
is the diagram of a partition of length equal to k1 + k2 − 1 + · · · + kt − (t − 1). Thus,
length(Y(τ)) ≤ (n − t + 1) + (n − t + 2) − 1 + · · · + (n − t + t) − (t − 1) = t(n + 1 − t).
Further, there is a bijection between Young diagrams (partitions) with t rows of length
at most t(n + 1 − t) and the set of shapes τ = (k1, . . . , kt) with kt ≤ n. Let us also observe
that the semigroups Πn can be embedded in each other via the natural embedding of
Mn(K) ⊂ Mn+1(K) which takes an n × n matrix and borders it with 0 down and to
the right to obtain an (n + 1) × (n + 1) matrix. Denote Π =

⋃
n Πn; it is a semigroup

(but not a monoid) since each successive embedding Πn ⊂ Πn+1 is a semigroup map.
Moreover, by the above there is a bijection between Π and the set Y of all Young
diagrams, and also to the set Y′ of all strictly row increasing Young diagrams. Hence,
Y has a semigroup structure introduced by transporting the structure of Π.

More precisely, if y = (s1, . . . , st) is a partition (Young diagram with rows s1 ≤ · · · ≤

st), then T (y) = (s1, s2 + 1, . . . , st + t − 1) ∈ Πn is a shape for any n ≥ st + t − 1. If
y, y′ are two Young diagrams, then their multiplication is given by multiplying their
associated shapes τ = T (y), τ′ = T (y′) as elements of the appropriate Πn and taking the
Young diagram of the product:

y ∗ y′ = Y(T (y)T (y′)).

5.2. Multiplication in the semigroup of Young diagrams. The multiplication of
the Young diagrams can be described combinatorially as follows. Given Young
diagrams y = (s1, . . . , st), y′ = (l1, . . . , lp), first construct the strictly row increasing
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Young diagrams z, z′ by adding i − 1 boxes to the ith nonempty rows of y and y′,
respectively. Let z′′ be the Young diagram obtained as follows: let si be the number
of boxes on row i of z, and let mi = lsi be the number of boxes on row si in the second
Young diagram z′ (zero if that row is empty). The number of boxes on row i in z′′ is mi

(it is zero if the row si in z′ was empty). Then the product y ∗ y′ is obtained by deleting
appropriate boxes in z′′ to revert it to a nondecreasing Young diagram, that is, delete
one box in the second row of z′′, two boxes in the third etc.

For example, we consider here the following multiplication:

∗ = .

This follows because the multiplication of the corresponding matrices is
1 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0

 ·


1 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

 =


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 .
Note that, depending on the size of the Young diagrams, one needs to consider

square matrices of sufficient size, namely, work inside the appropriate Πn ⊂ Π. Note
that the Young diagram with n rows and one box in each row corresponds to the rank-n
idempotent En of Π, that is, to the identity element of the semigroup Πn. For another
example, we leave it to the reader to check that

∗ = .

In view of the above connections of Π to Young diagrams and Grassmannians and
to better understand Grassmannian semigroups and Πn, it is interesting to attempt to
study their representation theory.

As before, let S be a Grassmannian semigroup, which we may (and will) assume
to be in echelon form. Let F[S] be its semigroup algebra over some field F. In
what follows, we let R = F[S] or R = F[Πn]; the results will apply to both semigroup
algebras. We denote as before the idempotents Ei ∈ S having the first i entries equal
to 1 on the main diagonal and 0 elsewhere (they are also elements of Πn). Denote by Z
the zero element of S (in order to distinguish it from the element 0 in F[S] and F[Πn]).
We introduce some notation. For the rest of this section we will use + and − for
the operations of R, which should be distinguished from the analogous operations on
matrices inside Mn(K). For each 1 ≤ i ≤ n, let gi = Ei − Ei−1 ∈ R (the elements Ei and
Ei−1 are, of course, linearly independent) and let Pi = giR. Let P0 = Z · R = SpanF{Z}.
The following remark is key to the structure of the ring R.

Remark 5.1. For the duration of this remark only, let us denote by ⊕ and 	 the addition
and subtraction of matrices in Mn(K) (in order to distinguish these from + and − in R).
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The product in R of two elements in S is calculated as the usual product in Mn(K), so
there is no danger of confusion there. If A = (ai j)i, j ∈ S, then giAg j = 0 whenever i > j
or ai j = 0. To see this, note that

giAg j = EiAE j − Ei−1AE j − EiAE j−1 + Ei−1AE j−1.

We now show that either:
(1) EiAE j = Ei−1AE j and EiAE j−1 = Ei−1AE j−1; or
(2) EiAE j = EiAE j−1 and Ei−1AE j−1 = Ei−1AE j,
which will prove the claim. These equalities can be regarded as equalities in Mn(K);
note that we have assumed that S (or Πn) is in upper triangular form, so A =

∑⊕
k≤l aklekl

(meaning a sum in Mn(K)), where ekl are the standard matrix basis elements in
Mn(K). It is enough to show that either (1) or (2) holds for A = aklekl, k ≤ l. Now
aklEieklE j = aklEi−1eklE j is equivalent to akl(Ei 	 Ei−1)eklE j = 0; but Ei 	 Ei−1 = eii, so
this is further equivalent to aklδikeilE j = 0. Thus, both equalities in (1) hold if i , k or
akl = 0. Similarly, if j , l, one easily sees that both equalities in (2) hold. If i = k, j = l,
since k ≤ l is assumed for A = aklekl, then i ≤ j, and the equalities hold since ai j = 0 is
assumed in this case.

We introduce now a set of one-dimensional representations important in the study
of the Jacobson radical of R. Fix i with 0 ≤ i ≤ n. Recall that the semigroup S is
in echelon form; hence, if A = (a jk) j,k ∈ S is in echelon form, it is triangular, so we
may write A =

(
A1 A2
0 A3

)
with A1 an i × i triangular matrix. Note that if aii , 0, then all

the positions (k, k) with k ≤ i are pivots, and these entries are then all akk = 1 (and so
aii = 1 too). Using similar arguments as before – for example, because the sequence
(As)s stabilizes – it follows in this case that A1 = Ii (the i × i identity matrix). We define
the following map ϕi : S → F. If A = (a jk) j,k ∈ S, then ϕi(A) = aii. Note that ϕi(A) is
always either 0 or 1, and it is easy to see that this is in fact a morphism of semigroups
S → ({0, 1}, ·). Extend this by linearity to a morphism of algebras ϕi : R = F[S]→ F,
and let Li = ker(ϕi) (we use the same symbol to denote this morphism to avoid further
complicating notation).

Note that ϕi(E0) = ϕi(E1) = · · · = ϕi(Ei−1) = 0 and ϕi(Ei) = ϕi(Ei+1) = · · · = ϕi(En) =

1 and, so, ϕi(g j) = δi j. Thus, g j ∈ Li when j , i. Using the previous remark (or
directly), it easy to see that g0, . . . , gn is a complete system of orthogonal idempotents:
g jgk = δ j,k, and

∑n
k=0 gk = En = 1R ∈ R. Hence, we get Li =

⊕n
t=0 gtLi = giLi ⊕⊕

t,i gtR = giLi ⊕
⊕

t,i Pt, because gt ∈ Li when t , i, so we have gtLi = gtR = Pt. Let
Mi = giLi; this is a maximal submodule of Pi of codimension 1 since Pi/Mi � R/Li � F,
and we let S i = Pi/Mi be the corresponding one-dimensional simple R-module. If
A ∈ S, we write A jk for the entries of A = (A jk) j,k. With this notation,

Mi =

{
gix

∣∣∣∣∣ x =
∑

t

λtAt, λt ∈ F, At ∈ S and
∑

{t | (At)ii,0}

λt = 0
}
.

The condition ϕi(x) = 0 reduces to the one in the set description above because
those terms At from x =

∑
t λtAt with (At)ii = 0 are automatically in kerϕi.
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Proposition 5.2. Let A = (a jk) ∈ S. Then giAgi = 0 if aii = 0, and giAgi = gi if aii , 0.
Furthermore, if x ∈ kerϕi, then gixgi = 0.

Proof. If aii = 0, this is already contained in the previous remark. When aii , 0, then in
this case, as seen above, A has the form A =

( Ii A2
0 A3

)
, and a straightforward computation

with block matrices shows that giAgi = (Ei − Ei−1)A(Ei − Ei−1) = gi. Finally, if x =∑
t λtAt ∈ ker ϕi, then gixgi = gi(

∑
t λtAt)gi = gi(

∑
{t | (At)ii,0} λtAt)gi, because giAtgi = 0

when (At)ii = 0. But when (At)ii , 0, giAtgi = gi, and so

gixgi = gi

( ∑
{t | (At)ii,0}

λtAt

)
gi =

( ∑
{t | (At)ii,0}

λt

)
gi = 0

because
∑
{t | (At)ii,0} λt = 0 when x ∈ kerϕi. �

The above computational observations can now be used to determine the Jacobson
radical of R. With the notations above of Pi and Mi, we have the following result.

Proposition 5.3. Each Mi, i ≥ 1, is a maximal submodule of Pi, and the Pi are
projective indecomposable. In particular, (gi)0≤i≤n is a complete system of primitive
orthogonal idempotents. Moreover, J(R) = M1 ⊕ · · · ⊕ Mn, J(R)n+1 = 0 and S i =

Pi/Mi, i ≥ 1, and S 0 = P0 are, up to isomorphism, the n + 1 types of simple right
R-modules.

Proof. Let M = M1 ⊕ · · · ⊕ Mn. As noted before, Mi are maximal submodules of Pi,
and note that M =

⋂n
i=0 ker ϕi, an intersection of maximal right ideals, so J(R) ⊆ M.

We now show that Mn+1 = 0. It is enough to consider an element x = x1 . . . xnxn+1,
with xt ∈ Mit = git Lit , and show that x = 0, since every element in Mn+1 is a sum
of such product elements x. Since xt ∈ git R, we have xt = git xt, and so x has the
form x = gi1 x1gi2 x2 . . . gin xngin+1 xn+1, with xt ∈ git Lit ⊆ Lit for all t. As the sequence
i1, i2, . . . , in+1 is contained in {1, 2, . . . , n}, it cannot be strictly increasing, so there is
some is ≥ is+1. By the previous proposition and the previous remark, gis xsgis+1 = 0
since either is > is+1 or, if is = is+1, then xis ∈ Lis = ker ϕis , and so gis xis gis = 0 by the
last part of the previous proposition. Hence, M is a nilpotent right ideal, and so it must
be contained in J(R). Since J(R) ⊆ M, equality follows.

Finally, since R/J(R) � Fn+1, it follows that the simple modules S i are
nonisomorphic over R/J(R) and so they are neither isomorphic over R; this, in turn
implies that the Pi are indecomposable, since in our case J(Pi) = PiJ(R) = Mi. �

Note that the fact that the Pi are indecomposable also follows because EndR(Pi) �
giRgi = gi(Li ⊕ F · 1R)gi = Fgi since giLigi = 0 by the previous proposition.

Corollary 5.4. We have Ext1R(S i,S j) = 0 if j ≥ i ≥ 0 and Ext1(S i,S 0) = Ext1(S 0,S i) =

0, so the Ext quiver is acyclic (and then, by definition, R is acyclic).

Proof. This is standard (and known) in the representation theory of finite-dimensional
(or semilocal) algebras: g jRgi = 0 for j > i means that HomR(P j, Pi) = 0; if
Ext1(S i, S j) = 0, then there is a nonsplit exact sequence 0→ S j → V → S i → 0.
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Since Pi is local, there is an epimorphism h : Pi→ V . But there is a nonzero morphism
P j → V , which lifts (via h) to a nonzero morphism P j → Pi, in contradiction with
HomR(P j, Pi) = 0. When i = j, we get HomR(Pi, Pi) = F, by the comment preceding
this corollary, and this implies that Ext1(S i, S i) = 0 by a similar standard argument.
The part about the extensions with S 0 = R · Z = SpanF{Z} is obvious. �

Hence, to summarize: 0 is an isolated vertex of the Ext quiver, which is acyclic;
there are exactly n + 1 simple modules up to isomorphism, and they are all one
dimensional, and the Jacobson radical is nilpotent (thus, R is a semiprimary ring).

We now examine R = F[Πn] more closely, where Πn is the semigroup of the 2n

possible shapes of echelon matrices of size n. We may identify the elements Pτ of Πn
with their shape τ = (k1, . . . , kt). We compute the dimensions of giRg j for i ≤ j. By
Remark 5.1, we see that giPτg j = 0 if Pτ has 0 at position (i, j). This can be avoided
only if ki = j. In this case, note that multiplying Pτ to the left by some El retains the
first l rows of Pτ and everything else is made 0, and multiplying it by Ep to the right
retains the upper left p × p part of Pτ, and everything else is made 0. It is then not hard
to notice that in R,

giPτg j = P(k1,k2,...,ki) − P(k1,k2,...,ki−1)

if ki = j. These elements span giRg j and a basis for giRg j is given by the set
{P(k1,k2,...,ki−1, j) − P(k1,k2,...,ki−1)|1 ≤ k1 < · · · < ki−1 ≤ j − 1}. Hence,

dim(giRg j) =

(
j − 1
i − 1

)
.

Note that these are precisely the entries in the Cartan matrix of R: dim(HomR(Pi,P j)) =

dim(Hom(giR, g jR)) = dim(g jRgi). Hence, using the facts that Rg j =
⊕

i≤ j giRg j and
giR =

⊕
i≤ j giRg j and well-known combinatorial identities, we obtain the following

result.

Corollary 5.5. If R = F[Πn], then:
dim(Rgi) = 2i−1 if i ≥ 1 and dim(Rg0) = 1,
dim(giR) =

(n
i
)

if i ≥ 1 and dim(g0R) = 1.

Using the above, the structure of some of the algebras F[Πn] for small n can be
easily determined. We include the following result without proof, which is left to the
reader.

Corollary 5.6.

(i) F[P2] � F × T2(F), where T2(F) is the algebra of upper triangular 2 × 2 matrices
over F.

(ii) F[P3] decomposes into indecomposable projectives of dimensions 4, 2, 1, 1, as
a left module and into indecomposable projectives of dimensions 1, 3, 3, 1 as a
right module, and it is isomorphic to the path algebra of the quiver

• • // •
##
;; •

with one relation that identifies the two paths of length 2.
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Remark 5.7. We believe that it is an interesting question to determine completely the
(valued) Ext quiver of R, and the structure of F[Πn] as a quiver algebra with relations.
This is perhaps further motivated by the fact that the algebra F[Πn] has as its Cartan
matrix the important combinatorial matrix

((
j−1
i−1

))
0≤i, j≤n

. It should not be difficult to

show that dim(Ext1R(S i+1, S i)) = i(= dim(giRgi+1)), and it seems tempting to conjecture
that F[Pn] is a quotient of the path algebra of the quiver Qn with n + 1 vertices

• • // • )) 55 • ))// 33 . . . ... ))

n−2
55 •

##
... ))

n−1
55 • ,

where between vertices i and i + 1 there are i arrows (all oriented to the right) and,
hence, the above quiver would be the Ext quiver of R = F[Πn].

For this question, one could proceed as follows. First, as we have seen before,

giPτg j = P(k1,k2,...,ki) − P(k1,k2,...,ki−1)

and the elements {Rk1,k2,...,ki = P(k1,k2,...,ki−1, j) − P(k1,k2,...,ki−1)|1 ≤ k1 < · · · < ki−1 ≤ j −
1, ki = j} provide a basis for giRg j. One can show that the multiplication on this
basis of R consisting of these elements and including g0 is done as follows. If
R(k(1),...,k(i)) ∈ giRg j is such that k(i) = j and R(s(1),...,s( j)) ∈ g jRgk is such that s( j) = k,
then

R(k(1),...,k(i)) · R(s(1),...,s( j)) = R(sk(1),...,sk(i)); sk(i) = k,

which makes the ‘nonzero’ part
⊕

1≤i≤ j giRg j of F[Πn] into a monoid algebra. These
elements can be identified with certain paths in the path algebra of the above quiver
Qn. They can also be used to determine the ‘top’ of Mi and thus the dimension of
Ext(S j, S i) for j > i.

Remark 5.8. We also remark that F[Πn] has a bialgebra structure, as a semigroup
bialgebra, with comultiplication given by ∆(x) = x ⊗ x and ε(x) = 1 for x ∈ Πn. Thus,
representations of F[Πn] have a natural tensor product, and the free abelian group on
the equivalence classes of representations of Πn becomes a ring – the representation
ring (or Green ring) of F[Πn]. It would maybe be interesting to study the structure of
this representation ring or some small subrings of it.

Remark 5.9. One may also wonder what is the relation of F[Πn] and the Grassmann
(exterior) algebra Λn(F). Of course, they are not isomorphic: F[Πn] has n simple one-
dimensional modules, and is not Frobenius, while Λn(F) is even a Hopf algebra (so it
is Frobenius), and is local.
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