A PRESENTATION FOR THE MONOID OF UNIFORM BLOCK PERMUTATIONS

D.G. FitzGerald

Abstract

The monoid \mathfrak{F}_{n} of uniform block permutations is the factorisable inverse monoid which arises from the natural action of the symmetric group on the join semilattice of equivalences on an n-set; it has been described in the literature as the factorisable part of the dual symmetric inverse monoid. The present paper gives and proves correct a monoid presentation for \mathfrak{F}_{n}. The methods involved make use of a general criterion for a monoid generated by a group and an idempotent to be inverse, the structure of factorisable inverse monoids, and presentations of the symmetric group and the join semilattice of equivalences on an n-set.

1. Introduction

A monoid M has an associative multiplication with an identity element 1. A monoid is inverse if it possesses a unary operation $x \mapsto x^{-1}$ (called inversion), which is an involutory anti-automorphism satisfying the law $x x^{-1} y y^{-1}=y y^{-1} x x^{-1}$; or equivalently, if it is regular ($x \in x M x$ for all $x \in M$) and has commuting idempotents. Inverse monoids model the partial or local symmetries of structures in addition to the total symmetries modelled by groups. The symmetric inverse monoid on a set X consists of all bijections between subsets of X, with an appropriate multiplication, and every inverse monoid may be faithfully represented in a symmetric inverse monoid. Further details concerning inverse monoids may be found in [4].

A categorical dual to the symmetric inverse monoid was described in [2] as consisting essentially of bijections between quotient sets of a given set X, or block permutations of X. These map the blocks of a 'domain' equivalence (or partition) on X bijectively to

[^0]Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/03 \$A2.00+0.00.
blocks of a 'range' equivalence, and may also be regarded as special binary relations on X called biequivalences. The appropriate multiplication involves the join of equivalencesdetails are found in [2], and an equivalent description in [4, pp. 122-124]. Those block permutations which are induced by permutations of X form an inverse submonoid of the whole, in fact the factorisable part (see below). In [2] this submonoid was denoted by \mathfrak{F}_{X}^{*} and its elements were called uniform, since they have the characteristic property that corresponding blocks are of equal cardinality. Only finite X is considered here, the set $\{1,2, \ldots, n\}$ being denoted by n, and the monoid is denoted simply by \mathfrak{F}_{n} since the asterisk seems redundant in the absence of duality considerations.

As with the symmetric inverse monoid, \mathfrak{F}_{n} may be regarded as a generalisation of the symmetric group \mathfrak{S}_{n}. Popova [6] gave a presentation for the symmetric inverse monoid which extends Moore's presentation [5] for \mathfrak{S}_{n}; the present paper does the same for \mathfrak{F}_{n}. An important motivation for the work is that it may guide the construction of presentations for analogous monoids which generalise the braid groups, and thus help elucidate the structure of the space of braids. Moreover, some auxiliary results are of interest in their own right.

2. FACTORISABLE INVERSE MONOIDS

An inverse monoid M is said to be factorisable [1] if $M=G E$, where $G=\{g \in M$: $\left.g^{-1} g=g g^{-1}=1\right\}$ is the group of units of M, and $E=\left\{e \in M: e^{2}=e\right\}$ the semilattice of idempotents. We have the following useful results.

Lemma 1. Let $M=G E$ be a factorisable inverse monoid, $e, f \in E$ and $g, h \in G$. A homomorphism $\phi: M \rightarrow N$ is injective if, and only if, $\left.\phi\right|_{G}$ and $\left.\phi\right|_{E}$ are injective and $(g e) \phi=e \phi$ implies $g e=e$.

Proof: Necessity of the conditions is immediate. Suppose, for the converse, that the conditions hold and ($g e) \phi=(h f) \phi$. Then $g \phi e \phi=h \phi f \phi$ in $M \phi$, which is factorisable since the images of units and idempotents under ϕ are themselves units and idempotents respectively. By [1, Theorem 2.1 (iv)], $e \phi=f \phi$ and $(g \phi)^{-1} h \phi e \phi=\left(g^{-1} h e\right) \phi=e \phi$, when $e=f$ and $g^{-1} h e=e$ by hypothesis. Then $g e=h e=h f$ and ϕ is injective.

Lemma 2. Let M be a monoid generated by its group of units G and an idempotent $e=e^{2} \in M$. Then M is inverse if, and only if, $\mathrm{eg}^{-1} \mathrm{eg}=g^{-1} \mathrm{ege}$ for all $g \in G$, and M is then factorisable with $E=\left\langle g^{-1} e g: g \in G\right\rangle$.

Proof: For all $g \in G, g^{-1} e g$ is idempotent and so commutes with e if M is inverse. For the converse, suppose $e g^{-1} e g=g^{-1} e g e$ for all $g \in G$. It follows that the set $\left\{g^{-1} e g\right.$: $g \in G\}$ consists of commuting idempotents, and so generates a submonoid P consisting of idempotents. Clearly $g^{-1} P g \subseteq P$ and so $P G \subseteq G P$; it follows that $G P$ is a submonoid. But $G \cup\{e\} \subseteq G P$ and so $M \subseteq G P$. Now let $m \in M$, say $m=g p$ with $p \in P$ and $g \in G$. Since $m g^{-1} m=g p^{2}=m, M$ is regular. If $m \in E$, that is, $g p=g p g p$, then
$p g^{-1}=p g p g^{-1} \in P$, and so $p g^{-1}=p g^{-1} p g^{-1}$. But then $g p=g p g^{-1} p \in P$, we have $E \subseteq P$, idempotents of M commute, and M is inverse. Finally, $M \subseteq G P \subseteq G E$.

In the main theorem of section 4 , it is helpful to use monoid presentations for the group of units and the semilattice of idempotents of \mathfrak{F}_{n}, which are respectively the symmetric group \mathfrak{S}_{n} and the join semilattice $\mathcal{E} \mathfrak{q}_{n}$ of equivalences on \mathbf{n}.

3. Monoid presentations

This paper considers only generation within the variety of monoids; thus, given a subset $X \subseteq M,\langle X\rangle$ denotes the submonoid generated by X. Similarly, given a set of generators X and a set of relations R (conventionally written as equations), $M \cong\langle X \mid R\rangle$ means $M \cong X^{*} / R^{\#}$, where X^{*} is the free monoid generated by X and $R^{\#}$ the congruence generated by the relations R (see, for example, [3, Section I.6]). Crucial use will be made of the following universal property of $\langle X \mid R\rangle$.

We say that a monoid S satisfies R (or that R holds in S), via a mapping $i_{S}: X \rightarrow S$, if for all $\left(w_{1}, w_{2}\right) \in R, \quad w_{1} i_{S}^{*}=w_{2} i_{S}^{*}$ (where $i_{S}^{*}: X^{*} \rightarrow S$ is the natural extension of i_{S} to X^{*}). Then $\langle X \mid R\rangle$ is the monoid M, unique up to isomorphism, which is universal with the property that it satisfies R (via $i_{M}: x \mapsto x R^{\#}$); that is, if a monoid S satisfies R via i_{S}, there is a unique homomorphism $\phi: M \rightarrow S$ such that $i_{M} \phi=i_{S}$. This ϕ is called the canonical homomorphism.

Provided $R^{\#}$ does not identify any distinct generators, the mapping i_{M} is injective. If X generates S via i_{S}, then ϕ is necessarily surjective because i_{S}^{*} is.
MOORE'S MONOID PRESENTATION FOR THE SYMMETRIC GROUP. Let $\mathbf{M}=\left(m_{i j}\right)$ be the $(n-1) \times(n-1)$ matrix with entries

$$
m_{i j}= \begin{cases}1 & \text { if } \quad i=j \\ 3 & \text { if } \\ 2 & |i-j|=1 \\ 2 & \text { if } \\ |i-j| \geqslant 2\end{cases}
$$

Theorem 1. (Moore [5].) $\mathfrak{S}_{n} \cong\langle X \mid R\rangle$, where:
Generators $X: \quad s_{1}, s_{2}, \ldots s_{n-1}$
Relations $R: \quad\left(s_{i} s_{j}\right)^{m_{i j}}=1 \quad(i, j=1,2, \ldots n-1)$.
Notice the presentation is equivalent to one with the same generators but relations

$$
\begin{array}{llc}
R^{\prime}: & s_{i}^{2}=1 & (i=1,2, \ldots n-1) \\
& s_{i} s_{i+1} s_{i}=s_{i+1} s_{i} s_{i+1} & (i=1,2, \ldots n-2) \\
& s_{i} s_{j}=s_{j} s_{i} & (1 \leqslant i<j-1<n) .
\end{array}
$$

We shall need the following lemma treating multiplication in \mathfrak{S}_{n}. Here and later two notational conventions are helpful:
(i) the empty word is the identity 1 ;
(ii) if $i \leqslant j$, an expression with ellipsis such as $s_{i} \ldots s_{j}$ includes all consecutive subscripts in increasing order from i to j inclusive;
an analogous decreasing sequence will be denoted s_{i}..s_{j}.
Lemma 3. Suppose $i \leqslant j$. Then

$$
\left(s_{i} \ldots s_{j}\right) s_{k}= \begin{cases}s_{k}\left(s_{i} \ldots s_{j}\right) & \text { if } j+1<k \text { or } k<i-1, \\ s_{i} \ldots s_{j+1} & \text { if } k=j+1, \\ s_{i} \ldots s_{j-1} & \text { if } k=j, \\ s_{k+1}\left(s_{i} \ldots s_{j}\right) & \text { if } i \leqslant k \leqslant j-1, \\ s_{k} s_{k+1}\left(s_{i-1} \ldots s_{j}\right) & \text { if } k=i-1 .\end{cases}
$$

Proof: By the relations.
Corollary 1. Every word $v \in\left\{s_{1}, \ldots s_{n-1}\right\}^{*}$ is R-reducible to one of the form $w=\left(s_{i_{1}} \ldots s_{j_{1}}\right) \ldots\left(s_{i_{k}} \ldots s_{j_{k}}\right)$ for some $k \geqslant 0$ and some $i_{1} \leqslant j_{1}, \ldots i_{k} \leqslant j_{k}$ such that $n-1 \geqslant i_{1}>i_{2}>\ldots>i_{k} \geqslant 1$. (For $k=0$ we have the empty word 1.)

Proof: Call a subword of v a run if it is maximal with the property of having successive subscripts, and say that there is a breach between two successive runs ($s_{i} \ldots s_{j}$) and $\left(s_{k} \ldots s_{l}\right)$ if $k \geqslant i$. Then the claim is that v is equivalent to a word without breaches. But repeated application of Lemma 3 to a breach produces an equivalent word with fewer breaches, so the claim is valid.

A MONOID PRESENTATION FOR THE JOIN SEMILATTICE OF EQUIVALENCES

ThEOREM 2. With join written as multiplication, $\mathfrak{E q}_{\boldsymbol{n}} \cong\langle X \mid R\rangle$ where, for all $i, j, k, l \in \mathrm{n}$ satisfying the stated constraints, Generators X :
Relations R :

$$
\begin{array}{lll}
& t_{i j} & (i<j) \\
(E 1) \ldots & t_{i j}^{2}=t_{i j} & (i<j) \\
(E 2) \ldots & t_{i j} t_{k l}=t_{k l} t_{i j} & (i<j \text { and } k<l) \\
(E 3) \ldots & t_{i j} t_{i k}=t_{i j} t_{j k}=t_{i k} t_{j k} & (i<j<k)
\end{array}
$$

Proof: Via the map $t_{i j} \mapsto(i, j \mid \ldots, i d, \ldots)$ (the equivalence generated by the pair (i, j)), the relations R hold in $E q_{n}$. This map is onto generators and so the canonical homomorphism $\phi:\langle X \mid R\rangle \rightarrow E q_{n}$ is surjective.

Consider the collection \mathcal{N} of digraphs on the vertex set \mathbf{n} which are unions of trails (including singletons) such that each edge satisfies $i<j$. For any non-singleton trail X, say

$$
i_{1} \longrightarrow i_{2} \longrightarrow \cdots \longrightarrow i_{b},
$$

with $i_{1}<i_{2}<\cdots<i_{b}$, define

$$
e_{X}=t_{i_{1} i_{2}} t_{i_{2} i_{3}} \ldots t_{i_{b-1} i_{b}} \in X^{*}
$$

If $\Gamma \in \mathcal{N}$ has non-singleton connected components (hence trails) $X_{1}, X_{2}, \ldots X_{q}$, define

$$
e_{\Gamma}=e_{X_{1}} e_{X_{2}} \ldots e_{X_{q}}
$$

Then $e_{-}: \Gamma \mapsto\left[e_{\Gamma}\right]=e_{\Gamma} R^{\#}$ is, by (E2), a well-defined mapping of \mathcal{N} to $\langle X \mid R\rangle$.
Let $w \in X^{*}$, say $w=t_{i_{1} j_{1}} t_{i_{2} j_{2}} \ldots t_{i_{d} j_{d}}$. The digraph Γ^{\prime} with vertex set \mathbf{n} and edge set $\left(i_{1}, j_{1}\right),\left(i_{2}, j_{2}\right), \ldots\left(i_{d}, j_{d}\right)$ is not necessarily in \mathcal{N}, because its components need not be trails; however by a finite sequence of steps, replacing any subgraphs

in which $i<j<k$ by the subgraph $\stackrel{i}{\circ} \longrightarrow \stackrel{j}{\circ} \longrightarrow \stackrel{k}{\circ}, \Gamma^{\prime}$ may be transformed to $\Gamma \in \mathcal{N}$. The corresponding sequence of applications of (E3) transforms w to e_{Γ}, and so (w, e_{Γ}) $\in R^{\#}$. Thus the map e_{-}is surjective, and so $|\mathcal{N}| \geqslant\langle X \mid R\rangle$.

Since \mathcal{N} is in one-to-one correspondence with the set of partitions of $\mathbf{n},\langle X \mid R\rangle$ $\leqslant\left|E \in q_{n}\right|<\infty$. It follows that the canonical homomorphism ϕ is actually an isomorphism.

4. Presentation for \mathfrak{F}_{n}

Theorem 3. $\mathfrak{F}_{n} \cong\langle X \mid R\rangle$, where:

Generators X :
Relations R:
(F3) $\quad t s_{1}=t=s_{1} t$
(F4) $\quad s_{i} t=t s_{i}$

$$
(i=3, \ldots n-1)
$$

(F5) $\quad s_{2} t s_{2} t=t s_{2} t s_{2}$
(F6) $\quad s_{2} s_{1} s_{3} s_{2} t s_{2} s_{3} s_{1} s_{2} t$

$$
=t s_{2} s_{1} s_{3} s_{2} t s_{2} s_{3} s_{1} s_{2}
$$

Proof: We first prove that $\langle X \mid R\rangle$ satisfies the conditions of Lemma 2. Clearly $\langle X \mid R\rangle=\langle G, t\rangle$ where $G=\left\langle s_{1}, s_{2}, \ldots s_{n-1}\right\rangle$; we know $G \cong \mathfrak{S}_{n}$ because relation (S) defines \mathfrak{S}_{n} (Theorem 1) and any sequence of R-transitions between words of G remains in G. So take any $g \in G$, and let g be written in normal form according to Corollary 1 as

$$
g=h\left(s_{2} \ldots s_{j}\right)\left(s_{1} \ldots s_{k}\right)=h s_{2}^{j} s_{3}^{j}\left(s_{4} \ldots s_{j}\right) s_{1}^{k} s_{2}^{k}\left(s_{3} \ldots s_{k}\right)
$$

where $h \in\left\langle s_{3}, s_{4}, \ldots s_{n-1}\right\rangle$, empty products evaluate to 1 , and

$$
s_{\alpha}^{i}=\left\{\begin{array}{cl}
s_{\alpha} & \text { if } i \geqslant \alpha \\
1 & \text { if } i<\alpha
\end{array}\right.
$$

with $j \geqslant 1$ and $k \geqslant 0$. (The reader may think of s_{α}^{i} as abbreviating $s_{\alpha}^{i \geqslant \alpha}$, where $i \geqslant \alpha$ is a truth value equal to 1 if $i \geqslant \alpha$ holds and 0 otherwise.) Then

$$
\begin{aligned}
g^{-1} t g & =\left(s_{k} \cdot \searrow s_{3}\right)\left(s_{j} . \searrow s_{4}\right) s_{2}^{k} s_{1}^{k} s_{3}^{j} s_{2}^{j}\left(h^{-1} t h\right) s_{2}^{j} s_{3}^{j} s_{1}^{k} s_{2}^{k}\left(s_{4} \ldots s_{j}\right)\left(s_{3} \ldots s_{k}\right) \\
& =u^{-1} w u
\end{aligned}
$$

where $u \in\left\langle s_{3}, \ldots s_{n-1}\right\rangle$ and $w=s_{2}^{k} s_{1}^{k} s_{3}^{j} s_{2}^{j} t s_{2}^{j} s_{3}^{j} s_{1}^{k} s_{2}^{k}$. Thus $g^{-1} t g$ commutes with t if and only w does. Table 1 shows that $t w=w t$ is a consequence of the relations by listing all cases.

	$k=0$	$k=1$	$k \geqslant 2$
$j=0,1$	t	$s_{1} t s_{1}=t \quad(F 3)$	$s_{2} t s_{2} \quad(F 5)$
$j=2$	$s_{2} t s_{2} \quad(F 5)$	$s_{1} s_{2} t s_{2} s_{1} \quad(F 3, F 5)$	$s_{1} s_{2} t s_{2} s_{1} \quad(F 3, F 5)$
$j \geqslant 3$	$s_{3} s_{2} t s_{2} s_{3}$	$s_{1} s_{3} s_{2} t s_{2} s_{3} s_{1}$	$s_{2} s_{1} s_{3} s_{2} t s_{2} s_{3} s_{1} s_{2}$
	$(F 4, F 5)$	$(F 3, F 4, F 5)$	$(F 6)$

Table 1. Evaluation of $w=s_{2}^{k} s_{1}^{k} s_{3}^{j} s_{2}^{j} t s_{2}^{j} s_{3}^{j} s_{1}^{k} s_{2}^{k}$, for $j=0,1,2, \geqslant 3$ and k $=0,1, \geqslant 2$, together with the non-group relations which ensure that $t w=w t$. (See text for explanation.)

It follows from Lemma 2 that $\langle X \mid R\rangle$ is a factorisable inverse monoid with E $=\left\langle g^{-1} t g: g \in G\right\rangle$.

Via the map $f: s_{i} \mapsto(i \quad i+1) \in \mathfrak{S}_{n}, \quad t \mapsto(1,2 \mid \cdots i d \cdots) \in \mathcal{E}_{n}$, the relations R are satisfied in \mathfrak{F}_{n}, as the reader may compute. Moreover, f is onto generators, so the canonical homomorphism $\phi:\langle X \mid R\rangle \rightarrow \mathfrak{F}_{n}$ is surjective. It was remarked previously that $\left.\phi\right|_{G}$ is an isomorphism; it is also clear now that $\left.\phi\right|_{E}: E \rightarrow \mathcal{E q}_{n}$ is surjective. We consider $\left.\phi\right|_{E}$ further, using special idempotents defined next. Henceforth it is convenient to use the conjugation notation $v^{g}=g^{-1} v g$ for $v \in M, g \in G$.

DEFINITION 1. For $1 \leqslant i<j \leqslant n$,

$$
t_{i, j}=t^{\left(s_{2} \ldots s_{j-1}\right)\left(s_{1} \ldots s_{i-1}\right)}
$$

For brevity write $t_{i j}$ for $t_{i, j}$. The usual conventions apply, so that $t_{12}=t$ and $t_{13}=t^{s_{2}}$. By calculations using Lemma 3, one verifies that for $i, j, k \in \mathbf{n}$,

$$
t_{i, j}^{s_{k}}= \begin{cases}t_{i-1, j} & \text { if } k=i-1 \tag{1}\\ t_{i+1, j} & \text { if } k=i<j-1 \\ t_{i, j-1} & \text { if } i<k=j-1 \\ t_{i, j+1} & \text { if } k=j \\ t_{i, j} & \text { if otherwise }\end{cases}
$$

Now $\left.\phi\right|_{G}: G \rightarrow \mathfrak{S}_{n}$ defines the usual n-transitive (right) action of G on $\mathbf{n},(i, g)$ $\mapsto i g=i(g \phi)$, under which

$$
i s_{k}=\left\{\begin{array}{lll}
i-1 & \text { if } & k=i-1 \\
i+1 & \text { if } & k=i \\
i & \text { if } & \text { otherwise }
\end{array}\right.
$$

Using a symmetrised version of the $t_{i, j}$ obtained by defining, for the case $i>j, t_{i, j}=t_{j, i}$, we see from equation (1) that $t_{i, j}^{s_{k}}=t_{i s_{k}, j s_{k}}$ for all $i, j \in \mathbf{n}$ and hence the action of G by conjugation on the idempotents $t_{i, j}$ satisfies

$$
t_{i, j}^{g}=t_{i g, j g} \text { for all } i, j \in \mathbf{n} \text { and } g \in G
$$

In particular, $t^{g}=t_{12}^{9}=t_{1 g, 2 g}$ and so the $t_{i j}$ generate E. From (F3) and (F5) we have

$$
t t^{s_{2} s_{1}}=t s_{1} s_{2} t s_{2} s_{1}=t s_{2} t s_{2} s_{1}=s_{2} t s_{2} t s_{1}=t^{s_{2}} t
$$

that is, $t_{12} t_{23}=t_{13} t_{12}$. By the transitivity of G acting on n, there exists $g \in G$ such that $(i, j, k)=(1 g, 2 g, 3 g)$. Then $t_{12}^{g} t_{23}^{g}=t_{13}^{g} t_{12}^{g}$, that is, $t_{i j} t_{j k}=t_{i k} t_{i j}$. Similarly, $t_{i j} t_{j k}=t_{i k} t_{j k}$. Thus $\left\{t_{i j}: 1 \leqslant i<j \leqslant n\right\}$ satisfy the relations (E1-E3) of Theorem 2. It follows that E is a homomorphic image of $\mathfrak{E} \mathfrak{q}_{n}$; it was remarked previously that $\mathfrak{E} \mathfrak{q}_{n}$ is a homomorphic image of E under ϕ, and since $E \in q_{n}$ is finite it follows that $\left.\phi\right|_{E}$ is an isomorphism. We may proceed to apply Lemma 1 to ϕ.

Suppose that $(g e) \phi=e \phi$ for $g \in G, e \in E$. If $e=1$ then $g=1$ and $g e=e$. So take $e \neq 1$ and write, as in the proof of Theorem 2, $e=e_{\Gamma}=e_{X_{1}} e_{X_{2}} \ldots e_{X_{q}}$ where the $X_{\alpha} \quad(1 \leqslant \alpha \leqslant q)$ are the non-singleton blocks of the partition $e \phi$ of \mathbf{n}. Write $n_{\alpha}=\left|X_{a}\right|$ and define

$$
\begin{array}{ll}
& j_{0}=0 \\
i_{1}=1, & j_{1}=n_{1} \\
i_{\alpha}=j_{\alpha-1}+1, & j_{\alpha}=j_{\alpha-1}+n_{\alpha}
\end{array}
$$

for $1 \leqslant \alpha \leqslant q$. Let $\sigma=v \phi \in \mathfrak{S}_{\boldsymbol{n}}$ be the permutation which, for each α, maps the elements of X_{α}, in their trail order inherited from \mathbf{n}, to ($i_{\alpha}, \ldots j_{\alpha}$). Then

$$
e^{v}=e_{X_{1} \sigma} e_{X_{2} \sigma} \ldots e_{X_{q} \sigma}=e_{\left[i_{1}, j_{1}\right]} e_{\left[i_{2}, j_{2}\right]} \ldots e_{\left[i_{q}, j_{q}\right]}
$$

where $\left[i_{\alpha}, j_{\alpha}\right]$ denotes the integer interval $\left\{i_{\alpha}, i_{\alpha}+1, \ldots j_{\alpha}\right\}$. Moreover, $\left(g^{v} e^{v}\right) \phi=e^{v} \phi$, that is,

$$
g^{v} \phi e^{v} \phi=\left(i_{1} \cdots j_{1}|\cdots| i_{q} \cdots j_{q} \mid \cdots i d \cdots\right)
$$

Thus for each $i \in \mathbf{n}, i\left(g^{v} \phi\right)$ and i lie in the same block of $e^{v} \phi$, so that $g^{v} \phi$ stabilises each block $X_{\alpha} \sigma=\left[i_{\alpha}, j_{\alpha}\right]$ and fixes each singleton block. It follows that

$$
g^{v} \phi \in \operatorname{Sym}\left[i_{1}, j_{1}\right] \times \operatorname{Sym}\left[i_{2}, j_{2}\right] \times \cdots \times \operatorname{Sym}\left[i_{q}, j_{q}\right]
$$

and hence that $g^{v}=u_{1} u_{2} \ldots u_{q}$, with $u_{\alpha} \in\left\langle s_{i_{\alpha}}, \ldots s_{j_{\alpha}-1}\right\rangle$ for $1 \leqslant \alpha \leqslant q$. Therefore

$$
g^{v} e^{v}=u_{1} u_{2} \ldots u_{q} e_{\left[i_{1}, j_{1}\right]} e_{\left[i_{2}, j_{2}\right]} \ldots e_{\left[i_{q}, j_{q}\right]}
$$

This expression simplifies with the aid of
Lemma 4. For $1 \leqslant \alpha \neq \beta \leqslant q$,
(i) $u_{\beta} e_{\left[i_{\alpha}, j_{\alpha}\right]}=e_{\left[i_{\alpha}, j_{\alpha}\right]} u_{\beta}$, and
(ii) $u_{\alpha} e_{\left[i_{\alpha}, j_{\alpha}\right]}=e_{\left[i_{\alpha}, j_{\alpha}\right]}$.

Proof: If $\alpha \neq \beta$ and $k \in\left[i_{\beta}, j_{\beta}-1\right]$ then $k \notin\left[i_{\alpha}-1, j_{\alpha}\right]$ and we may use the last row of equation (1) to deduce $s_{k} e_{\left[i_{\alpha}, j_{\alpha}\right]}=e_{\left[i_{\alpha}, j_{\alpha}\right]} s_{k}$, and thus (i) holds. If $k \in\left[i_{\alpha}, j_{\alpha}-1\right]$, let τ $\in G$ be chosen so that $i \tau=i+k-1(\bmod n)$. Set $Y_{\alpha}=\left\{n-\left(k-i_{\alpha}\right)+1, \ldots n, 1, \ldots j_{\alpha}-k+1\right\}$, so that $Y_{\alpha} \tau=\left[i_{\alpha}, j_{\alpha}\right]$.

Now $s_{1} t_{12}=t_{12}, \quad s_{1} t_{n 1} t_{12}=t_{n 2} t_{12}=t_{n 1} t_{12}$, and s_{1} commutes with $t_{34}, \ldots t_{n-1, n}$. Thus $s_{1} e_{Y_{\alpha}}=e_{Y_{\alpha}}$, and so

$$
s_{k} e_{\left[i_{\alpha}, j_{\alpha}\right]}=s_{1}^{\tau} e_{Y_{\alpha} \tau}=\left(s_{1} e_{Y_{\alpha}}\right)^{\tau}=e_{Y_{\alpha}}^{\tau}=e_{\left[i_{\alpha}, j_{\alpha}\right]}
$$

Returning to complete the main proof,

$$
g^{v} e^{v}=u_{1} e_{\left[i_{1}, j_{1}\right]} u_{2} e_{\left[i_{2}, j_{2}\right]} \ldots u_{q} e_{\left[i_{q}, j_{q}\right]}=e_{\left[i_{1}, j_{1}\right]} e_{\left[i_{2}, j_{2}\right]} \ldots e_{\left[i_{q}, j_{q}\right]}=e^{v}
$$

by the two parts of Lemma 4, and so $g e=e$. By Lemma $1, \phi$ is an isomorphism and the main theorem is proved.

Added in Proof: There are related results in M. Kosuda, Ryukyu Math. J. 13 (2000), 7-22 (noted by Professor T. Halvorsen).

References

[1] S.Y. Chen and S.C. Hsieh, 'Factorizable inverse semigroups', Semigroup Forum 8 (1974), 283-297.
[2] D.G. FitzGerald and J. Leech, 'Dual symmetric inverse monoids and representation theory', J. Austral. Math. Soc. Ser. A 64 (1998), 345-367.
[3] P.A. Grillet, Semigroups: an introduction to the structure theory (Marcel Dekker, New York, 1995).
[4] M.V. Lawson, Inverse semigroups: the theory of partial symmetries (World Scientific, Singapore, 1998).
[5] E.H. Moore, 'Concerning the abstract groups of order k ! and $\frac{1}{2} k$! holohedrically isomorphic with the symmetric and alternating substitution groups on k letters', Proc. London Math. Soc. 28 (1897), 357-366.
[6] L.M. Popova, 'Defining relations in some semigroups of partial transformations of a finite set', (in Russian), Uchenye Zap. Leningrad. Gos. Ped. Inst. 218 (1961), 191-212.

School of Mathematics and Physics
University of Tasmania
Private Bag 37
Hobart, Tas 7001 Australia
e-mail: D.FitzGerald@utas.edu.au

[^0]: Received 10th March, 2003
 The author is indebted to David Easdown for suggesting the problem and several techniques (specifically, explicit use of the canonical homomorphism, and Lemma 3 and its Corollary), for radically improving the author's original proof of Lemma 2 to the elegant one given here, and most of all for many discussions throughout a collaborative project which includes this paper; to the School of Mathematics and Statistics and Wesley College, both of the University of Sydney, where final preparation of the paper occurred while the author was a Visiting Scholar; and to his colleague Des Fearnley-Sander for providing evidence, from a Knuth-Bendix implementation by Peter Purdon, that the relation (F6) is independent of the other relations.

