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A PRESENTATION FOR THE MONOID OF
UNIFORM BLOCK PERMUTATIONS

D.G. FITZGERALD

The monoid 3n of uniform block permutations is the factorisable inverse monoid
which arises from the natural action of the symmetric group on the join semilattice of
equivalences on an n-set; it has been described in the literature as the factorisable part
of the dual symmetric inverse monoid. The present paper gives and proves correct a
monoid presentation for ffn. The methods involved make use of a general criterion
for a monoid generated by a group and an idempotent to be inverse, the structure of
factorisable inverse monoids, and presentations of the symmetric group and the join
semilattice of equivalences on an n-set.

1. INTRODUCTION

A monoid M has an associative multiplication with an identity element 1. A monoid
is inverse if it possesses a unary operation x M- a;"1 (called inversion), which is an
involutory anti-automorphism satisfying the law xx~lyy~l = yy~1xx~1; or equivalently,
if it is regular (x 6 xMx for all x S M) and has commuting idempotents. Inverse monoids
model the partial or local symmetries of structures in addition to the total symmetries
modelled by groups. The symmetric inverse monoid on a set X consists of all bijections
between subsets of X, with an appropriate multiplication, and every inverse monoid
may be faithfully represented in a symmetric inverse monoid. Further details concerning
inverse monoids may be found in [4].

A categorical dual to the symmetric inverse monoid was described in [2] as consisting
essentially of bijections between quotient sets of a given set X, or block permutations of
X. These map the blocks of a 'domain' equivalence (or partition) on X bijectively to
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blocks of a 'range' equivalence, and may also be regarded as special binary relations on X
called biequivalences. The appropriate multiplication involves the join of equivalences—
details are found in [2], and an equivalent description in [4, pp. 122-124]. Those block
permutations which are induced by permutations of X form an inverse submonoid of
the whole, in fact the factorisable part (see below). In [2] this submonoid was denoted
by 5x a n d i t s elements were called uniform, since they have the characteristic property
that corresponding blocks are of equal cardinality. Only finite X is considered here, the
set {1,2,. . . , n} being denoted by n, and the monoid is denoted simply by #„ since the
asterisk seems redundant in the absence of duality considerations.

As with the symmetric inverse monoid, &» may be regarded as a generalisation
of the symmetric group S n . Popova [6] gave a presentation for the symmetric inverse
monoid which extends Moore's presentation [5] for ©„; the present paper does the same
for 5n. An important motivation for the work is that it may guide the construction of
presentations for analogous monoids which generalise the braid groups, and thus help
elucidate the structure of the space of braids. Moreover, some auxiliary results are of
interest in their own right.

2. FACTORISABLE INVERSE MONOIDS

An inverse monoid M is said to be factorisable [1] if M = GE, where G = {g G M :
g~lg = gg~l = 1} is the group of units of M, and E = {e 6 M : e2 = e} the semilattice
of idempotents. We have the following useful results.

LEMMA 1 . Let M = GE be a factorisable inverse monoid, e,f G E and g,h G G.

A homomorphism <j> : M —> N is injective if, and only if, <j>\c and <J>\E are injective and

{ge)4> — e(j> implies ge = e.

PROOF: Necessity of the conditions is immediate. Suppose, for the converse, that
the conditions hold and (ge)<j> = {hf)<j>. Then g<f>e4> = h4>f<j> in M<f>, which is factorisable
since the images of units and idempotents under <f> are themselves units and idempotents
respectively. By [1, Theorem 2.1 (iv)], e<j> = f<j> and (gty^hcfreij) = (g~lhe)<j> = e<j>, when
e = f and g~1he = e by hypothesis. Then ge = he = hf and (j> is injective. D

LEMMA 2 . Let M be a monoid generated by its group of units G and an idempo-
tent e = e2 € M. Then M is inverse if, and only if, eg~leg = g~lege for all g € G, and
M is then factorisable with E = {g~leg : g 6 G).

PROOF: For all g G G, g~leg is idempotent and so commutes with e if M is inverse.
For the converse, suppose eg~xeg = g~lege for all g G G. It follows that the set {g~leg :
g G G} consists of commuting idempotents, and so generates a submonoid P consisting of
idempotents. Clearly g~lPg Q P and so PG C GP\ it follows that GP is a submonoid.
But G U {e} C GP and so M C GP. Now let m € M, say m — gp with p G P and
g € G. Since mg~xm = gp2 = m, M is regular. If m G E, that is, gp — gpgp, then
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P5"1 = P9P9~l G P, and so pg~l = pg~^pg~l- But then gp = gpg~lp € P, we have
E C P, idempotents of M commute, and M is inverse. Finally, M C GP C GE. D

In the main theorem of section 4, it is helpful to use monoid presentations for the
group of units and the semilattice of idempotents of &,, which are respectively the sym-
metric group 6 n and the join semilattice <£qn of equivalences on n.

3. M O N O I D PRESENTATIONS

This paper considers only generation within the variety of monoids; thus, given a
subset X C M, (X) denotes the submonoid generated by X. Similarly, given a set of
generators X and a set of relations R (conventionally written as equations), M = (X \ R)
means M = X*/R#, where X* is the free monoid generated by X and R* the congruence
generated by the relations R (see, for example, [3, Section 1.6]). Crucial use will be made
of the following universal property of {X \ R).

We say that a monoid 5 satisfies R (or that R holds in S), via a mapping is : X -> 5 ,
if for all (wi, W2) € R, u>iis = w^i's (where i*s : X* —> S is the natural extension of is
to X*). Then (X \ R) is the monoid M, unique up to isomorphism, which is universal
with the property that it satisfies R (via iM '• x >-+ xR#); that is, if a monoid 5 satisfies
R via is, there is a unique homomorphism <j> : M —t S such that iM<t> = is- This <j> is
called the canonical homomorphism.

X - ^ M ̂  (X I R)

S

Provided i?# does not identify any distinct generators, the mapping IM is injective. If X

generates 5 via is, then <j> is necessarily surjective because i's is.

M O O R E ' S MONOID PRESENTATION FOR THE SYMMETRIC GROUP. Let M =(niy) be the

(n - 1) x (n - 1) matrix with entries

f 1 if i = 3,
rriij = < 3 if \i-j\ = 1,

( 2 if \i-j\2 2.

THEOREM 1 . (Moore [5].) e n 2S (X \ R), where:

Generators X: Si,S2, • • -sn_i

Relations R: (siSj)mi' = 1 {i, j = 1,2,.. . n - 1).

Notice the presentation is equivalent to one with the same generators but relations

R! : s,2 = l (t = l , 2 , . . . n - l )

SjSj+iSj = si+iSiSi+i (i — 1,2,... n - 2)

SiSj = SjSi (1 ^ i < j - 1 < n).
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We shall need the following lemma treating multiplication in &n. Here and later
two notational conventions are helpful:

(i) the empty word is the identity 1;

(ii) if i < j , an expression with ellipsis such as S j . . . Sj includes all consecutive

subscripts in increasing order from i to j inclusive;

an analogous decreasing sequence will be denoted s< . \ Sj.

LEMMA 3 . Suppose i^j. Then

if j + l<kork<i-l,

if k = j + 1,

if k = j ,

PROOF: By the relations. D

COROLLARY 1 . Every word v € {«i, . . . s n _ i } ' is R-reducible to one of the form
w = (s^ . . . SjJ . . . (sik... Sjk) for some k ^ 0 and some ii ^ j i , . . . ik ^ j k such that
n — 1 ^ i\ > i2 > • • • > ik ^ 1- (For k = 0 we have the empty word 1.)

P R O O F : Call a subword of v a run if it is maximal with the property of having
successive subscripts, and say that there is a breach between two successive runs (s<... Sj)
and (sk • • • si) if A; > i. Then the claim is that v is equivalent to a word without breaches.
But repeated application of Lemma 3 to a breach produces an equivalent word with fewer
breaches, so the claim is valid. D

A MONOID PRESENTATION FOR THE JOIN SEMILATTICE OF EQUIVALENCES

THEOREM 2 . With join written as multiplication, <£qn = (X \ R) where, for all

i,j, k, I € n satisfying the stated constraints,

Generators X: Uj (i < j)

Relations R: (El)... t2
{j = t{i (i < j)

(E2)... Ujtki = tkiUj (i < j and k < I)

(E3)... UjUk = Ujtjk = tiktjk (i < j < k).

P R O O F : Via the map Uj i-y (i,j \ ...,id,...) (the equivalence generated by the pair

(i,j)), the relations R hold in <£qn. This map is onto generators and so the canonical

homomorphism <j>: (X \ R) -y <Eqn is surjective.

Consider the collection Af of digraphs on the vertex set n which are unions of trails

(including singletons) such that each edge satisfies i < j . For any non-singleton trail X,

say

https://doi.org/10.1017/S0004972700037692 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700037692


[5] Uniform Block permutation 321

with ii < %2 < • • • < ib, define

&X — *'tlt2^»2t3 * ' ' ^»6-lifr *~ ^ '

If F € Af has non-singleton connected components (hence trails) Xit X2, •.. Xq, define

er = eXleX2 -ex,,-

Then e . i T ^ [er] = erR* is, by (E2), a well-defined mapping of Af to (X \ R).

Let w € X*, say w = Uiii^h • • -Udjd- The digraph V with vertex set n and edge
set (ii,ji), (»2> J2)) • • • {idiid) is n ° t necessarily in Af, because its components need not be
trails; however by a finite sequence of steps, replacing any subgraphs

i o —> ok or i o —> o k

s \
jo o j

in which i < j < k by the subgraph o—>-o—>-o, V may be transformed to F £ AT. The
corresponding sequence of applications of (E3) transforms w to er, and so (w, e r) S R*.
Thus the map e. is surjective, and so \Af\ ^ (X \ R).

Since Af is in one-to-one correspondence with the set of partitions of n, (X | R)
^ |<£qn| < 00. It follows that the canonical homomorphism <f> is actually an isomor-
phism. D

4. PRESENTATION FOR $n

THEOREM 3 . &, ^ {X \ R), where:

Generators X: Si,S2,-..sn-i,t

Relations R: (S) {siSj)mii = 1 (i, j = 1,2,... n - 1)

(F2) t2 = t

(F3) ts! = t = sit

(F4) Sit = tSi (t = 3 , . . . n - 1)

(F5)

(F6)

PROOF: We first prove that (X \ R) satisfies the conditions of Lemma 2. Clearly
(X I R) = {G,t) where G = ( s i , s 2 , . . . s n - i ) ; we know G = &n because relation (S)
defines &„ (Theorem 1) and any sequence of ^-transitions between words of G remains
in G. So take any g £ G, and let g be written in normal form according to Corollary 1 as

g = h{s2 • • • Sj){si ...sk) = h44(s* • • • s^s^iss... sk),
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where h G (S3, S4,... s n - i ) , empty products evaluate to 1, and

i _ j sa if i ^ a,
0 \ 1 if i<a,

with j ^ 1 and k^ 0. (The reader may think of s*a as abbreviating sjpa, where
a truth value equal to 1 if i ^ a holds and 0 otherwise.) Then

a is

g'Hg = (sk . \ . \ • • • sj)(83• • •

where u e (S3,.. . sn_i) and u; = sl2Sl[s'zs!2ts!1s'3
s\s2- Thus 5 4^ commutes with t if and

only w does. Table 1 shows that tw = wt is a consequence of the relations by listing all
cases.

II * = o
3 = 0,1

3=2

t
s2ts2 (F5)

( F 4 , F 5 )

Jfc = l

sitsi = t (F3)
siS2is2Si (F3, F5)

(F3.F4.F5)

k^2

s2ts2 (F5)
sis2ts2si (F3, F5)

(F6)

Table 1. Evaluation of w = s^s^^s^i^i^8!8^ f°r i = 0 ,1 ,2 ,^ 3 and A:
= 0,1, ̂  2, together with the non-group relations which ensure that tw = wt.
(See text for explanation.)

It follows from Lemma 2 that {X \ R) is a factorisable inverse monoid with E
= {g-'tg :geG).

Via the map / : s( i-> (i i + 1) € 6 n , £ M- (1,2 | • • • id • • •) € <£qn, the relations
R are satisfied in #n, as the reader may compute. Moreover, / is onto generators, so the
canonical homomorphism <j> : (X | R) —¥ 5n is surjective. It was remarked previously
that <t>\a is an isomorphism; it is also clear now that 4>\E '• E -y <8qn is surjective. We
consider 4>\E further, using special idempotents defined next. Henceforth it is convenient
to use the conjugation notation v9 = g~lvg for v e M, g 6 G.

D E F I N I T I O N 1 . F o r l ^i<j ^ n ,

(1)

For brevity write Uj for t<j. The usual conventions apply, so that ti2 — t and
= t'2. By calculations using Lemma 3, one verifies that for i, j , k € n,

if k = i - \

U _i if i < k = j — 1

U i if otherwise.
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Now <j>\c : G —» S n defines the usual n-transitive (right) action of G on n, (i,g)
•-> ig = i{g<j>), under which

i - 1 if k = i - 1
i + 1 if k = i
i if otherwise.

Using a symmetrised version of the Uj obtained by defining, for the case i > j , tij — tjj,
we see from equation (1) that £**• = tiatjSlc for all i, j G n and hence the action of G by
conjugation on the idempotents tij satisfies

t9j=tigjg for all i,j G n and g€G.

In particular, t9 — t\2 — hgt2g and so the iy generate E. From (F3) and (F5) we
have

that is, ti2*23 = 1̂3̂ 12- By the transitivity of G acting on n, there exists g & G such that
(i,j, k) = {Ig, 2g, 3g). Then t9

12t
9
23 = t9

13t
9
l2, that is, Ujtjk = t^Uj. Similarly, tijtjk = tiktjk.

Thus {Uj : 1 ^ i < j ^ n} satisfy the relations (E1-E3) of Theorem 2. It follows that E
is a homomorphic image of <Sqn; it was remarked previously that <£qn is a homomorphic
image of E under <j>, and since <£qn is finite it follows that <J>\E is an isomorphism. We
may proceed to apply Lemma 1 to 0.

Suppose that (ge)<l> = e<t> for g £ G, e € E. If e — 1 then 5 = 1 and ge = e. So
take e 7̂  1 and write, as in the proof of Theorem 2, e = ep = eXleXi... eXq where the
Xa (1 ^ a < q) are the non-singleton blocks of the partition e(j> of n. Write na = |Xa|
and define

Jo = 0,

n = i, ii=»i,
«Q = j o - l + 1> ja — ja-l + na<

for 1 ^ a ^ q. Let a = v(j> 6 ©„ be the permutation which, for each a, maps the
elements of Xa, in their trail order inherited from n, to (ia,---ja)- Then

where [ i a , j a ] denotes the integer interval {ia,ia + l . - - - jo}- Moreover, (gvev)<j> = ev<j>,
that is,

Thus for each i € n, i{g"<t>) and i lie in the same block of e"</>, so that gv<j> stabilises
each block Xaa = [ia, ja] and fixes each singleton block. It follows that

gv4> G Sym[i!, ji] x Sym[i2, j2] x • • • x Sym[i,, jq]
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and hence t ha t gv = u\U2... ug, with ua € (SJQ, . . . S J Q _ I ) for 1 < a ^ q. Therefore

g"ev = uxu2... uqe[hJi]e[i2j2]... e[igJq].

This expression simplifies with the aid of

LEMMA 4 . For 1 < a ± /? ^ q,

(0 u^{ia Ja) = e[icMuP' and

(ii) u°e[ioja] = e[iaja].

PROOF: If a ^ 0 and k € [ipJe-l] then A; ^ [ia-hja] and we may use the last row
of equation (1) to deduce ske[iaja] = e[iaja]Sk, and thus (i) holds. If k e [ia, j a - 1], let r
€ G be chosen so that ir = i+k—l(modn). Set Ya = {n— (k—ia)+l, ...n,l,.. .ja—k+1},
so that YaT = [iQ,ja].

Now Siii2 = ti2, Sitniti2 — tn2ti2 = tniti2, and si commutes with tu,---tn-i,n-
Thus Sieyo = eya, and so

= sieY - (sieY)T = ey =

Returning to complete the main proof,

gvev = Ule[hj^efaj,] • • • ««e[i,j,] = e[hj^e^j,]... e [ w ,] = e",

by the two parts of Lemma 4, and so ge = e. By Lemma 1, 0 is an isomorphism and the
main theorem is proved. • D

A D D E D IN P R O O F : There are related results in M. Kosuda, Ryukyu Math. J. 13
(2000), 7-22 (noted by Professor T. Halvorsen).
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