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BOUNDS FOR ODD k-PERFECT NUMBERS
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Abstract

Let k ≥ 2 be an integer. A natural number n is called k-perfect ifσ(n) = kn. For any integer r ≥ 1, we prove
that the number of odd k-perfect numbers with at most r distinct prime factors is bounded by (k − 1)4r3

.
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1. Introduction

Let σ(n) be the sum of the positive divisors of a natural number n. For a rational
number k > 1, if σ(n) = kn then n is called multiperfect (or k-perfect). In the special
case when k = 2, n is called a perfect number. No odd k-perfect numbers are known
for any integer k ≥ 2.

Let ω(n) denote the number of distinct prime factors of the positive integer n. In
1913, Dickson [4] proved that for any natural number r, there are only finitely many
odd perfect numbers n with ω(n) ≤ r. Pomerance [9] gave an explicit upper bound of
such n in 1977 and proved that

n ≤ (4r)(4r)2r2

.

Heath-Brown [5] later improved the bound to n < 44r
. Cook [3] refined this to

n < 1954r/7. In 2003, Nielsen [6] improved the bound further and proved that for any
integer k ≥ 2, if n is an odd k-perfect number with r distinct prime factors then

n ≤ 24r
. (1)

Recently, Pollack [8] bounded the number of such n by modifying Wirsing’s
method [10]. He showed that for each positive integer r, the number of odd perfect
numbers n with ω(n) ≤ r is bounded by 4r2

.
In this paper we will study the analogous problem for the odd k-perfect numbers.

Our main result is the following theorem.
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T 1. Let k ≥ 2 be an integer. Then for any integer r ≥ 1, the number of odd
k-perfect numbers n with ω(n) ≤ r is bounded by (k − 1)4r3

.

R. Our bound (k − 1)4r3
is much smaller than the bound (1). In the case k = 2,

Theorem 1 reduces to a weaker result than Pollack’s bound 4r2
, while the following

Lemma 3 will yield Pollack’s result.

2. Proofs

If n1 is k1-perfect, n2 is k2-perfect and (n1, n2) = 1, then n1n2 is k1k2-perfect. In
view of this fact, we make the following definition.

D 2. A multiperfect number n is called primitive if for any divisor d of n with
1 < d < n and (d, n/d) = 1,

d - σ(d).

For example, if n is an odd perfect number, then n is primitive. To see why, we
observe that if there is a divisor d of an odd perfect number n with 1 < d < n, d|σ(d),
then σ(d)/d ≥ 2. Therefore

2 =
σ(n)

n
=

∑
m|n

m
n

=
∑
m|n

1
m
>

∑
m|d

1
m

=
σ(d)

d
≥ 2,

which is absurd.

L 3. Let x ≥ 1 and α > 1 be a positive rational number. Let I be the number of
odd primitive α-perfect numbers n ≤ x with ω(n) ≤ r. Then

I ≤ 2.62
1

α2 − 1
(log x)r.

If α is an integer, then
I ≤ 0.02(log x)r.

P. Let n ≤ x be an odd primitive α-perfect number and ω(n) = s ≤ r. We denote
by νp(n) the highest power of prime p dividing n. Suppose that p1 is the smallest
positive prime factor of n and e1 := νp1 (n). Let α = u/v with u, v positive integers.
Then σ(n) = αn implies that

upe1
1 ·

n
pe1

1

= vσ(pe1
1 )σ

( n
pe1

1

)
. (2)

Since n is primitive,
n

pe1
1

∣∣∣∣∣6 σ( n
pe1

1

)
.

By (2), we deduce that
vσ(pe1

1 ) - (upe1
1 ).

It follows that there exists at least one prime p2|(vσ(pe1
1 )) such that

νp2 (vσ(pe1
1 )) > νp2 (upe1

1 ). (3)
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By (2) and (3) we know that

p2

∣∣∣∣∣ n
pe1

1

.

We may assume without loss of generality that p2 is the smallest such prime and denote
e2 := νp2 (n). Replacing n/pe1

1 by n/(pe1
1 pe2

2 ) and iterating the argument above, we can
determine prime p3 with p3|(n/pe1

1 pe2
2 ). Write e3 = νp3 (n). Continuing in this way,

we can obtain primes pi and exponents ei = νpi (n), i = 4, . . . , s. Hence the standard
factorization of n can be written as follows:

n = pe1
1 pe2

2 · · · p
es
s .

We need to count the number of possibilities for such primes pi and exponents e j. The
algorithm shows that p2 is determined only by p1 and e1, p3 is determined by p1, p2

and e1, e2, and for each 1 ≤ i ≤ s, pi is determined by p1, . . . , pi−1 and e1, . . . , ei−1.
Therefore it is sufficient to count the number of possibilities of p1 and e1, e2, . . . , es.
Cohen and Hendy (see [2, (20)]) proved that

p1 <
2s

α2 − 1
+ 2.

Hence the number of such prime p1 is at most s/(α2 − 1). Since pei
i ||n, n ≤ x,

ei ≤
log x
log pi

.

We conclude that the number of possibilities for the sequence p1, e1, . . . , es is
bounded by

s
α2 − 1

s∏
i=1

log x
log pi

.

Recall that 1 ≤ s = ω(n) ≤ r. It follows that

I ≤ r ·
s

α2 − 1

s∏
i=1

log x
log pi

≤
1

α2 − 1
·

r2

log p1 log p2 · · · log pr
(log x)r

≤
1

α2 − 1
·

r2

log q1 log q2 · · · log qr
(log x)r,

(4)

where qi is the ith odd prime, q1 = 3, q2 = 5, . . . . For convenience, we denote

f (r) :=
r2

log q1 log q2 · · · log qr
.

By simple calculation, we find that f (r) is a decreasing function of r for r ≥ 3. The
maximal value of f (r) is

f (3) =
9

log 3 log 5 log 7
< 2.62. (5)
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If α = 2, then Nielsen [6] showed that ω(n) ≥ 9 for any odd perfect n. If α ≥ 3 is
an integer and n is an odd α-perfect number, then Cohen and Hagis [1] proved that
ω(n) ≥ 11. It follows that for any integer α ≥ 2,

f (r) ≤ f (9) =
81

log 3 log 5 · · · log 29
< 0.043.

Therefore

I ≤
1

α2 − 1
f (r)(log x)r ≤

1
3
× 0.043(log x)r < 0.02(log x)r. (6)

Lemma 3 follows from (4), (5) and (6). �

L 4. Let x ≥ 1, r ≥ 1 and integer k ≥ 2. The number of odd k-perfect n ≤ x with
ω(n) ≤ r is bounded by (k − 1)(log x)(r2+8r)/9.

P. Suppose that σ(n) = kn. Let d1 be the smallest positive divisor of n with 1 <
d1 < n, (d1, n/d1) = 1 and d1|σ(d1). Then d1 is an odd primitive multiperfect number.
We write σ(d1) = k1d1 for some integer k1. Similarly, let d2 be the smallest positive
divisor of n/d1 with 1 < d2 < n/d1, (d2, n/d1d2) = 1 and d2|σ(d2). Then d2 is also an
odd primitive multiperfect number. Write σ(d2) = k2d2 for some integer k2. Iterating
this argument, we can find divisors di of n and integers ki, i = 2, . . . , j, such that

di

∣∣∣∣∣ n
d1 · · · di−1

,
(
di,

n
d1 · · · di−1di

)
= 1,

and σ(di) = kidi for some integer ki ≥ 2. We assume that the procedure stops at the
( j + 1)th step when n/(d1d2 · · · d j) = 1 or n/(d1d2 · · · d j) is primitive and

n
d1d2 · · · d j

∣∣∣∣∣6 σ( n
d1d2 · · · d j

)
.

Denote d j+1 := n/(d1d2 · · · d j). Then we have

n = d1d2 · · · d jd j+1. (7)

If d j+1 , 1, then

kn = σ(n)

= σ(d1d2 · · · d j+1)

= σ(d1)σ(d2) · · · σ(d j+1)

= k1d1k2d2 · · · k jd jσ(d j+1).

Therefore

σ(d j+1) =
k

k1k2 · · · k j
d j+1.

It follows that d j+1 is k/(k1k2 · · · k j)-perfect and k1k2 · · · k j - k. Since k1, . . . , ks are
integers,

k1k2 · · · k j ≤ k − 1.
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In view of Lemma 3, the number of such d j+1 not exceeding x is bounded by

2.62
1( k

k1k2···k j

)2
− 1

(log x)r ≤ 2.62
1( k

k−1

)2
− 1

(log x)r

= 2.62
(k − 1)2

2k − 1
(log x)r

< 1.31(k − 1)(log x)r.

By the minimality of d1, . . . , d j, one can see that all d1, . . . , d j are primitive. The
results of Nielsen [7] and Cohen and Hagis [1] imply that ω(di) ≥ 9, i = 1, . . . , j.
Therefore

r ≥ ω(n) = ω(d j+1) +

j∑
i=1

ω(di) ≥ 1 + 9 j.

It follows that

j ≤
r − 1

9
.

By (7) and Lemma 3, the number of k-perfect numbers n ≤ x with ω(n) ≤ r is at most

(0.02(log x)r) j(1.31(k − 1)(log x)r) ≤ (0.02(log x)r)(r−1)/9(1.31(k − 1)(log x)r)

≤
k − 1

2
(log x)(r2+8r)/9.

If d j+1 = 1, then j ≤ r/9 and the bound is

(0.02(log x)r) j ≤ (0.02)r/9(log x)r2/9 ≤
k − 1

2
(log x)r2/9.

This completes the proof of Lemma 4. �

P  T 1. Let x = 24r
. Applying Lemma 4 and Nielson’s bound (1), we

deduce that the number of odd k-perfect numbers n with ω(n) ≤ r is at most

(k − 1)(log x)(r2+8r)/9 < (k − 1)(4r)(r2+8r)/9 = (k − 1)4(r3+8r2)/9 ≤ (k − 1)4r3
.

This concludes the proof. �
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