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SUMMARY

Neuraminidase inhibitor (NI) dispensing has emerged as a possible automated data source for influenza
surveillance. We aimed to evaluate its timeliness, correlation, and predictive accuracy in relation to
influenza activity in Quebec, Canada, 2010–2013. Our secondary objective was to use the same metrics
to compare NI dispensing to visits for influenza-like illness (ILI) in emergency departments (EDs).
Provincial weekly counts of positive influenza laboratory tests were used as a reference measure for the
level of influenza circulation. We applied ARIMAmodels to account for serial correlation. We
computed cross-correlations to measure the strengths of association and lead-lag relationships between
NI dispensing, ILI ED visits, and our reference indicator. Finally, using an ARIMAmodel, we
evaluated the ability of NI dispensing and ILI ED visits to predict laboratory-confirmed influenza.
NI dispensing was significantly correlated (R= 0·68) with influenza activity with no lag. The maximal
correlation of ILI ED visits was not as strong (R= 0·50). Both NI dispensing and ILI ED visits were
significant predictors of laboratory-confirmed influenza in a multivariable model; predictive potential
was greatest when NI counts were lagged to precede laboratory surveillance by 2 weeks. We conclude
that NI dispensing data provides timely and valuable information for influenza surveillance.

Key words: Antiviral drugs, community pharmacies, influenza, multivariate analysis, public health
surveillance.

INTRODUCTION

Influenza surveillance can provide public health
officials and clinicians with early detection and

situational awareness of influenza activity by deter-
mining the timing, location and degree of influenza
circulation and associated diseases [1, 2]. Traditional
data sources for influenza surveillance, such as posi-
tive influenza laboratory tests and medically attended
influenza-related illnesses, are typically reported to
public health with a delay of as much as 1–2 weeks
[3]. Consequently, public health researchers have
sought novel electronic data sources that can provide
timely information for rapid influenza outbreak detec-
tion [4, 5].
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It is estimated that there are over 12 million clinic
visits per year for influenza in the United States [6].
Of these, about 10–20% receive a prescription for anti-
viral treatment [6, 7]. The neuraminidase inhibitors
(NIs), oseltamivir and zanamavir, are currently the
recommended first-line therapy for influenza [8].
Monitoring NI dispensings from community phar-
macy drug sales databases has emerged as a possible
automated source of timely information regarding
influenza [9].

Influenza activity in the outpatient setting tends to
occur before an increased incidence of more severe
disease is observed [10–12]. Consequently, we hypothe-
sized that changes in the weekly volume of outpatient
antiviral prescriptions might precede changes in weekly
counts of positive influenza tests and that NI dispensing
could serve as an early indicator of epidemic influenza
activity. To test our hypothesis, we assessed the timeli-
ness, correlation, and predictive accuracy of retail
pharmacy NI dispensing data in relation to labora-
tory-confirmed influenza activity in Quebec, Canada.
Our secondary objective was to compare the above
characteristics of the NI dispensing data to those of
an established influenza surveillance data source,
emergency department (ED) visits for influenza-like
illness (ILI).

METHODS

Overview and study design

In this ecological study, we compared three weekly
time series: (1) counts of NI dispensing, (2) counts
of ILI ED visits, and (3) counts of positive influenza
laboratory tests (as a reference measure of influenza
circulation) over the 3 years 4 July 2010 to 29 June
2013, in the province of Quebec, Canada. We evalu-
ated three key performance characteristics of NI dis-
pensing and ILI ED time series relative to the time
series of positive influenza laboratory tests: timeliness,
correlation and predictive accuracy [13].

Ethics approval was granted by the McGill
University Faculty of Medicine Institutional Review
Board.

Outcomes

Timeliness, or lead time, was assessed by measuring
the lead/lag relationship of a time series (NI dispens-
ing, or ILI ED visits) with the time series of positive
influenza laboratory results. To measure the lead/lag

relationship, we applied the cross-correlation function
(CCF) analysis and fit Box–Jenkins transfer function
models (see Data analysis section). A data source was
considered timely if it demonstrated statistically signi-
ficant cross-correlations at lags 50, i.e. when it was
lagged relative to the reference series so as to precede
it. Strength of correlation (Pearson’s R) [14] was meas-
ured by the greatest significant cross-correlation across
all lags in the CCF. Finally, predictive accuracy was esti-
mated by fitting multivariable transfer function models
to the laboratory-confirmed influenza time series. We
defined the best model as the model with the lowest
corrected Akaike’s Information Criterion (AICc).

Sources of data

Provincial sentinel laboratory surveillance

The Institut national de santé publique du Québec
performs laboratory-based surveillance for influenza
year-round [15]. Aggregate weekly counts of
laboratory-confirmed influenza A or B detection and
the number of tests performed in participating hospi-
tals are collated and disseminated publicly. Although
the participating virology laboratories are located in
hospital centres, specimens may originate from
patients of any age and from various clinical settings,
such as community or hospital outpatient clinics,
EDs, and acute-care or long-term care inpatient
wards. Nevertheless, based on published national
and international guidelines for influenza testing, it
is expected that most results originate from hospita-
lized patients or from patients at risk of severe out-
comes [8, 16]. All 18 Quebec health regions are
represented in the surveillance programme and the
number of hospitals providing data was stable
throughout the study period (44 in 2010–2011, 45 in
2011–2012, 46 in 2012–2013).

NI dispensing

Aggregate weekly counts of NI prescriptions dis-
pensed to outpatients in Quebec retail (non-hospital)
pharmacies were obtained from IMS Brogan’s
Canadian Weekly CompuScript proprietary drug use
database. The number of pharmacies providing weekly
data ranged from 1071 to 1080 (>60% of all Quebec
retail pharmacies) over the study period.

ED visits for ILI

Aggregate weekly counts of visits for ILI to a Quebec
ED were obtained from the Daily Report on the
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Situation in Emergency Departments and Hospitals
database. Each acute-care hospital in Quebec is
required to report the daily number of patients regis-
tering with the ED who present with the chief com-
plaint of ILI, defined as fever and cough, as well as
the total number of patients registering with the ED
for any reason.

Data analysis

Analyses were performed using R version 2.14 (www.
r-project.org) and SAS v. 9.3 (SAS Institute Inc.,
USA).

CCF: analysis of timeliness and correlation

The CCF is a frequently used measure of the associ-
ation between two time series; it quantifies their
correlation over a range of time lags [4, 11, 17].
However, the empirical CCF (estimated from the
raw data) is highly prone to bias when one or both
data series exhibit temporal autocorrelation. Because
of the autocorrelation within each individual series,
the empirical CCF of two unrelated time series can
display significantly high but spurious correlations.
Moreover, estimates may be confounded by the effect
of seasonal covariates [17–19]. Furthermore, long-
scale phenomena, such as seasonality, tend to over-
whelm the CCF, obscuring short-scale fluctuations
that are more relevant to the surveillance of influenza
outbreaks [20]. To remove the effects of autocorrel-
ation on the CCF, we first filtered (i.e. ‘pre-whitened’)
the NI dispensing data by fitting an autoregressive
integrated moving average (ARIMA) model [18, 20,
21]. That model was then applied to the laboratory
surveillance reference time series, and the CCF of
the two residual series was estimated [22]. From this

CCF, we identified the lags at which the maximum
and earliest statistically significant correlations oc-
curred. A two-sided P value < 0·05 was considered
statistically significant. We also used this approach
to estimate the CCF of the ILI series with the
laboratory-confirmed series. We also performed the
CCF analyses separately for each of the three study
seasons to evaluate if our results would be consistent
across influenza outbreaks.

Transfer function models.

We assessed the value of NI dispensing data for the
prediction of influenza activity using ARIMA model-
ling [18, 21, 23]. Bivariate and multivariate Box–
Jenkins transfer function models were developed to
describe the relationship between the pre-whitened
output series (laboratory surveillance data) and each
of the pre-whitened input series (NI dispensing and
ILI ED visits). Only positive lags with a significant
cross-correlation were considered. Log-transformations
of the series were considered to meet model assump-
tions. The AICc of the ARIMA model of the output
series was used as a yardstick when comparing the
informative potential of different transfer function
models. An input series was considered to be a useful
predictor if its inclusion lowered the AICc.

Sensitivity analyses

To assess if our results were robust to the use of a pro-
portion as opposed to counts, we re-ran our CCF and
prediction model analyses using the weekly proportion
of positive influenza tests (weekly count of positive la-
boratory influenza tests/weekly count of influenza tests
performed) as the reference time series and the weekly
proportion of ILI ED visits (weekly count of ILI ED

Table 1. Circulating influenza strains, by season, from 2010 to 2013 in Quebec, Canada

A, H1N1 subtype A, H3N2 subtype B, Yamagata lineage B, Victoria lineage
Season (%)* (%)* (%)* (%)*

2010–2011 A/California/07/2009 A/Perth/16/2009 B/Wisconsin/01/2010† B/Brisbane/60/2008
(2) (87) (0·4) (10·6)

2011–2012 A/California/07/2009 A/Perth/16/2009 B/Wisconsin/01/2010† B/Brisbane/60/2008
(24) (21) (6) (49)

2012–2013 A/California/07/2009 A/Victoria/361/2011 B/Wisconsin/01/2010 B/Brisbane/60/2008†
(5) (78) (16) (1)

* Estimated percentage of total circulating strains for that year, based on genetic and antigenic characterization of a sample of
provincial surveillance viral isolates from throughout the season.
† Strains not included in that year’s trivalent seasonal influenza vaccine.
Bold font indicates the predominant circulating strain for that season.

1594 J. Papenburg and others

https://doi.org/10.1017/S095026881500299X Published online by Cambridge University Press

https://doi.org/10.1017/S095026881500299X


visits/weekly count of total ED visits) instead of ILI
ED counts. No denominator for NI dispensing was
available in our dataset.

RESULTS

NI dispensing

There were 21 066 NI prescriptions dispensed during
the study period (5550 in 2010–2011, 3347 in 2011–
2012, 12169 in 2012–2013). Of these dispensings, 20
999 (99·7%) were for oseltamivir.

Description of the 2010–2011, 2011–2012 and 2012–
2013 influenza seasons

The influenza types and subtypes circulating in
Quebec during each season of the study period are
described in Table 1. The 2010–2011 and 2012–2013
influenza seasons were both characterized by a pre-
dominance of A(H3N2) (87% and 78% of strains, re-
spectively). However, the intensity of the 2012–2013
epidemic was marked, with peak weekly counts that
were more than twice as high as in 2010–2011, and
four times greater than during the relatively mild
2011–2012 season (Fig. 1). In 2011–2012, the out-
break was briefer and peaked later (March 2013),
with concomitant circulation of both influenza A
and B in roughly equal proportions (45% and 55%,
respectively).

Description of the NI and ILI series in relation to the
influenza series

The NI series closely tracked the laboratory influenza
series. The ILI ED series also exhibited a similar sea-
sonality; however, there was a considerable volume of
ILI presenting to Quebec EDs year-round, even when
little or no influenza was circulating. Moreover, in
2011–2012, the peak in weekly ILI ED visits occurred
in early January, before the seasonal influenza epi-
demic began.

CCF: correlation and timeliness (Table 2)

In the overall analysis, the CCFs for the NI series with
the laboratory series demonstrated that NI dispens-
ing temporally coincided with (maximal correlation
at lag 0) and was strongly correlated with (correla-
tion of 0·68) laboratory-confirmed influenza activity.
Assessing the CCF of these two series separately for
each of the three seasons, this result was consistently

observed over the entire study, with maximal correla-
tions of 50·5 occurring at lag 0 and the earliest sign-
ificant correlation at lag 1 in each individual season.
The magnitude of the peak correlation with influenza
activity was stronger for the NI series than the ILI ser-
ies overall (0·68 vs. 0·50) and in two of the three sea-
sons (0·50 vs. 0·67 in 2010–2011, 0·54 vs. 0·33 in
2011–2012, 0·73 vs. 0·61 in 2012–2013). The timeliness
of the ILI series showed mild variability in the
year-to-year analysis, with peak correlations and earli-
est significant correlations occurring at either lags 0 or 1.

Prediction models

Using NI dispensing or ILI ED visits as input series in
separate single-input Box–Jenkins transfer function
models improved the fit of a predictive model for
weekly counts of laboratory-confirmed influenza
cases (Table 3). In a multivariable model, both series
were significant predictors of influenza counts.
Including NI dispensing data at a lag of 2 weeks in
this model optimized fit.

Sensitivity analyses

Repeating the analyses using the proportion of posi-
tive influenza tests as the reference time series and
the proportion of ILI ED visits instead of ILI ED
counts did not affect the magnitude or the direction
of the associations that we observed.

DISCUSSION

We found that NI dispensing from retail pharmacies
was timely and strongly correlated with laboratory-
confirmed influenza activity during the same week
over three non-pandemic seasons. This association
was observed after filtering to correct for autocorrel-
ation, and is therefore a feature of the short-scale re-
lationship between the two data streams [20]. NI
dispensings were also a significant predictor of labora-
tory-confirmed influenza activity in a multivariable
model. The model’s estimated predictive potential
was maximal when the log-transformed NI time series
was lagged to precede the log-transformed laboratory
surveillance data by 2 weeks.

Traditionally, systems for monitoring influenza ac-
tivity have relied on reports from diagnostic virology
laboratories as their primary source of information.
Such laboratory surveillance data are highly specific:
all cases reported are confirmed influenza infections.
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However, in Quebec, as in many jurisdictions [24, 25],
sentinel laboratories must first manually submit week-
ly data to a web portal and there is typically a delay of
1–2 weeks before the results are published. Because all
prescriptions in Quebec are subject to electronic adju-
dication at the time of dispensing, the monitoring of
NI sales represents a potentially feasible, less labori-
ous, inexpensive, and automated surveillance method.

Previous studies in Quebec and elsewhere have
shown that ambulatory care or ED-based syndromic
surveillance data for acute respiratory illness or ILI
can provide earlier signals for seasonal influenza out-
breaks compared to measures of more severe disease,
such as hospitalizations or mortality due to pneumo-
nia and influenza [10–12]. Because community phar-
macy NI dispensing represents milder infections
treated as outpatients, we hypothesized that the NI
data would lead the laboratory surveillance series, as
the latter is primarily representative of patients hospi-
talized with severe disease [26]. Conversely, if clini-
cians’ knowledge of current levels of influenza
circulation, based on laboratory surveillance reports,
very strongly influences antiviral treatment, NI
dispensing would lag behind this reference indicator.

In our CCF analysis, however, the maximal cross-
correlation between the NI and laboratory surveil-
lance data was at lag 0 and we also observed a
significant cross-correlation at a lead time of 1 week.
Moreover, when included in a regression model, the
greatest predictive value of the NI series was with a
lead time of 2 weeks. Taken together, our observa-
tions suggest that surveillance of NI prescriptions
could provide an early indication of epidemic
influenza activity. Moreover, given that NI dispensing
data are collected automatically, it should be possible
to conduct surveillance using these data with little or
no reporting delay.

Earlier studies have suggested that prescription drug
dispensing might offer timely information regarding
influenza activity, without necessarily quantifying a
lead-lag relationship to an established reference time
series. Using a space–time permutation scan statistic,
Greene et al. compared the performance of 10 types
of electronic clinical data, including antiviral dispens-
ing, for the detection of clusters of illness related to
influenza during the 2007–2008 season in Northern
California [27]. Antiviral dispensing provided the earli-
est signal for one of the clusters, detected two of the

Fig. 1. Time-series plots of the weekly counts of neuraminidase inhibitor (NI) prescriptions dispensed, acute-care hospital
emergency-department (ED) visits for influenza-like illness (ILI), and laboratory-confirmed cases of influenza in Quebec,
Canada, 2010–2013.
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four events, and produced no false alarms. During the
second wave of the 2009 pandemic in Ontario,
Canada, Aramini et al. found that A(H1N1) counts
were associated with NI prescriptions in a Poisson re-
gression analysis; statistical significance was greatest
when the series were not lagged (P< 0·001) [28].

To date, assessments of the correlation between
antiviral prescribing and influenza activity, have not
accounted for autocorrelation and seasonality.
Therefore, these estimates are likely to be biased.
Furthermore, in contrast to our study, none of the

prior work on NI dispensing compared it to more
than one traditional data source, which is necessary
to understand its usefulness in context with currently
used methods. In Japan, local and national-level dis-
pensing data demonstrated empirical correlations (R)
of >0·95 with ILI sentinel surveillance data [25, 29].
In the national study, empirical correlations during
the 2009 A(H1N1) pandemic and the following season
(2010–2011) were very similar (R = 0·992 and 0·972,
respectively) [25]. However, there was modest variabil-
ity between prefectures and the lowest regional

Table 2. Correlation coefficients in the cross-correlation functions between the time series of neuraminidase inhibitor
prescription dispensing, acute-care hospital emergency-department visits for influenza-like illness, and a common
reference time series of laboratory-confirmed influenza cases in Quebec, Canada, 2010–2013

Peak correlation
Earliest statistically significant
correlation

Lead time Lead time
Time series (weeks) Correlation (weeks) Correlation

Overall (2010–2013)
NI 0 0·68 1 0·22
ILI ED visit 1 0·50 1 0·50

2010–2011
NI 0 0·50 1 0·34
ILI ED visit 0 0·67 1 0·32

2011–2012
NI 0 0·54 1 0·44
ILI ED visit 0 0·35 0 0·35

2012–2013
NI 0 0·73 1 0·22
ILI ED visit 1 0·61 1 0·61

NI, Neuraminidase inhibitor; ILI, influenza-like illness; ED, emergency department.

Table 3. Fitted univariate ARIMA model, and bivariate and multivariable Box–Jenkins transfer function models for
the prediction of weekly cases of laboratory-confirmed influenza infection

Time series Form (p,d,q)* Lead time (weeks)† P value‡ AICc

Laboratory influenza cases 4,1,0 n.a. n.a. 270·3
Single input models

NI dispensing 4,1,0 +2 0·020 263·1
ILI ED visit 4,1,0 0 0·001 262·6

Multivariable model (two input series)
NI dispensing 0,1,4 +2 0·030 255·6
ILI ED visit 0,1,4 0 0·001

ARIMA, Autoregressive integrated moving average; AICc, Akaike’s Information Criterion corrected; n.a., not applicable;
NI, neuraminidase inhibitor; ILI, influenza-like illness; ED, emergency department.
*Where p represents the order of the autoregressive term, d represents the order of differencing, and q represents the order of
the moving average term.
†The positive lag (i.e. lead time, when the input series is lagged to precede the reference indicator output series) with a stat-
istically significant cross-correlation that minimized the AICc, and optimized model fit.
‡The P value of the coefficient for the input series.
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correlation was 0·689. In the United States Vaccine
Safety Datalink Project, differences were observed be-
tween eight different medical care organizations. The
empirical correlations of weekly antiviral dispensings
with the proportion of tests positive for influenza ran-
ged from 0·34 to 0·72 [9].

As with all forms of syndromic surveillance, anti-
viral dispensings cannot be as specific an indicator
of influenza activity as laboratory data. Several factors
may contribute to ‘false-positives’, i.e. occurrences of
NI dispensing that do not represent an incident case
of influenza infection. First, while we expect that the
majority of prescriptions were for treatment of acute
illness, our data did not allow us to assess indication.
Prophylaxis has been estimated to be the indication
for <10% of antiviral dispensing in the 2000–2010
Vaccine Safety Datalink Project study [9]. That pro-
portion is probably even smaller in our Quebec data;
since the 2009 A(H1N1) pandemic, early treatment
is preferred over prophylaxis due to concerns regard-
ing emergence of drug resistance [8, 30]. Although per-
sonal stockpiling of antivirals is discouraged [31],
evidence of such activity has been reported when
spikes in NI sales coincided with media coverage of
highly pathogenic H5N1 influenza, but not with
other markers of influenza activity [32]. Significant
amounts of stockpiling might therefore trigger a
false alarm for an influenza outbreak. However, if
the monitoring of NI dispensing is performed as
part of a multistream surveillance programme, it
offers the opportunity for public health officials to rec-
ognize inappropriate prescribing and intervene to re-
duce the risk of lack of availability of treatment for
those that need it most [31, 33].

Outpatient antiviral treatment of influenza is rarely
based on laboratory testing, in large part because test
results are not available during the patient encounter.
It has been estimated that only 3–6% of outpatients
treated with antivirals in the United States were
tested for influenza [9]. NIs are therefore being pres-
cribed empirically, based on a clinical syndrome [8].
However, other respiratory viruses that may temporally
co-circulate with influenza, such as respiratory
syncytial virus, also frequently cause ILI, especially
outside of peak periods of influenza activity [34].
Accordingly, influenza virus was the cause of ILI in
652/1501 (43%) participants that presented to a
Canadian community-based sentinel clinic surveil-
lance system in 2012–2013 [35]. Although we did not
measure the impact of co-circulating respiratory
viruses, our NI dispensing series was clearly more

specific than our ILI ED data and trends in NI dis-
pensing and laboratory surveillance data were very
closely associated, even after correcting for seasonal-
ity. We believe that prescribers’ prior knowledge of
circulating levels of influenza contributes to, but can-
not fully account for, this phenomenon. Laboratory
surveillance results take >1 week before being pub-
lished and our NI data coincided with or led labora-
tory surveillance by 1–2 weeks. Fiejté et al. [36]
reported that, during the second wave of the 2009 A
(H1N1) pandemic, in Utrecht, The Netherlands,
among patients prescribed oseltamivir in the commu-
nity setting, those in whom the decision to treat was in
accordance with national guidelines more frequently
started their course of therapy compared to those in
whom the treatment decision was deemed inappropriate
(97·4% vs. 55·9%, P< 0·001). Thus, it appears that
patients’ behaviour after the medical visit affects NI dis-
pensing counts and that those with more severe symp-
toms or those more likely to be infected with influenza
may also be more likely to complete their prescription.

One limitation of our study is that the data did
not allow for age-stratified analyses. Patients’ age
influences influenza transmission dynamics and, con-
sequently, data timeliness. Studies using laboratory-
based [37] and syndromic surveillance [10, 11] have
demonstrated that data from children offer the earliest
lead times. Identifying the age groups that provide the
timeliest data might further improve the utility of
monitoring antiviral dispensings. We were also unable
to determine if NI data timeliness and correlation with
influenza activity were consistent geographically
across Quebec. Therefore, though our data were col-
lected province-wide, results may not be valid for all
regions. Another caveat is that NI dispensing data
may not perform similarly during a pandemic.
Moreover, indications for NI treatment and NI pre-
scription rates vary significantly across countries
[38]. Consequently, our results may not be applicable
in jurisdictions without similar access to prescription
drugs. In addition, because we did not have weekly
data on circulating influenza A subtypes, we could
not evaluate their specific effect using our model.
Further, estimating true influenza incidence from la-
boratory or ILI surveillance remains a challenge [1,
23, 39]. Therefore, any reference indicator used to as-
sess NI dispensing will be imperfect and results may
vary based on the choice of comparator. Finally,
there are no data available on the proportion of
patients with influenza that receive antiviral treatment
in the outpatient setting in Quebec or Canada, nor do
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we know the factors associated with Canadian physi-
cians’ decisions to prescribe influenza antivirals.

We took several measures to ensure the validity of
our results. First, we pre-whitened the time series
prior to estimating correlations between them, remov-
ing autocorrelation and thereby reducing the possibil-
ity of biased measures of association [17]. Further, by
filtering the effect of seasonality, we focused on the
short-scale features of the lead-lag relationships to
produce estimates applicable to the detection of rapidly
evolving influenza outbreaks [20]. Furthermore, the
choice of ARIMA methodology for building predic-
tion models is well suited for shorter-term forecasting,
as it places greater weight upon recent past values [21].
Finally, year-by-year analyses demonstrated that our
estimates were stable to variations in epidemic season
timing, duration, overall severity, peak intensity and
antigenic characterization of the predominant strains.

In summary, the correlation, timeliness and predict-
ive ability of NI dispensing data in relation to
laboratory-confirmed influenza activity suggests that
this readily available data stream could act as a lead-
ing indicator for outbreak detection. Monitoring NI
dispensing, especially in parallel to traditional sources
of surveillance data, should increase public health
practitioners’ situational awareness of influenza activ-
ity, thereby facilitating timely interventions and re-
source management.
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