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Zariski chambers on surfaces of high Picard number

Thomas Bauer and David Schmitz

Abstract

We present an improved algorithm for the computation of Zariski chambers on algebraic surfaces.
The new algorithm significantly outperforms the currently available method and therefore allows
us to treat surfaces of high Picard number, where huge numbers of chambers occur. As an
application, we efficiently compute the number of chambers supported by the lines on the
Segre–Schur quartic.

Introduction

Zariski chambers are natural pieces into which the big cone of an algebraic surface decomposes.
Their properties were first studied in [4]. An intriguing problem, raised in [3], is to determine
explicitly how many Zariski chambers a given surface has. In other words, on a smooth
projective surface X we want to find the quantity

z(X) =def #{Zariski chambers on X} ∈ N ∪ {∞}.

Roughly speaking, the number z(X) measures how complicated the surface X is from the point
of view of linear series. Specifically, it answers the following natural questions (see [3]).
• How many different stable base loci can occur in big linear series on X?
• How many essentially different Zariski decompositions can big divisors on X have? (Here

we consider Zariski decompositions to be essentially different if their negative parts have
different support.)

• How many ‘pieces’ does the (piecewise polynomial) volume function on the big cone of X
have?

To get a more detailed picture of the geometry of X, it is also natural to consider, for integers
d> 1, the numbers

zd(X) =def #
{

Zariski chambers on X that are
supported by curves of degree d or less

}
,

where the degree of curves is taken with respect to a fixed ample line bundle on X. One has, of
course, z(X) = supd zd(X). While there are surfaces X for which z(X) is infinite, the numbers
zd(X) are always finite, because on any smooth surface there are only finitely many irreducible
negative curves of fixed degree.

In [3] an algorithm was presented that computes Zariski chambers from the intersection
matrix of a set of negative curves, and the algorithm was applied to Del Pezzo surfaces. While
this method is very efficient in those cases, further experience has shown that there do exist
surfaces where the algorithm takes an inordinate amount of time, to the point of becoming
impractical in such situations. This is, for instance, the case when the method is being applied
to the 64 lines on the Segre–Schur quartic (see Section 2). At first glance, this phenomenon
may seem somewhat surprising, as there are surfaces with many more curves to be considered
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(such as the Del Pezzo surface X8 with its 240 negative curves) where an application of the
algorithm poses no practical problems at all. It seems that it is not so much the number of
negative curves that matters most but, rather, the Picard number of the surface and the number
of chambers that are found. This is in accordance with the observation that the essential work
done by the algorithm (and, in fact, its essential bottle-neck) is the computation of an enormous
number of determinants, and the dimension of the matrices in question is bounded in terms
of the Picard number of the surface. (The dimension of the determinants to be computed is
bounded by ρ(X)− 1.)

In the present paper, we attack this problem by providing a significantly improved algorithm
that is suitable also for surfaces with higher Picard number. Our focus here is on the efficient
calculation of the relevant determinants. As is well known, the usual fraction-free algorithms
for computing the determinant of an n× n integer matrix, such as the fraction-free Bareiss
algorithm, have complexity O(n3). And, to our knowledge, even the best current fraction-
free algorithms for determinants over integral domains need O(n2.697263) ring operations
(see [8]). Our main point is that within our new algorithm, each of the necessary determinant
computations has a complexity of only O(n2); this is achieved by reusing information from
previous computations (see the details in Section 1).

As an application, we determine the number of chambers that are supported by the lines
on the Segre–Schur quartic. This remarkable surface provides an ideal application for the new
algorithm: it turns out that it has an enormous number of Zariski chambers supported by lines,
and it seems that the surface lies at the edge of what can be practically computed with current
methods.

We prove the following result.

Theorem. Let X ⊂ P3 be the Segre–Schur quartic, that is, the surface given in homogeneous
coordinates (x0 : x1 : x2 : x3) by the equation

x0(x3
0 − x3

1)− x2(x3
2 − x3

3) = 0.

(i) We have

z(X) =∞

and

z1(X) = 8 260 383 569.

(ii) The maximal number of lines that can occur in the support of a Zariski chamber is 19
(which is the maximal possible value, as the Picard number of X is 20).

Note that the number z1(X) is bigger by a factor of about 104 than the number 1 501 681
of chambers on the Del Pezzo surface X8 (blow-up of the plane in 8 points), even though only
64 curves are used to build chambers, as opposed to 240 curves on X8. On the other hand, the
Picard number of the Segre quartic is about twice that of X8. One is led to wonder how the
number of Zariski chambers is related to the Picard number in general, besides the fact that
with higher Picard number, chambers of bigger support size become theoretically possible.

Note that since the negative curves on X of higher degrees are not known, the numbers
zd(X) are at present inaccessible for d> 2. It would already be very interesting to know at
what rate they grow as d→∞.

Concerning the organization of this paper, we start in Section 1 by presenting the improved
algorithm. In Section 2 we give the proof of the theorem on the Segre–Schur quartic stated
above. Finally, Section 3 compares the new algorithm with the original one, providing
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sample run-times for Del Pezzo surfaces, the Segre–Schur quartic, and matrices related to
Fermat surfaces.

1. Efficient computation of Zariski chambers

Zariski chambers were first studied in [4], and we refer to that paper for a detailed introduction.
For a very brief account, consider a smooth projective surface X over the complex numbers. To
any big and nef R-divisor P on X one associates the Zariski chamber ΣP , which by definition
consists of all divisor classes [D] in the big cone Big(X) such that the irreducible curves in the
negative part of the Zariski decomposition of D are precisely the curves C with P · C = 0. The
main result of [4] states that the sets ΣP yield a locally finite decomposition of Big(X) into
locally polyhedral subcones such that:
• on each subcone the volume function is given by a single polynomial of degree two;
• in the interior of each of the subcones the stable base loci are constant.
For the purposes of the present paper, a crucial fact is that the number of Zariski chambers

can be computed from the intersection matrix of the negative curves on X, because Zariski
chambers correspond to negative definite reduced divisors: by [3, Proposition 1.1] one has the
following fact.

Proposition 1.1. The set of Zariski chambers on a smooth projective surface X that are

different from the nef chamber is in bijective correspondence with the set of reduced divisors

on X whose intersection matrix is negative definite.

In the statement, the nef chamber is the chamber ΣH associated with an ample divisor
H. Its closure is the nef cone, and its interior is the ample cone. Next, suppose that X

carries only finitely many negative curves (that is, irreducible curves C ⊂X with negative self-
intersection C2). Then an immediate consequence of Proposition 1.1 is the following (see [3,
Proposition 1.5]).

Proposition 1.2. (i) The number z(X) of Zariski chambers on X is given by

z(X) = 1 + #
{

negative definite principal submatrices of the
intersection matrix of the negative curves on X

}
.

(ii) More generally, let C1, . . . , Cr be distinct negative curves on X, and let S be their

intersection matrix. Then the number of Zariski chambers that are supported by a non-empty

subset of {C1, . . . , Cr} equals the number of negative definite principal submatrices of the

matrix S.

Here a principal submatrix of a given n× n matrix is, as usual, a submatrix that results
from deleting k corresponding rows and columns of the matrix, where 0 6 k < n.

The algorithm below computes the number of positive definite principal submatrices of a
given symmetric matrix. In view of Proposition 1.2, this enables us to determine the number
of Zariski chambers (by considering the negative of the intersection matrix).

Algorithm 1.3. The algorithm takes as input an integer n> 1 and a symmetric n× n
matrix A over Z. It outputs all subsets S ⊂ {1, . . . , n} having the property that the
corresponding principal submatrix AS is positive definite.

We adopt a backtracking strategy as in [3], but instead of testing for positive definiteness by
computing the determinant det(AS) from scratch, the algorithm makes use of three procedures,
Grow, Shrink and IsPosDef, to be discussed below.
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Algorithm PosDef
Input: integer n> 1, symmetric matrix A ∈ Zn×n
Output: all positive definite principal submatrices of A

k← 1; S←∅; B← (); T ← ()
Grow(S, k)
while S 6= ∅ do

Assert((B = T ·AS) and (B is in Bareiss form))
if IsPosDef (S) then

output S
else

Shrink(S)
end if
if k < n then

k← k + 1; Grow(S, k)
else

if S 6= ∅ and k = max S then
Shrink(S)

end if
if S 6= ∅ then

k←max S; Shrink(S); k← k + 1; Grow(S, k)
end if

end if
end while

We now explain the procedures Grow, Shrink and IsPosDef. They work on matrix variables
B and T that are global variables of PosDef. At every stage of the algorithm, B holds the
Bareiss trigonalization of AS . The auxiliary matrix variable T is the essential tool that makes
is possible to do the trigonalization incrementally; it holds the triangular matrix that one
obtains from the unity matrix upon applying the same transformations that have been applied
to AS to obtain B.

The procedure Shrink(S) removes the maximal element from S and updates B and T . The
latter is achieved by simply discarding the last row and column of both B and T .

The procedure IsPosDef(S) determines whether AS is positive definite. This can be done as
follows. As the matrix AS\max S is known to be positive definite, AS is positive definite if and
only if its determinant is positive; and the latter can be read off the sign of the lower right
entry of B, since in a Bareiss trigonalization this entry is always the determinant of the original
matrix AS . So we have

IsPosDef(S) = (B[max S,max S]> 0).

The procedure Grow(S, k) incorporates a new element k >max S into the index set S and
updates B and T accordingly. It consists of the following steps.
(G1) S← S ∪ {k}.
(G2) Attach the last row and last column of AS to the bottom and right of B. Attach the last

row and column of the unit matrix to T .
(G3) Replace the last column b of B by T · b.
(G4) Clear the last row of B by means of the following procedure:

s← |S|
for i from 1 to s− 1 do

if i= 1 then
d← 1

else
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d←B[i− 1, i− 1]
end if
for j from i+ 1 to s do

B[s, j]← (B[s, j] ·B[i, i]−B[i, j] ·B[s, i]) div d
end for
for j from 1 to s do

T [s, j]← (T [s, j] ·B[i, i]− T [i, j] ·B[s, i]) div d
end for
B[s, i]← 0

end for

In the two loops of (G4), the division by d is the Bareiss divison, made possible by Sylvester’s
identity, which keeps the size of the matrix entries from exploding (see [1]). Note that Grow
does O(s2) loop iterations and hence has complexity O(n2), while Shrink and IsPosDef need
only constant time.

2. Lines and chambers on the Segre–Schur quartic

In this section we consider the Segre–Schur quartic (see [10, 12] and also [2, Section 2.1]). By
Segre’s theorem [11], this remarkable surface carries the maximal number of lines possible for
a smooth quartic in P3. In order to find the chambers supported on lines on this particular
surface, we need to determine the intersection matrix of all lines. We approach this task in a
more general setting. Caporaso, Harris and Mazur [7] and Boissiere and Sarti [5] considered
a class of surfaces in P3 known to contain many lines, which was first studied by Segre [12].
Specifically, these surfaces are given by an equation

ϕ(x0, x1) = ψ(x2, x3) (2.0.1)

where ϕ and ψ are homogeneous polynomials of common degree d. Clearly, the surface we are
interested in, the Segre–Schur quartic, is of this type with

ϕ(x, y) = ψ(x, y) = x(x3 − y3).

For any surface S given by an equation (2.0.1) of degree d, consider the sets of zeros V (ϕ) and
V (ψ) in P1. Denote by Γ the group of automorphisms of P1 mapping V (ϕ) onto V (ψ).

Proposition 2.1 ([7, Lemma 5.1] and [5, Proposition 4.1]). The number of lines on S
equals d2 + d · |Γ|.

In order to establish terminology for our further investigations, we briefly go through the
steps of the proof given in [7].
• Consider the sets of points P1, . . . , Pd and P ′1, . . . , P

′
d of S lying on the lines L1 = V (x2, x3)

and L2 = V (x0, x1), respectively. For every i, j ∈ {1, . . . , d}, the line Li,j joining Pi and
P ′j is contained in S. The d2 lines Li,j are called lines of the first type.

• Any other line L on S is called a line of the second type. Any such line is disjoint from L1

and L2, guaranteeing that it is given by equations of the form

x2 = ax0 + bx1,

x3 = cx0 + dx1,

with ad− bc 6= 0. The invertible matrix
(
a b
c d

)
induces an automorphism of P1 mapping

V (ϕ) onto V (ψ).
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• Conversely, every automorphism in Γ given by an invertible matrix
(
a b
c d

)
corresponds to

d distinct lines of the second type on S given by equations

x2 = ληk(ax0 + bx1),

x3 = ληk(cx0 + dx1), (2.1.1)

for some λ ∈ C and 1 6 k 6 d, where η denotes a primitive dth root of unity.
With this knowledge, we turn to determining explicitly the lines lying on the Segre–Schur
quartic. The 16 lines of the first type are just the lines joining the zeros of the polynomial
ϕ(x, y) = x(x3 − y3) on L1 and L2, each considered as a copy of P1. Setting ξ = e2πi/3, these
points are

P1 = (0 : 1 : 0 : 0), P2 = (1 : 1 : 0 : 0),

P3 = (ξ : 1 : 0 : 0), P4 = (ξ2 : 1 : 0 : 0)

and

P ′1 = (0 : 0 : 0 : 1), P ′2 = (0 : 0 : 1 : 1),

P ′3 = (0 : 0 : ξ : 1), P ′4 = (0 : 0 : ξ2 : 1).

The lines Li,j = PiP ′j joining them can be expressed as

Li,j :
(
−1 ai 0 0
0 0 −1 aj

)
x0

x1

x2

x3

= 0,

where ai denotes the ith entry of the tuple (0, 1, ξ, ξ2).
For the lines of the second type we note that in the case of the Segre–Schur quartic, Γ is

the tetrahedral group T , which is isomorphic to the product D2 × C3 of the dihedral group
D2
∼= (Z/2Z)2 and a cyclic group C3

∼= Z/3Z. More concretely, the group D2 operating on the
points (0 : 1), (1 : 1), (1 : ξ), (1 : ξ2) consists of the elements

T1 =
(

1 0
0 1

)
, T2 =

(
−1 ξ
2ξ2 1

)
,

T3 =
(
−1 ξ2

2ξ 1

)
, T4 =

(
−1 1
2 1

)
,

and the cyclic group C3 is generated by the element

Z =
(
ξ 0
0 1

)
.

Hence the elements of T are the automorphisms ZkTj for 0 6 k 6 2 and
1 6 j 6 4. For an element γ ∈ Γ represented by a matrix

(
a b
c d

)
, we need to find the corresponding

numbers λm such that the lines

Lγ,λm
:
(
λma λmb −1 0
λmc λmd 0 −1

)
x0

x1

x2

x3

= 0

from equation (2.1.1) lie on S. If ϕ(p0, p1) = 0 for a p ∈ P1, then

ϕ(λap0 + λbp1, λcp0 + λdp1) = λ4ϕ(ap0 + bp1, cp0 + dp1) = 0.
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The line Lγ,λ thus intersects S in the four points (p0 : p1 : λ(ap0 + bp1) : λ(cp0 + dp1)),
corresponding to the zeros (p0 : p1) of ϕ. Now, let (q0 : q1) ∈ P1 be any point on which ϕ
does not vanish. Then the desired values for λ are given as solutions of the equation

λ4 =
ϕ(q0, q1)

ϕ(aq0 + bq1, cq0 + dq1)
.

By way of example, let us carry out the computation for the automorphism Z1T2 ∈ T . It is
given by the matrix (

−ξ ξ2

2ξ2 1

)
.

Choosing (q0 : q1) = (1 : 0), we get

ψ(1, 0) = 1, ψ(−ξ, 2ξ2) =−ξ(−ξ3 − 8ξ6) = 9ξ.

Consequently, the corresponding values for λm are

λm =
imξ2

√
3

3
for m= 0, . . . , 3.

In an analogous manner, we find the factors λm for the remaining automorphisms in T , as
shown in Table 1. We set η =

√
3/3 and write i=

√
−1 for the imaginary unit.

The lines LZkTj ,λm
for k = 0, . . . , 2, j = 1, . . . , 4 and m= 0, . . . , 3 are thus exactly the 48

lines of the second type on S.

Table 1. Factors λm for the automorphisms in T .

Automorphism Matrix λm

Z0T1

(
1 0
0 1

)
im

Z1T1

(
ξ 0
0 1

)
imξ2

Z2T1

(
ξ2 0
0 1

)
imξ

Z0T2

(
−1 ξ
2ξ2 1

)
imη

Z1T2

(
−ξ ξ2

2ξ2 1

)
imηξ2

Z2T2

(
−ξ2 1
2ξ2 1

)
imηξ

Z0T3

(
−1 ξ2

2ξ 1

)
imη

Z1T3

(
−ξ 1
2ξ 1

)
imηξ2

Z2T3

(
−ξ2 ξ
2ξ 1

)
imηξ

Z0T4

(
−1 1
2 1

)
imη

Z1T4

(
−ξ ξ
2 1

)
imηξ2

Z2T4

(
−ξ2 ξ2

2 1

)
imηξ
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The configuration of the lines on the Segre–Schur quartic is given by the following
proposition.

Proposition 2.2. Let δ : R→{0, 1} denote the indicator function of the set {0}, mapping
any non-zero number x to 0 and the number 0 to 1. With other notation as above, we have
that:

• every line L on S has self-intersection L2 =−2;
• the intersection number of distinct lines of the first type is

Li,j · Li′,j′ = δ(i− i′) + δ(j − j′);

• the intersection number of a line of the first type with a line of the second type is

Ls,t · LZkTj ,λm
=



δ(−ξ2k+t−1 + ξj − ξs−1 − 2ξs+t+2k−j−2) if j 6= 1, s 6= 1, t 6= 1,
δ(t+ 2k − j − 1 mod 3) if j 6= 1, t 6= 1, s= 1,
δ(s− 1− j mod 3) if j 6= 1, s 6= 1, t= 1,
δ(s+ k − t mod 3) if j = 1, s 6= 1, t 6= 1,
δ(s− 1) · δ(j − 1) · δ(t− 1) otherwise;

• the intersection number of distinct lines of the second type is

LZkTj ,λm
· LZk′Tj′ ,λm′ =



δ((im
′−m − 3)ξ2k

+ im
′−m(1− 3im

′−m)ξ2k
′

+ 2im
′−m(ξ2k−j+j

′
+ ξ2k

′−j′+j)) if j 6= 1, j′ 6= 1,
δ(i2mξ2k − imim′

ξ2k
′
η + im

′
ηimξ2k

− 3(i2m
′
η2ξ2k

′
)) if j = 1, j′ 6= 1,

δ(m−m′) if j = j′ = 1.

Proof. The statement about self-intersection of lines on S follows immediately from
adjunction and the fact that S has trivial canonical class. To prove the statement about the
intersection of distinct lines of the first type, all we need to show is that two such lines A and
B cannot intersect in a point outside the (disjoint) lines L1 and L2 (see the sketch of the proof
of Proposition 2.1): if this were the case, then since L1 and L2 both intersect A and B, they
would have to lie in the plane spanned by A and B and would therefore intersect each other.

The remaining intersection numbers are calculated in the following way. Two lines in P3

given by equations

a0x0 + a1x1 + a2x2 + a3x3 = 0,
b0x0 + b1x1 + b2x2 + b3x3 = 0

and

c0x0 + c1x1 + c2x2 + c3x3 = 0,
d0x0 + d1x1 + d2x2 + d3x3 = 0

intersect each other if and only if the determinant of the matrix
a0 a1 a2 a3

b0 b1 b2 b3
c0 c1 c2 c3
d0 d1 d2 d3


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Figure 1. Intersection matrix of the 64 lines on the Segre–Schur quartic. The numerical entries of
−2, 0 and 1 are replaced by black, grey and white boxes, respectively.

vanishes. Note that for s, t 6= 1, the line Ls,t of the first type is given by

Ls,t :
(
−1 ξs−2 0 0
0 0 −1 ξt−2

)
x0

x1

x2

x3

= 0;

and if j 6= 1, then the line LZkTj ,λm
is given by

LZkTj ,λm
:
(

−imη imηξj−1 −1 0
2imηξ2k+1−j imηξ2k 0 −1

)
x0

x1

x2

x3

= 0.

Computation of the determinants in question then yields the asserted formulas. By way of
illustration, let us calculate the intersection number of the line L1,t of the first type, where
t 6= 1, and a line LZkTj ,λm

of the second type, with j 6= 1. We have

det


−1 0 0 0
0 0 −1 ξt−2

−imη imηξj−1 −1 0
2imηξ2k+1−j imηξ2k 0 −1

= imη(ξj−1 − ξ2k+t−2).

Consequently, the lines intersect if and only if

ξj−1 = ξ2k+t−2,

which is equivalent to
t+ 2k − j − 1≡ 0 mod 3. 2

Combining all the intersection numbers yields the intersection matrix of the Segre–Schur
quartic, displayed in Figure 1. The order of rows and columns was chosen as follows: the first
16 rows correspond to the lines of the first type, Ls,t with s= 1, . . . , 4 and t= 1, . . . , 4; the
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remaining 48 rows correspond to the lines of the second type, LZkTj ,λm
with k = 0, . . . , 2,

m= 0, . . . , 3 and j = 1, . . . , 4.

Proof of the theorem stated in the introduction. The intersection matrix of the 64 lines is
of rank 20; hence the classes of the lines generate the Néron–Severi group NS(X) over Q, and
the K3 surface is singular (in the sense that NS(X) is of maximal possible rank). Therefore, by
a result of Shioda and Inose [13], its automorphism group is infinite. The latter fact implies,
in turn, that there are infinitely many (−2)-curves on X (cf. [9, Remark 7.2]), and hence
z(X) =∞.

An application of Algorithm 1.3 to the negative of the intersection matrix of the 64 lines
shows that it has exactly 8 260 383 568 positive definite principal submatrices. Upon taking
the additional nef chamber into account, we arrive at the claimed 8 260 383 569 chambers. As
ρ(X) = 20, there cannot be Zariski chambers supported by more than 19 curves. The results
of the algorithm show that chambers with 19 supporting curves actually occur. (In fact there
are exactly 1728 such chambers; see Remark 2.3 below.) 2

Remark 2.3. There is more numerical data that is of interest: how many Zariski chambers
are there with support of given cardinality? For `> 1, let us denote by z(`)

d (X) the number of
Zariski chambers that are supported by ` curves of degree d or less. Our computations yield
for the Segre–Schur quartic the values in the following table.

` z
(`)
1 (X)

1 64
2 2016
3 41376
4 605856
5 6343776
6 45613512
7 217025520
8 674047818
9 1376161536

10 1900843848
11 1832006112
12 1264421472
13 635795760
14 233619648
15 61499712
16 11037702
17 1246368
18 69744
19 1728

These numbers show that the surface clearly favours chambers of ‘medium size’.

Remark 2.4. The lines

L1,1, . . . , L1,4, L2,1, L2,2, L2,3, L3,1, L3,2, L3,3

of the first type together with the lines

LZ1T1λ0 , LZ2T1λ0 , LZ1T2λ0 , LZ2T2λ0 , LZ1T3λ0 ,

LZ2T3λ0 , LZ1T1λ1 , LZ2T1λ1 , LZ1T2λ1 , LZ2T2λ1
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of the second type generate a sublattice Λ⊂NS(X) of rank 20 and discriminant −48. So they
yield a basis of NS(X)⊗Q. It is shown in [6, Appendix B] that the discriminant of the lattice
NS(X) is −48 as well; hence the aforementioned lines in fact generate NS(X).

Remark 2.5. It is interesting to note that the 16 lines of the first type that one has on any
quartic surface of type

ϕ(x0, x1) = ψ(x2, x3)

give rise to 6521 Zariski chambers. As these 16 lines generate a sublattice of rank 10, one should
compare the number 6521 with the number z(X8) = 1 501 681 for the Del Pezzo surface X8 of
Picard number 9. It would be interesting to know, on a more conceptual basis, what properties
of the lattice are crucial for obtaining a large number of chambers.

3. Comparison of efficiency

To illustrate the practicability of the new algorithm, we will now compare it with the algorithm
from [3] by providing sample run-times†.

We consider first the Del Pezzo surfaces X1, . . . , X8 as in [3]. The following table lists their
chamber numbers z(Xr) and shows the run-times (all in milliseconds) for the algorithm from [3],
called A1 in the table, as well as for the new algorithm A2. The value n is the dimension of
the intersection matrix‡ (that is, the number of negative curves on Xr).

r 1 2 3 4 5 6 7 8

n 1 3 6 10 16 27 56 240
z(Xr) 2 5 18 76 393 2764 33 645 1 501 681

A1 0.55 0.56 0.70 0.85 2.3 33.5 1.48× 103 2.88× 104

A2 0.80 0.85 0.82 0.91 2.3 26.8 1.09× 103 1.92× 104

Factor 0.69 0.66 0.85 0.93 1 1.25 1.36 1.5

For r 6 4, the original algorithm A1 is actually faster, presumably due to the overhead caused
by the more sophisticated strategy of A2. Starting with r = 6, however, A2 gets more and
more superior. This pattern will become even more evident when we consider the lines on
the Segre quartic, which we do next. Specifically, we provide run-times for A1 and A2 when
they are applied to the principal submatrices consisting of the first n rows and columns of the
intersection matrix from Section 2.

n 8 16 24 32 40 48 56 64

A1 0.90 65.55 4.16× 103 9.46× 104 1.43× 106 1.57× 107 1.3× 108 ∗
A2 0.96 31.54 1.70× 103 3.61× 104 5.40× 105 5.66× 106 4.6× 107 4.9× 108

Factor 0.94 2.08 2.45 2.62 2.65 2.77 2.83 ∗

Clearly, with growing matrix dimension, algorithm A2 shows an advantage over algorithm A1.
(As for the asterisk in the last column, the factors in the fourth line of the table seem to

†The run-times were obtained using Delphi implementations of A1 and A2 on an Intel Core Duo CPU E8600
at 3.33 GHz.

‡Here and in what follows, the algorithm is actually applied to the negative of the intersection matrix in
question.
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suggest a factor of about 3. If this assumption were true, then for n= 64 algorithm A1 should
have a run-time of about 15× 108 ms, which is around three weeks. In our attempts to verify
the assumption, we were, however, not able to get results within that amount of time, and we
found it technically difficult to check for run-times beyond a month.)

The potential of A2 is demonstrated even more clearly in the case of matrices with large
definite principal submatrices: for example, matrices which are negative definite themselves.
We use a symmetric integer matrix with negative entries −2 on the main diagonal, super- and
subdiagonal entries 1, and remaining entries all 0. Note that a similar matrix can in fact be
realized as an intersection matrix: for any number k, consider a surface of degree k of the
type discussed in Section 2, for example the Fermat surface of degree k. Among the k2 lines
of the first type we can pick n= 2k + 1 lines with the desired configuration. However, the self-
intersections of these lines (and therefore the diagonal entries of the matrix) are then 2− k.

n 15 21 23 27 33

A1 2.73× 102 3.84× 104 4.26× 105 4.50× 106 4.74× 108

A2 1.10× 102 1.17× 104 1.18× 105 1.23× 106 1.06× 108

Factor 2.48 3.28 3.61 3.66 4.48
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