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Abstract. Tidal disruption events are characterized by the prompt release of very high energy
electromagnetic radiation, which rapidly carries away a significant fraction of mass-energy. The
time scale od prompt release is quite comparable to the time scale of gravitational collapse. We
suggest that generation of very high energy radiation from pulsar nebulae may be an example
of the relativistic coupling between gravity and electromagnetism. The main ingredient of our
picture comes from the observation that the electron - ion energy exchange time scale is much
longer than the electron ion energy exchange time scale, which leads to thermodynamic decou-
pling of electron and ion gases, and thus to their different temperatures. Under such conditions
the dominating hotter component pushes the colder component further out and thus generates
a global electric field which constrains electrons and ions by their mutually generated electric
field, yet allows them to reach very high kinetic energies
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1. Introduction
High energy phenomena in astrophysics take many forms, from gamma ray bursts

exploding in high energy jets, to steady accretion X-ray emitting disks and finally to
plerionic nebulae, such as Crab, which emit gamma rays at TeV energies. The emission
of a significant portion of energy by a relatively small number of photons, which require a
relatively small number of very high energy charged particles to produce, is the common
characteristic of all these phenomena. Jets are another common trait. Since the Crab
nebula and its pulsar have been studied extensively, providing a wealth of data on its
behaviour, it might be of interest to discuss the many chalenges that these data present.

A closely studied property of the Crab pulsar is the history of its slow down by the Jo-
drell Bank Radio Observatory. After 23 years of monitoring Lyne et al.(1993) were able to
state: “Between glitches, the rotational slowdown of the Crab pulsar is well described by
a power law with braking index 2.51±0.01.”, while 22 years later the same authors (Lyne
et al. (2015)) came to the conclusion: ”Overall, a low mean braking index of 2.342(1) is
measured for the whole period, compared with values close to 2.5 in intervals between
glitches”. Using the published Jodrell Bank data since 1988, together with insight from
scarce but much more precise optical observations, Čadež et al. (2016) come to a different
conclusion. Instead of analyzing the frequency and frequency derivative behaviour, they
represent the rotational phase of the pulsar during the mentioned period by ten episodes
delimited by nine mayor glitches. Each episode, lasting a few years, can be fitted to a
specific braking index law, with the braking index taking values between ∼2.2 and ∼2.6.
The phase difference from the pure braking index law always follows a simple relaxation
decay with an amplitude no larger than 17 turns†. This result is interpreted as a hint

† With the total phase change during the episode of 3 × 109 turns.
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that differences between braking episodes are caused by abrupt changes in electromag-
netic coupling of the rotating magnetic field of the pulsar to the surrounding nebula.
Considering the relaxation time scales and the durations of episodes, we explore this as a
hint that coupling to the braking mechanism is caused by changes in the structure of the
surrounding nebula rather than in the interior structure of the pulsar. This interpretation
eventually relates to other observed, yet unexplained phenomena such as the formation
of a global magnetic field, production of extremely high energy radiation, formation of
jets, accelerated expansion of the nebula etc.

2. How to heat the nebula?
Let us consider the pulsar as a generator of a rotating electromagnetic field at the

center of the nebula, a medium with a certain permittivity ε and conductivity σ. The
propagation of electromagnetic wave in such a medium is characterized by the dispersion
relation k2 = ε

(
ω
c

)2 + iμ0σω, where omega is the angular frequency of the propagating
wave – the angular rotation frequency of the pulsar in our case. The solution of Maxwell’s
equations can be expanded in multipoles of damped propagating waves, which dissipate
energy along the way. Considering the solution which at r = rp limits to a rotating
magnetic dipole (|krp | � 1) with a dipole moment pm , we find the following expressions
for the energy outflow through the sphere with radius rp :

ε > 0 :L =
μ0

6π
ω2

(
ε3/2 ω2

c3 +
μ0σ

rp

)
p2

m n = 3 − 2

1 + ε3/2
(

ω
c

)2 rp

μ0 σc

(2.1)

ε < 0 :L =
μ0

6π
ω2 μ0σ

rp
p2

m n = 1 (2.2)

Considering that energy outflow is fed by rotational energy of the pulsar ( d
dt

( 1
2 Jω2

)
=

−L), one can calculate the corresponding braking index n = ω̈ω
ω̇ 2 , which is also listed

above. This simple model explains the average observed braking index n ∼ 2.5 if ε > 0
and σ = 1

3 ε3/2
(

ω
c

)2 rs

μ0 c = 3.5 × 10−12
[

A
V m

]
ε3/2 . On first sight both conditions seem

difficult to satisfy: 1. considering the often quoted electron density ∼ 103cm−3 , one finds
that the plasma frequency should be a few kHz, which would imply that below a few
kHz ε should be negative. 2. Even if the value of ε should be found positive, the required
plasma conductivity is unusually low. Yet, the conditions at the center of the Crab nebula
may be sufficiently unusual to allow both obstacles to be surmounted. First consider the
conductivity: σ = ne e2

me νc
, where νc is the collision frequency of an electron with all other

particles and fields present. Because of the evidently low density of plasma in question,
electron-electron, electron-ion and electron-atom collision frequencies are many orders of
magnitude too low to satisfy our condition, but the remaining candidate — the exchange
of energy-momentum with electromagnetic field through synchrotron radiation — can do
the job. So we derive the electron collision frequency νc as the inverse of synchrotron life-
time to write: νc = σT

me c
B 2

μ0
γe , where σT is the Thomson cross section, B the strength of

the static component of the magnetic field, and γe the relativistic Lorentz gamma factor of
electrons. When this expression is used to calculate the conducivity inserted in eq.(2.1),
one obtains the following expression for the braking power: L =

∫
σT cγ2

e ne
B 2

μ0
dV ≈

2〈γe
2ne〉σT c

∫
B 2

2μ0
dV. Here 〈〉 stands for the suitable average over the volume with high

magnetic field near the pulsar; the magnetic energy, represented by the above integral,
is taken to be the energy belonging to a static magnetic dipole with a strength 108T
at the surface of the pulsar (at rp = 10km). In this way the braking power becomes
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L = 3.3 × 1038[erg/s] ne

1000cm−3

(
γe

104

)2 , which should be compared to the invoked slow
down luminosity (LC rab ∼ 2 × 1038 [erg/s]). If one further relates the high energy peak
at ∼ 1012eV in the energy spectrum of the Crab (Kohri et al. (2012)) to the energy of
electrons in the heating region, one comes to the conclusion that extremely low electron
density in the central region suffices to couple pulsar rotation to the nebula. However,
it is quite clear that pulsar’s gravitational field can not bind plasma of correspondingly
high temperature to the region where the electromagnetic field can heat it. Thus, this
proposal can only work if large scale electric and magnetic fields can provide suitable
potential wells to sustain the conversion of energy in the central heating region.

We start with a very simple scenario, considering the central 7 × 105km region as the
heater where at least electrons can be accelerated to very high kinetetic energy by the
central electromagnetic source (the pulsar). The heater is surrounded by a tenuous high
energy synchrotron nebula, visible almost exclusively in X-rays (Chandra image), which
merges with the ejecta shell at the distance R roughly 1pc from the pulsar. The electron-
ion energy echange in the synchrotron nebula is extremely slow – of order millions of
years. Thus, no mechanism within the nebula enforces equipartition of energy between
electrons and ions. The average energy of electrons is regulated mainly by the balance of
energy input from the heater and cooling by synchrotron radiation. Ions are only weakly
coupled to radiation but couple thermaly to the relatively cold ejecta boundary. Thus
we expect electrons in the synchrotron nebula to have higher kinetic temperature than
ions. The phase space distribution of constituents of both gassses can be described by
Boltzmann distribution functions fe(�r, �p) = e−αe −βe H− and fi(�r, �p) = e−αi −β+ H+ , where

the single particle Hamiltonians H± = α(r)
√

m2
±c2/ψ4(r) + m2

±c2 ± eφ(�r) govern the
motion of electrons (”-”) and ions (”+”) in the gravitational field of the pulsar and the
electric field they generate. Here α(r) =

(
1 − M ∗

2r

)
/
(
1 + M ∗

2r

)
and ψ = 1 + M ∗

2r are the

relevant Schwarzschild metric coefficients in isotropic coordinates, M∗ = GMp/c2 is the
gravitational radius of the pulsar and φ(�r) is the electric potential generated by the charge
distribution. The Lagrange multipliers αe , αi , βe and βi are determined by the numbers
and energies of ions and electrons. Introducing τe = mec

2/βe , τi = mpc
2/βi , F (�r) =

eφ(�r)
me c2 τe

, F̃ (�r) = eφ(�r)
me c2 τp

, α̃(r) = miα(r)/me , Bn (x) = exBesselK[n, x] and denoting
Compton wavelength as λc and classical electron radius as rcl , these can be written as :

Ne =
∫

4π

λ3
c α

τee
F −αe B2

(
α

τe

)
dV (2.3)

Ni =
∫

4π

λ3
c α̃

τie
F̃ −αe

(
mp

me

)2

B2

(
α̃

τe

)
dV (2.4)

Ee =
∫

mec
2

λ3
c α

2 eF −αe τ 3
e

[
(3 − F )

α

τe
B0

(
α

τe

)
+

(
6 − 2F +

α2

τ 2
e

)
B1

(
α

τe

)]
dV (2.5)

Ei =
∫

mpc
2

λ3
c α̃

2 eF̃ −αe τ 3
e

mp

me

[
(3 − F̃ )

α̃

τp
B0

(
α̃

τp

)
+

(
6 − 2F̃ +

α̃2

τ 2
p

)
B1

(
α̃

τp

)]
dV (2.6)

Here dV = 4πr2ψ6(r)dr and the electric potential equation turns into:

F ′′(r) +
2

rψ(r)
F ′(r) = −16π2 rcl

λ3
c

ψ4(r)
α(r)

[
−eF −αe B2(

α(r)
τe

) +
m2

pτi

m2
e τe

e−F̃ −αi B2(
α(r)mi

meτi
)

]
,

(2.7)
with boundary conditions Ne = Ni and F (rej ) = 0 at the outer boundary of ejecta shell.
An insight into eq.(2.7) can be obtained from the low energy (τe , τi � 1), low gravity
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(rp � M∗), τe �= τi solution F (r) ≈ 15
8

(
M ∗

r − M ∗

re j

)(
1
τi

− 1
τe

)−1
+ O

(
M ∗2

r 2

)
, which

makes the right hand side of eq.(2.7) vanish†, while the remainder is O
(
M∗2/r4

)
. The

star and the ejecta shell act like a spherical capacitor charged with the hotter componet
at the outer electrode. The potential difference U = me c2

e τe (F (rej ) − F (rs)) is obviously
quite small in the nonrelativistic limit. In higly relativistic case equation (2.7) must
be solved numerically. Solutions F (r) again only slightly differ from the capacitor field
form F ≈ M ∗q

r , only the value of q must be determined numerically. In the regime
104 < τe < 5 × 104, which corresponds to electrons capable of emitting at ∼ 1012eV,
characteristic of Crab high energy radiation, and τi ∼ 1300, q is found to have an almost
constant value q ≈ 21. With this solution one can go back to the braking power calculation
and refine it by using the radial dependence of electron number density, expressed as
ne = n0e

qM ∗/r , to better evaluate the volume integral. Neglecting the dependence of α
and ψ on r, realizing that γe = 3τe and defining x = M ∗q

rp
= 3.15, the result can be

written in the form

L = 27 × 3.3 × 1035 [erg/s]
( ne

cm−3

) ( γe

104

)2
[
ex

(
1
x
− 2

x2 +
2
x3

)
− 2

1
x2

]

= 3.7 × 1037 [erg/s]
( ne

cm−3

) ( τe

104

)2
= 0.18LC rab

( ne

cm−3

) ( τe

104

)2
. (2.8)

3. Conclusion
We have identified the tenuous region between the shock front and the compact

remnant of a supernova-like explosion as a region where gravity and electromagnetism
strongly couple through tenuous relativistic plasma. Applying these ideas to the tenuous
plasma of inner Crab nebula, equations (2.2) and (2.8) plausibly connect pulsar braking
power to high electron temperature and low density of the inner nebula. In the proposed
mechanism gravity and electromagnetism couple directly, since the main component of
the electric field is produced by charges on the capacitor between the central compact
object and outer ejecta layer. The plasma inside the capacitor does not importantly
contribute to electric field by polarization (as long as it is collisionless), however the po-
larization is sufficient to concentrate the hotter component (electrons) in the inner region
and deplete the colder component there. This eliminates the plasma frequency limit in
the inner region, and allows electrons to couple strongly and rapidly to electromagnetic
field of the central object. This may be the the fastest way to turn electromagnetic or
gravitational energy transfer into observable radiation.
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Čadež, A., Zampieri, L., Barbieri, C., et al. 2016, A&A, 587, A99
Kohri, K., Ohira, Y., & Ioka, K. 2012, MNRAS, 424, 2249

† It is worth noting that the right hand side of equation (2.7) does not vanish for F = 0,
only because B2 (x) deviates from a pure power law. In the classical nonrelativistic treatment

B2

(
α (r )
τ e

)
would be replaced by

√
2π τ e
α (r ) and similarly B2

(
α (r )m i
m e τ e

)
. In this case α−1/2 (r) would

be the common factor of the two terms on the right hand side of eq.(2.7), which could be made
to vanish for F = 0 at all r with a proper choice of αi and αe . Thus, the emergence of electric
field should be considered as a relativistic effect.
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